
Discrete Conservative Approximations

of Hybrid Systems�

Andrew K. Martin

Carl-Johan H. Seger

Integrated Systems Design Laboratory

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

Abstract

Systems that are modeled using both continuous and discrete mathematics are

commonly called hybrid systems. Although much work has been done to develop

frameworks in which both types of systems can be handled at the same time, this is

often a very di�cult task. Verifying that desired properties hold in such hybrid models

is even more daunting. In this paper we attack the problem from a di�erent direction.

First we make a distinction between two models of the system. A detailed model is

developed as accurately as possible. Ultimately, one must trust in its correctness. An

abstract model, which is typically less detailed, is actually used to verify properties

of the system. The detailed model is typically de�ned in terms of both continuous

and discrete mathematics, whereas the abstract one is typically discrete. We formally

de�ne the concept of conservative approximation, a relationship between models, that

holds with respect to a translation between the questions that can be asked of them.

We then progress by developing a theory that allows us to build a complicated detailed

model by combining simple primitives, while simultaneously, building a conservative

approximation, by similarly combining pre-de�ned parameterised approximations of

those primitives.

1 Introduction

In our research laboratory we have a computer controlled model train set consisting of

about 35 feet of track, 13 computer controlled switches, three remotely controlled trains

and approximately 60 position sensors. Although it was built to provide a test bed for

designing mixed hardware/software systems, the train set has become a source of many

challenging research questions related to hybrid systems. While some of the problems

encountered are speci�c to our particular model train set, it is clear that others, such as

old sensor data, noise, unreliable sensors and actuators are typical of other real systems

as well.

�This research was supported by a Killam predoctoral fellowship, by a postgraduate scholarship and

by operating grant OGPO 109688 from the Natural Sciences and Engineering Research Council of Canada

and by a fellowship from the B. C. Advanced Systems Institute.

1

One particularly challenging problem has been the development of a control system

that guarantees freedom from collisions. Of course, there is a trivial solution to this task:

never move any trains! The challenge, however, is to guarantee collision freedom while

at the same time keeping the degree of utilisation as high as possible. While working on

this problem we encountered two di�culties. The �rst was formalising the above problem

statement. The second was verifying that a proposed solution was indeed correct. Partly

because of our circuit veri�cation background, and partly because of the nature of the

speci�cation, a model-checking veri�cation approach seemed natural. However, such an

approach would require a discrete state-machine model of the system.

Although, we could imagine various discrete state machine models of the train system,

it was hard to be convinced that such models were accurate re
ections of the physical

reality. Moreover, we needed some way to rephrase the question \can two trains collide"

into a veri�able property of such a state machine. Many aspects of the system, including

what it means for two trains to collide are much easier to model using continuous mathe-

matics. For example, the current position of an engine is, as a �rst approximation, a linear

function of the speed of the train, its last known location, and the time that has elapsed

since its location was known. On the other hand, any model of the system must also

include the hard-wired digital control logic that is used to interface the computer with the

train set. This control logic is modelled more naturally using discrete structures. While

we needed to model the physical system using a combination of continuous and discrete

mathematics, we had e�cient veri�cation procedures only for discrete state systems.

To capitalise on the strengths of both forms of representation, we have developed a

theory of \conservative approximation". Loosely speaking, a discrete state model is a

conservative approximation of a hybrid system if any veri�able safety properties of the

discrete state model also hold in the hybrid system. One observation we made early in our

e�ort to formalise this idea was that it is not enough merely to establish a correspondence

between the two systems. Of equal importance is the establishment of a correspondence

between the questions we can ask of one system and the questions we can ask of the

other. Intuitively, we need some way of translating our \two trains do not occupy the

same physical space" (which is a more precise statement of no-collision) question, to a

question about the discrete state model of the system. Thus a conservative approximation

must be de�ned in terms of a relation between the questions, as well as a relation between

the models. It is the formalisation of these concepts that is the topic of the �rst part of

this paper.

To prove that one model is a conservative approximation of another with respect to

some question-translation, can be very di�cult and time consuming. If we had to establish

conservative approximation from the basic de�nitions every time we wanted to develop

a model of a system, this approach would be completely impractical. To address this

di�culty, we develop a calculus that allows us to build up conservative approximations of

complex systems from many simpler approximations.

Section 3 develops simple discrete and continuous modeling frameworks. We illustrate

these frameworks using a very simple water-tank example system. We show how to model

the continuous tank, its event-driven valve actuator, and the discrete controller within

the continuous framework. This section also contains the de�nitions of parallel composi-

tion and communication operations, with which the components are connected to build a

complete model of the water-tank system. Section 4 gives a very general de�nition of con-

servative approximation. In Section 5, 3.3 and 3.4, we show how to construct conservative

approximations in our discrete modeling framework, for the hybrid models developed in

2

Section 3. Finally, in Section 8, we show how to use the discrete conservative approxima-

tion, and conventional model-checking to verify that the controller will not over-�ll the

water-tank.

This paper should be seen as the �rst step towards building a practical system that

would allow the user to construct natural and accurate models of physical plants by com-

bining simple, well understood, components. At the same time as the model is constructed,

the system would automatically construct a parameterised �nite state conservative approx-

imation automatically. Desired properties of the physical system could then be veri�ed

against this approximation.

