Discrete Conservative Approximations of Hybrid Systems

ID
TR-93-44
Authors
Carl-Johan H. Seger and Andrew Martin
Publishing date
November 1993
Length
39 pages
Abstract

Systems that are modeled using both continuous and discrete mathematics are commonly called hybrid systems. Although much work has been done to develop frameworks in which both types of systems can be handled at the same time, this is often a very difficult task. Verifying that desired properties hold in such hybrid models is even more daunting. In this paper we attack the problem from a different direction. First we make a distinction between two models of the system. A detailed model is developed as accurately as possible. Ultimately, one must trust in its correctness. An abstract model, which is typically less detailed, is actually used to verify properties of the system. The detailed model is typically defined in terms of both continuous and discrete mathematics, whereas the abstract one is typically discrete. We formally define the concept of conservative approximation, a relationship between models, that holds with respect to a translation between the questions that can be asked of them. We then progress by developing a theory that allows us to build a complicated detailed model by combining simple primitives, while simultaneously, building a conservative approximation, by similarly combining pre-defined parameterised approximations of those primitives.