2 Related Work

The idea of conservative approximation has been presented in other contexts by several

other researchers. Burch [3] gives a very general notion of conservative approximation

based on trace algebras. The theory appears particularly well suited to verifying the real-

time behaviour of discrete event systems. Examples given are mostly from the domain of

circuit design.

In this framework, a trace algebra is de�ned as an algebra with composition and

projection operators that satis�es a set of eight axioms. A trace is an element in the

domain of such a trace algebra. Both implementation and speci�cation are represented by

trace structures, themselves the domain of a trace structure algebra. Each trace structure

includes a set of traces. Each trace in the set represents a possible behaviour of the agent

being modeled. Veri�cation amounts to showing that the trace-set of the implementation

is contained in the trace-set of the speci�cation.

A conservative approximation is a function from veri�cation problems expressed in one

trace structure algebra, to problems in another. It consists of a pair of functions, 	u and

	l, each of which take a trace-structure in the source algebra, and return a trace-structure

in the destination algebra. Let E be any expressions in the trace structure algebra. Let

E0 be the expression derived from E by replacing each occurrence of a trace-structure T

with 	(T). The pair 	 = (u;	l) is a conservative approximation if E0 � 	l(Ts), implies

that E � Ts, for any such expression E and trace Ts.

The theory is applied to a variety of trace structures all of which associate varying

amounts of timing information with discrete events. Burch gives a general method for con-

structing conservative approximations based on homomorphisms between trace-algebras.

This method allows the construction of conservative approximations from traces in which

time is represented by real numbers, to traces in which time has discrete values. A second-

method, based on power-set algebras over trace algebras, is used to construct conservative

approximations from discrete time traces with explicit simultaneity, to traces with only

interleaving semantics.

The theory given is very general in its formation, and appears particularly well suited

to verifying the real-time behaviour of discrete event systems. It is not clear how to

instantiate the theory for traces that are essentially real-valued functions over time, rather

than sequences of discrete events.

Clarke et al. [4] describe an approach to approximate abstraction in the context of

�nite-state transition systems. Programs and their abstractions are modelled as �nite

state transition systems. An abstraction is de�ned by a surjection from the concrete

state-space to the abstract. Speci�cations are given in subsets of the temporal logic CTL.

Atomic state formulae in the logic refer only to the abstract state. The abstraction surjec-

3

tion is used to provide a natural interpretation of such formulae in the concrete domain.

Thus the surjection provides both a translation for models, and a translation for speci�-

cation. The authors show that such abstractions are conservative when the speci�cation

language is limited to 8CTL�, a subset of full CTL with only universal path quanti�ca-

tion, and restricted temporal operators. A class of mappings are identi�ed that de�ne

exact abstractions for full CTL�. A similar, but slightly more general approach to state

abstraction is also described in [6]. A related approach based on !-language containment

is presented in [5]

Recently, there has been in increased interest in formalisms for describing the be-

haviour of hybrid systems, for which the veri�cation task is tractable. Raven et al. model

hybrid systems using a real-time interval temporal logic [7]. Both speci�cations and their

re�nements are given as formulae in the logic. Veri�cation amounts to showing that the

re�nement implies its speci�cation. The logic is de�ned over interpretations in which

states are viewed as functions over real-time. The technique is particularly aimed at ex-

pressing duration properties such as \Within any time period of length T, state S may

occur at most c per cent of the time". The logic is inherently undecidable, but some sound

deduction rules are given

Alur et al. [1] use hybrid automata to model system behaviour. The state of a hybrid

automata consists of a location counter, drawn from a �nite set of locations, and a set

of real valued variables. The program counter de�nes the state of a �nite state machine.

Associated with each state is a set of di�erential equations, which govern the behaviour

of the real-valued variables while the �nite-state machine is in that state. Also associated

with each state is a set of exceptions, predicates over the real-valued variables. Progress

can be made by such an automaton in two ways. As time passes, the real-valued variables

change their value according to the active set of di�erential equations. At any time, the

entire state of the machine may change instantly according to a transition relation over

both the location counter and the real-valued variables. To ensure progress, the automaton

must make such an instantaneous transition before the elapse of su�cient time to satisfy

one of the exception predicates.

The authors give a semi-decision procedure for proving that members of a restricted

class of hybrid automata satisfy linear invariants over the real-valued variables. The pro-

cedures, based on computing and minimising �xed points, are guaranteed to give correct

results if they terminate. Several examples are given for which the procedures do indeed

terminate.

A completely di�erent approach to hybrid system speci�cation [9] and veri�cation [10]

is given by Zhang and Mackworth. They use a formalism called constraint-nets to represent

hybrid systems. Essentially, a constraint net represents the evolution of a system state as

a set of mappings from algebraically de�ned time-structures to variable domains, which

must have certain algebraic properties. These mappings represent the shared inputs and

outputs of a set of transductions, and must be causally related with respect to the time

structures. Semantically, a constraint net is denoted by the least �xed point of a set of

equations. The existence of such a �xed-point is guaranteed by the algebraic properties of

the time-structures and variable domains.

The approach that we advocate in this paper is to use hybrid models to model the sys-

tem under examination initially. We then construct a discrete conservative approximation

of this model for the purpose of veri�cation. To illustrate this principle we have purposely

chosen extremely simple frameworks with which to model our examples, and express our

speci�cations.

4

3 System Domains

Mathematical models, have long been used to describe the behaviour of physical systems.

Such models are useful, in as much as questions about the systems that they represent,

can be rephrased as questions about the models. For example, the position of a train,

traveling at a constant velocity of �ve miles per hour, can be modeled by the following

linear equation.

x = 5t

This equation is a model of the train in two, related, respects. In one sense, the structure

of the equation is intended to represent the structure of train behaviour. The 5 in the

equation represents the speed of the train. The t in the equation represents the passage

of time. The x represents the trains relative position. More fundamentally, however,

certain questions about the train can be phrased in terms of questions about the equation.

For example, the question \how many miles will the train cover in two hours," can be

rephrased as \what is the solution to x = 5t when 2 is substituted for t.

It is this latter property that makes the equation a useful model, for it enables us

to rephrase questions about the train in terms of questions about the equation. While

the structural relationship between the equation and the train might seem important, it is

actually the relationship between questions that is essential, for without such a relationship

the model would be useless. Indeed, the questions that one can ask of a model are, in

a sense, its raison d'être. In recognition of this, we view a modeling framework as the

combination of a set of models, with a set of such questions.

Since we are primarily motivated by the goal of formal veri�cation, we con�ne our

attention to decision questions. We view each such predicate as a formal speci�cation

that is satis�ed by the models for which it holds. Thus the question \is x = 10 a solution

when t = 2?" would be a legal question to ask of our train model, x = 5t. It would also

constitute a speci�cation, which this model does indeed satisfy.

More formally we view a system domain as a family (or language) of questions, together

with a set of models. Each model provides a context in which the questions can be

answered. Thus a system domain,
, may be represented as a pair, (M;Q), in which M

is a set of models, and Q is a set of predicates over M . We view the predicates in Q as

speci�cations, saying that a model m 2M satis�es the speci�cation q 2 Q precisely when

q(m) holds.

3.1 Discrete Safety Automata

One of the main motivations for this work, is the need to verify that hybrid systems,

such as our train-set, maintain certain safety invariants, such as remaining free from colli-

sions. The system domain discrete safety automata is a simple modeling and speci�cation

framework in which such properties can be easily expressed. The models of discrete safety

automata are (non-deterministic) �nite state automata that are parameterised by their

initial and �nal (accepting) state-sets. The automaton m may be asked questions (satis-

�es speci�cations) of the following form: \for initial state-set I and �nal state-set F , does

m(I; F) reject the trace w". Note the somewhat unconventional parity of the questions.

It may seem more natural to ask which strings an automaton accepts, rather than which

strings it rejects. The justi�cation for our choice, which will be developed more formally

in later sections, is that the �nal (accepting) state-set represents hazards to be avoided.

5

A safe system avoids these hazards, while its model avoids the corresponding accepting

states.

Before proceeding further, let us de�ne this notion of automata more precisely. The

de�nition here is essentially the same as that given by Wood in [8]. If Z is any �nite set,

we denote the set of �nite sequences over Z, including the empty sequence, �, by Z�. We

denote sequence concatenation by juxtaposition. We use angle braces, hi, to delimit the

values of a sequence, Thus ha; b; c; di denotes the of length 4, whose �rst element is a, and

whose last element is d.

A lazy nondeterministic automaton, m, is a triple, (�; S;�), where �, the input-set

can be any �nite set, S is a (�nite) set of states, and � is a �nite state-transition relation.

� � �� � S � S

Notice that, somewhat non-traditionally, the state transition relation relates �nite se-

quences of input symbols, rather than merely individuals, to pairs of states. Thus, the

automaton may be able to read more than one input symbol in a single transition, inspiring

the name lazy automata.

Given a set of initial states, I , and a set of �nal states, F , we say that the sequence

w is in L(m; I; F)|the language accepted by m|if and only if there is a natural number

z, a sequence of traces w1; w2; :::; wz, and a sequence of states s0; s1; :::; sz such that w is

the concatenation w1w2 � � �wz, s0 is in I , sz is in F , and (wk; sk�1; sk) is in � for each k

in the set f1; 2; :::; zg.

We have chosen to base our models on \lazy" automata that can consume multiple

elements from the input-set in a single step instead of the more conventional variety that

accept symbols one at at time. This choice was made largely to simplify the generalisation

of this formalism in Section 3.2 to continuous systems. It does, however, have a mildly

unfortunate consequence; the role played by the state of the automaton, may di�er from

the role one expects state to play in a physical system.

One expects the \state" of a real system to capture all of the information about the

history of the system, that could help one predict its future behaviour. Naturally, we

would be pleased if this intuition was re
ected in the model. For this reason, one would

like the model to be capable of accepting symbols one at a time, keeping track of all the

historical data relevant to subsequent decisions in its state. Clearly, lazy automata need

not behave in this way. For example, the transition relation � may include the transition

(ab; x; y) and yet have no transitions from x on the sequence a. To decide whether to

consume the symbol a, the automaton must \know" whether the symbol b is forthcoming.

We introduce the term \eager" to describe automata that do not behave in this counter-

intuitive way. Formally, the automaton m = (�; S;�) is eager if and only if the following

condition holds for all strings u and v in �� and for all states a and b in S.

(uv; a; b) 2 � =) 9c 2 S � (u; a; c) 2 � ^ (v; c; b)2 �

As a result, for any step in which the eager automaton consumes several symbols, there

must be a corresponding sequence of steps, each accepting only one symbol, that ultimately

consumes the same sequence. Thus, an eager automaton is capable of accepting its input

symbols one by one, storing enough information in its state to enable future decisions.

We can now de�ne the system-domain discrete safety automata as the pair (M;Q) in

which the set of models, M , is the set of eager, non-deterministic �nite state automata,

de�ned above. A predicate q 2 Q is a triple, (w; I; F), where I and F are �nite sets of

6

Controller Plant

Control Actions

Measurements

Figure 1: Measurements are generated by the plant.

Controller Plant

Control Actions

Measurements

External Source

Figure 2: Measurements are provided by an external source.

states, and w is a trace over some input-set, b�. We say that q holds for m = (�; S;�) if

and only if I � S, F � S, w 2 ��, and w =2 L(m; I; F).

The theory that we are developing is motivated by the problem of controller veri�-

cation. We are interested in modeling the behaviour of plants from the point of view of

their controllers. Figure 1 shows the con�guration that we have in mind. The controller

and the plant are two separate entities. Communication takes place in two directions.

Measurements are sent from the plant to the controller, while control actions are sent

from the controller to the plant. Thus, from the point of view of the controller, the plant

appears to be a box, with an input channel, on which it receives control signals, and an

output channel on which it produces measurements. Rather than directly modeling the

output from a non-deterministic automata, we represent the measurement signal as an

input to the system, common to both the controller and the plant. This new con�guration

is represented graphically in Figure 2. Whereas before, the plant simply did not produce

impossible measurements, the plant must now fail to accept such signals. This can be

accomplished in practise by restricting state transitions to those whose input sequences

correspond to physical possibilities.

By way of example, we consider modeling the following simple plant, with an eye

towards verifying its controller. The plant consists of a water storage tank, to which an

in
ow pipe is connected. Water can
ow into the tank via the pipe. We are to design a

controller that will �ll, but not over
ow, the tank. The tank is equipped with a sensor

with which the controller can measure the height of the water.

Throughout our discussion of the problem, we simplify the exposition by choosing

suitable units of measure, so that continuous references to scalar constants are avoided.

Thus we assume that an in
ow of one, maintained for one unit of time will cause the

7

4

3

2

1

0

〈(0•4)〉

〈(0•3)〉

〈(0•2)〉

〈(0•1)〉

〈(1•3)〉

〈(1•2)〉

〈(1•1)〉

〈(1•0)〉

〈(0•4)〉 , 〈(1•4)〉

〈(0•3)〉 , 〈(1•3)〉

〈(0•2)〉 , 〈(1•2)〉

〈(0•1)〉 , 〈(1•1)〉

〈(0•0)〉 , 〈(1•0)〉

Figure 3: A simple discrete automaton

height of the water in the tank to increase by one unit.

In our simple discrete plant model, we represent the height of the water, by the au-

tomata state, drawn from the integers between 0 and 4. Thus the state-set, S, is given by

the following expression.

S = f0; 1; 2; 3; 4g

We represent the control input and the measurement output by components of a discrete

vector-valued input-set. Let I = f0; 1g be the set of control inputs, and O = f0; 1; 2; 3; 4g

be the set of possible measurements. The input-set � is their cross-product.

� = I �O

We de�ne the state transition relation as follows.

�(hi; oi; h; h0)
def
� (h = o) ^ (h+ i� 1) � h0 � h+ i)

To simplify the presentation of safety automata, we have adopted a standard format

with which to describe them. Table 1 is an example. The �rst box de�nes the input-set,

�. The second de�nes the state-set S. The remaining box de�nes the state transition

8

Table 1: Simple water tank model

� = f(cin�mout) j cin 2 f0; 1g ^ mout 2 f0; 1; 2gg

S = f0; 1; 2; 3; 4g

�(h(cin�mout)i ; s; s0) �

s 2 cin 2 mout = s0 =

f0; 1; 2; 3g f1g s s+ 1

f0; 1; 2; 3; 4g f0; 1g s s

f1; 2; 3; 4g f0g s s� 1

relation, �, which relates an input trace to a starting state and an ending state. The

box consists of two parts. The upper part is used to bind symbols representing the input

trace, the starting state, and the ending state. In Table 1 for example, the transition

relation relates traces consisting of a single symbol. The symbol itself is an ordered pair,

the components of which are named cin andmout. That is, the input trace consumed by a

single transition must consist of a single symbol, (cin�mout). The name s is introduced for

the starting state, and the name s0 is introduced for the ending state. In addition, other

symbols may be quanti�ed, and additional restrictions imposed here, although neither are

required in this example.

The lower part is divided into columns. The �rst row of this lower part gives each

column a heading. Each remaining row|there are three in Table 1|when taken with

the headings, speci�es a predicate over the variables introduced in the upper part. For

example, the �rst row of this section in Table 1 speci�es that the starting state, s, must

be drawn from the set f0; 1; 2; 3g, cin must have the value 1, mout must be equal to the

starting state, s, and the ending state, s0, must be one greater than the starting state.

The table is to be interpreted as the conjunction of the upper part of the speci�cation

of �, with the disjunction of the predicates speci�ed by each row of the lower section.

The scope of any quanti�cations introduced in the upper parts, is understood to extend

to the end of the table, unless speci�cally restricted with parentheses. For this simple

machine, the graphic representation of Figure 3 is much easier to understand. However,

as the machines become more complicated, the value of this tabular representation will

become clear.

As stated previously, we limit our attention to questions of the form \would the plant

model fail to accept the input sequence w if it was started in the initial state-set I with

�nal (accepting) state-set F". To help develop the reader's intuition, we consider several

concrete examples. Suppose that we wish to avoid �lling the tank to the brim, so that any

further addition would result in a spill. To model this speci�cation, we let the set of �nal,

or hazardous states be F = f4g, the set consisting only of the \full" state. We start the

system in any non-full state. That is, I = f0; 1; 2; 3g. We will thus be asking questions

questions of the form w 62 L(M; I; F), in which the trace w represents a sequence of actions

taken and measurements made by a controller | a possible controller behaviour . Each

such question asks whether a controller that behaves in this way could allow the plant to

enter an unsafe state.

Consider the answer to this question for the following traces.

1. w = h(1�2); (1�2)i

9

2. w = h(1�2); (1�3)i

3. w = h(0�2); (1�3)i

4. w = h(1�2); (1�3); (0�3)i

In the �rst sequence, h(1�2); (1�2)i, the controller measures the water height as 2, and

starts the water
owing in at rate 1. This results in a reachable state-set of f2; 3g. The

controller then measures the water height as 2 and sets the input
ow rate to 1. Once

again, this results in a reachable state-set of f2; 3g. Since this does not intersect the �nal

(accepting) state-set, f4g, we conclude that this sequence of events is \safe".

The second sequence, h(1�2); (1�3)i, consists of the same control actions as the �rst.

A di�erent sequence of measurements, however, allows the �nal (accepting) state 4 to be

reached. Thus, according to the model, a controller that behaves this way could permit

the tank to over
ow.

The third sequence, h(0�2); (1�3)i, is safe by virtue of being unachievable. After the

�rst measurement and control action, the model cannot be in state 3. Hence, the second

measurement, 3, is not possible. A controller that would set the input
ow rate to 1 in

this circumstance would do no harm, since the circumstance can never arrise.

The �nal sequence is technically \safe" even though, as we have already shown, it

has an \unsafe" pre�x. To verify the safety of a controller with respect to this particular

string, one must check, not only the given sequence, but also all of its pre�xes.

3.2 Continuous Safety Automata

The system domain continuous safety automata is a generalisation of its discrete coun-

terpart, discrete safety automata. The models, continuous automata, retain much of the

notation of �nite state automata, but have a continuous notion of time, and permit in�-

nite, continuous state-spaces and input-sets. They are neither intended to be executable,

nor to be feasible to simulate. The purpose of describing a continuous automata is not to

simulate its execution but rather to demonstrate that the \languages" that it can accept

have certain properties.

Fundamental to the earlier presentation of automata, is the notion of a sequence as

a mathematical structure. We begin by de�ning sequences in terms of partial functions

from subsets of the natural numbers to some �nite sets. We then generalise this de�nition

to arrive at real-traces, which are partial functions from real-intervals to in�nite sets.

To de�ne sequences so as to permit the generalisation that we have in mind, it will

help to introduce a notation for partially open subsets. We denote the set of naturals less

than n, but greater than or equal to m by N [m;n).

N [m;n)
def
= fi 2 N jm � i < ng

Similarly, we denote the left closed interval of the reals less than n, but greater than or

equal to m by R[m;n)

Let � be any set. We view sequences over � as partial functions from the natural

numbers, N , to �. For example, if � = fa; b; c; dg, the sequence hacbdi maps the number

0 to a, 1 to c, 2 to b and 3 to d.

More precisely, a sequence � of n symbols from � is a function from the naturals less

than n to �.

� : N [0; n) 7! �

10

We denote the set of such sequences of length n by �n[N].

�n[N]
def
= f� : N [0; n) 7! �g

So far, we have used the term \length" somewhat loosely. We now give it a precise

de�nition. If the sequence � is drawn from �k[N] then we say that its length, denoted

j�j is k. We use � to denote the single element of �0[N]. We use the notation, ��[N], to

refer to the set of all �nite length sequences over �.

��[N]
def
=

[
n2N

�n[N]

Concatenation of sequences, is denoted by juxtaposition. If v 2 �a[N], and w 2 �b[N]

then their concatenation, vw 2 �a+b[N] is the following partial function, illustrated here

using lambda notation to bind the formal parameter.

vw
def
= �x �

(
v(x) if x 2 N [0; a)

w(x� a) if x 2 N [a; a+ b)

Having de�ned sequences in this way, it is quite natural to extend the de�nition by

replacing the natural numbers, N , with the reals, R. Once again, let � be any set. We

de�ne �0[R] as the singleton set f�g. The set of real traces of length i, �i[R], is de�ned

as follows for all positive reals, i.

�i[R]
def
= f� : R[0; i) 7! �g

Finally, we de�ne ��[R], the set of all real-traces of �, where R+ denotes the non-negative

real numbers.

��[R]
def
=

[
i2R+

�i[R]

In the interest of practicality, we rule out certain poorly behaved functions from the

set of traces ��[R]. By de�nition, every trace w 2 ��[R] has a �nite length. Moreover, for

any set �, we restrict ��[R] so that every trace w 2 ��[R] is in�nitely di�erentiable at all

but a �nite set of points. That is, it must have at most a �nite number of discontinuities.

Furthermore, these discontinuities must partition the trace into a set of intervals that are

closed from the left. That is, if a trace w has a discontinuity at time t, and t < jwj there

must be a time t+ such that t < t+ < jwj, and w is continuous on the closed interval [t; t+].

Additionally we restrict ��[R] so that each trace w(t) 2 ��[R] approaches a well-de�ned

limit at t = jwj. If l = jwj, we use the notation w(l) to denote this limit. Moreover, we

require that this limit exist for every ith derivative, and use the notation wi(l) to denote

it.

From time to time, we will need to refer to the integral of a real or integer valued trace.

We use the notation
R
w as a short-hand for the limit limx!jwj

R
x

0 w(t)dt. The existence

of this limit is assured since the limit w(jwj) exists, and the trace can have only a �nite

number of discontinuities.

To complete the notation, we introduce a notion of parallel composition. The notion

applies both to pairs of equal-length sequences, and to pairs of equal-length traces. Let D

stand for either of the domains N or R If w1 2 �k

1 [D] and w2 2 �k

2 [D] then (w1 kw2) 2

(�1 � �2)
k[D] is the trace, �t : D[0; t) � (w1(t); w2(t)). We explicitly de�ne �k � = �. The

following technical lemma, which follows directly from the de�nitions, of concatenation

and parallel composition, will required later in the paper.

11

Lemma 3.1 For all u, v, w1, and w2, w1w2 = u k v if and only if there exist traces u1,

u2, v1 and v2 such that u = u1u2, v = v1v2, w1 = u1 kv1 and w2 = u2kv2.

Proof: Two traces (partial functions) are equal, if they have the same domain and they

de�ne the same mapping. We prove the \if" part �rst. Let u, v, w1, w2, u1, u2, v1, and v2
be any traces such that u = u1u2, v = v1v2, w1 = u1 k v1 and w2 = u2 k v2. Let l1 = jw1j

and l2 = jw2j. Since w1 = u1 k v1 and w2 = u2 k v2, we must have ju1j = jv1j = l1 and

ju2j = jv2j = l2. Clearly jw1w2j = jukvj = l1 + l2. Let t be any value in [0; l1+ l2). either

(t < l1) or t � l1. Suppose t < l1. Then the following equalities hold.

(w1w2)(t)

= ((u1kv1)(u2kv2))(t)

= (u1kv1)(t)

= (u1(t); v1(t))

= ((u1u2)(t)�(v1v2)(t))

= ((u1u2)k(v1v2))(t)

= (ukv)(t)

On the other hand, if t � l1 then

(w1w2)(t)

= ((u1kv1)(u2kv2))(t)

= (u2 kv2)(t� l1)

= (u2(t� l1)�v2(t� l1))

= ((u1u2)(t)�(v1v2)(t))

= ((u1u2)k(v1v2))(t)

= (ukv)(t)

To prove the \only if" part, let w1, w2, u and v be arbitrary traces such that w1w2 = ukv.

Once again, let l1 = jw1j and let l2 = jw2j. Let u1 = �t 2 [0; l1) � u(t), u2 = �t 2

[l1; l1 + l2) � u(t + l1), v1 = �t 2 [0; l1) � v(t), v2 = �t 2 [l1; l1 + l2) � v(t + l1). Clearly

u = u1u2, v = v1v2, w1 = u1 kv1 and w2 = u2 kv2. 2

As with �nite state automata, a continuous automata, m, is a triple

m = (�; S;�)

consisting of an input-set, �, a set of states, S, and a transition relation, �. This time,

however, we allow � and � to be in�nite. Whereas the transition relation for a �nite state

automata, relates pairs of states to sequences, the transition relation � relates pairs of

states to real-traces over the input-set.

� � ��[R]� S � S

The language accepted by a continuous automaton is de�ned in exactly the same way

as it was for �nite-state automata. Given a set of initial states, I , and a set of �nal states,

F , we say that a real-trace w is in L(m; I; F)|the language accepted by m|if and only

12

Table 2: Continuous Integrator from smin to smax

MI(smin; smax; imax) = (�I ; SI ;�I)

�I = f(i�o) j i 2 R[�imax; imax] ^ o 2 R[smin; smax]g

SI = R[smin; smax]

�I((iko); s; bs) def
�

9l � l = j (iko) j ^

s0 = s +
R
l

0 i(x)dx ^

8t 2 R[0; l]�

s+
R
t

0 i(x)dx 2 S ^

o(t) = s+
R
t

0 i(x)dx

if there is a natural number z, a sequence of traces w1; w2; :::; wz, and sequence of states

s0; s1; :::; sz such that the trace in question, w, is the concatenation w1w2 � � �wz , s0 2 I ,

sz 2 F , and (wk; sk�1; sk) 2 � for each k 2 f1; 2; :::; zg.

As with their discrete counter-parts, the continuous automata need not necessarily

re
ect our intuition regarding their use of state. Here, of course, we cannot hope to have

them consume their inputs one symbol at at time, since inputs are presented as a con-

tinuous real-trace. One can ask, however, that at all times, one need only consult the

automaton's state, and never prior or subsequent input to predict its behaviour. The fol-

lowing de�nition of \eager" assures this intuitive behaviour, and di�ers from the de�nition

presented in Section 3.1 only by the substitution of ��[R] for ��[N]. A continuous au-

tomatam = (�; S;�) is eager if and only if the following condition holds for all real-traces

u and v in ��[R] and all states a and a0.

(uv; a; a0) 2 � =) 9a00 2 S � (u; a; a00) 2 � ^ (u; a00; a0) 2 �

In addition, we impose the following restrictions on state transition relations, �. For every

state s 2 S, � must include the transition (�; s; s). Furthermore, � may not include any

transition (�; s; t) where s 6= t. Informally, these restrictions say that if no time passes,

every automaton can and must do nothing.

The system-domain, continuous safety automata consists of a set of models, M , and

a set of predicates, Q. The models are eager continuous automata described above. A

predicate q 2 Q consists of a triple (I; F;W) where I and F are state-sets and W is a

real-trace. We say that q holds for automaton m = (�; S;�) if and only if I � S, F � S,

w 2 ��[R] and w =2 L(m; I; F).

To illustrate the idea of continuous safety automata we use a continuous automaton to

represent an integrator. Integration is an important component of many physical systems.

For example, one can view the height of the water in the water-tank from Section 3.1 as

the integration over time of the rate at which water
ows in.

The family of continuous automata, MI(imax; smin; smax), is summarised in Table 2.

The parameter imax 2 R is an upper bound on the magnitude of the integrand. The

parameters smin 2 R and smax 2 R respectively represent minimum and maximum values

of the integral. Although continuous automaton do not di�erentiate between notions of

\input" and \output", it is nontheless convenient to view the integrand as \input", and

the integral as \output", hence our choice of the symbols i and o to represent these values

13

Table 3: Actuator model

MA = (�A; SA;�A)

�A = f(cin�wout) j cin 2 fL;Hg ^ wout 2 R[0; 1]g

SA = f(s�c) j s 2 fL;Hg ^ c 2 R[0; 0:5]g

�A(cinkwout; (s�c); (s
0�c0)) �

9l 2 R � l = j(cinkwout)j

8t 2 R[0; l]�

s = c 2 cin(t) = wout(t) 2 s0 = c0 =

L [0; 0] L [0; 0] L 0

L [0; 0:5] H [0; 1] H 0:5� l

L [l; 0:5] L [0; 1] L c� l

H [0; 0] H [1; 1] H 0

H [0; 0:5] L [0; 1] L 0:5� l

H [l; 0:5] H [0; 1] H c� l

in the table. The automaton can go from some state s 2 SI to state s
0 2 SI by consuming

the trace i k o if and only if the trace o is the integration of i with respect to time, the

value o(0) equals s, and the limit o(l) equals s0, where l is the length of the input trace.

Moreover, at all times, the input i must remain in the range [�imax; imax], and the output

o must remain in the range [smin; smax]. Notice that MI has the unusual property that a

trace w is in L(MI ; fig ; ffg) if and only if (w; i; f) 2 �I . That is, if the automaton can

consume an an input trace w, it can do so in one step.

Continuous automata use sequences of discrete transitions between states to model

continuous processes. Informally, one can view the states as being instantaneous, whereas

time passes during the transitions. Of course if the automaton is eager, as all the automata

discussed in this paper will be, then the transitions may be arbitrarily short. Nevertheless,

except for transitions taken on the empty-trace, �, they each take a �nite, non-zero amount

of time.

This seems natural enough when modeling continuous physical systems. After all, if

the state of a system is supposed to change continuously, the system may past through

any given state instantaneously. Moreover, the very nature of continuity denys the in-

stantaneous passage from one distinct state to another. Remarkably, however, the same

formalism, continuous safety automata, can also model systems that respond instantly to

discrete events. We illustrate this phenomenon by considering the valve mechanism that

controls the water
owing into the water-tank.

The valve mechanism, or actuator, reads a discrete, digital signal, which can take on

either the value L or the value H , from the controller. When the signal changes to H the

actuator opens the source valve. When the signal changes to L, the actuator closes the

source valve. Of course there will be some delay, between the time at which the control

input changes, and the time at which the actuator has fully opened or closed the valve.

Suppose, however, that we have observed that, regardless of its starting con�guration, the

actuator is always able to open or close the valve fully in response to an input event within

0:5 time units.

Our model will be the continuous automaton summarised in Table 3. Its input-set

will consist of two components. The �rst, cin, drawn from the set fL;Hg will represent

14

Table 4: Controller model

MC = (�C ; SC;�C)

�C = f(sin�cout) j sin 2 R[0; 4] ^ cout 2 fL;Hgg

SC = f(s�c) j s 2 fL;Hg ^ c 2 R[0; 1]g

�C(sinkcout; (s�c); (s
0�c0)) �

9l 2 R � l = j(minkcout)j

8t 2 R[0; l)�

s = c 2 min(0) = cout(t) = s0 = c0 =

fL;Hg [0; 0] (2; 4] L L 1� l

fL;Hg [0; 0] [0; 2] H H 1� l

fL;Hg [l; 1] [0; 4] s s c� l

the discrete control input signal. The second, wout, drawn from the interval R[0; 1] will

represent the
ow of water. The model's state will have two components. The �rst, s,

drawn from fL;Hg will behave like a
ip-
op. We will use it to store the most recent

control input event. The second, c, drawn from R[0; 0:5], will act as a real-valued counter

to model the introduced bounded delays.

Informally, we view the �rst component, cin, of the input-set as the automaton's

\input", and the second, wout, as its \output". With this interpretation its behaviour can

be understood as follows. During the �rst 0:5 time units, after an event has occurred on

the input cin, the automaton's output can randomly
uctuate between 0 and 1. However,

after the control input cin has been stable at L or H for 0:5 time units, the output must

become stable at 0 or 1 respectively.

To see that the automaton truly is event driven, consider its behaviour when the control

signal goes from L to H . According to Table 3, the automaton must be in some state

(L; c0) just prior to the input event, since it will have consumed some trace cin1 kwout1,

in which cin1 has the constant value L. After consuming any arbitrarily short pre�x of

the remaining input, however, the automaton must be in some state (H; c1). That is, an

arbitrarily short time after the \input", event, we can show that the automaton has made

a transition from from some state (L; c0) to some state (H; c1).

Ultimately, the plant will be controlled by a controller. The controller is equipped

with a sensor input, and a digital output. At any time the sensor input can take on any

real value between 0 and 4. The output can take on the discrete values, L, and H . At

regular time intervals of length 1, the controller samples the value on its input, and adjusts

the value on its output. We view these two actions as occurring simultaneously at the

beginning of each time unit. If the value sensed is greater than 2, the output is set to L

for the remainder of the time interval. if the value sensed is less than or equal to 2, the

output is set to H . This controller is described formally in Table 4. As with the actuator,

we used a real-valued component of the controller state to keep track of the passage of

time.

In summary, we have seen two kinds of continuous automata. The water-tank plant is

modeled by an automaton with continuous state and input sets. Its behaviour is essentially

continuous. The state-spaces of the actuator and the controller are continuous in one

dimension, and discrete in the other. They both have discrete input-sets, but a continuous

notion of time. Their behaviours are driven by discrete events.

15

3.3 Composition of automata

Ultimately, we would like to represent the behaviour of real physical devices using con-

tinuous safety automata. The real devices that we will want to model, will undoubtably

have fairly complex behaviours. Representing these behaviours by describing their state-

transition relations directly would be a daunting task. What is needed is a way to con-

struct complex automata out of simpler parts. That is we need notions of composition

and communication.

The notions of composition presented here are applicable both to discrete and to

continuous automata. To avoid duplication, we parameterise the de�nitions by the \time-

domain" D. To instantiate the de�nitions for �nite-state automata, the naturals N should

be substituted for D. To instantiate for continuous automata, the reals R should be

substituted instead.

We separate the issues of composition and communication. We describe a notion of

composition, in which composed automata operate in parallel without communication.

We then show how communication can be achieved by means of a �lter attached to the

input of the composite automaton.

When two automata are composed in parallel, they run side by side, with no commu-

nication between them. The state-space of the composite automaton is the cross product

of the state-spaces of the components. The composite input-set consists of ordered pairs,

containing one element from the input-sets of each of the component automata. The

composite takes a transition, when both of its component automata would.

More formally, suppose that two automata, m1 = (�1; S1;�1) and m2 = (�2; S2;�2),

are given. We de�ne their parallel composition m1 km2
def
= (�1 � �2; S1 � S2;�), where

� is de�ned as follows.

(w1kw2; (s1; s2); (s
0
1; s

0
2)) 2 �

def
� (w1; s1; s

0
1) 2 �1 ^ (w2; s2; s

0
2) 2 �2

The following proposition follows directly from this de�nition.

Proposition 3.2 If m and n are eager automata, then so is mkn.

To illustrate composition, consider the water-tank from Section 3.1. One can view this

system as the interaction of two state-holding components. One component is the water

in the tank. Its state is the height of the water. As we have previously noted, one can view

the water height as the integration over time of the net water
ow. Thus we propose to use

the integrator model developed earlier as the heart of our model of the tank. The actuator

also has state, namely the position of the valve. We can take a step towards modeling the

complete water tank plant, by composing an integrator model with the actuator and the

controller. The composite automaton, (MC kMA kMI) is described in Table 5.

3.4 Communication in composite automata

The reader will recall that safety automata have no notion of output. More precisely, safety

automata do not di�erentiate between inputs and outputs. If a real device is guaranteed

to produce an output x, we model this by requiring the presence of x in the automaton's

input trace, in order for a transition to occur.

To model communication formally, we introduce the term transliteration to refer to a

binary relation over input-sets. Transliterations can be used to modify the input-set of

16

Table 5: Composition of the actuator, and the integrator.

MA kMI = (�
AkI ; SAkI ;�AkI)

�AkI = f(cin�wout)�(win�sout) j

(cin�wout) 2 �A ^ (win�sout) 2 �Ig

S
AkI = f(a�i) � a 2 SA ^ i 2 SIg

�AkI(((cinkwout)k(winksout)); (a�i); (a
0�i0)) �

((cinkwout); a; a0) 2 �A ^

((winksout); i; i0) 2 �I

a safety automaton, and hence to introduce constraints on the traces that it is able to

accept.

Suppose that � is a transliteration between two sets: � � �1 � �2. We extend �

pointwise to traces of equal length over the two sets. That is if w1 2 �
�
1[D] and w2 2 �

�
2[D],

then (w1�w2) is de�ned as follows.

(w1�w2)
def
� (jw1j = jw2j) ^ (8t 2 D[0; jw1j) � (w1(t)�w2(t)))

We will often need to refer to the pre and post-images of a set with respect to a relation

such as �. We use the notation pre(�;S) and post(�;S) to denote these sets. In other words,

if � � �1 � �2, and if S � �2, then pre(�;S)
def
= fs1 2 �1 j 9s2 2 �2 � s1�s2 ^ s2 2 Sg.

Similarly, if S � �1, then post(�;S)
def
= fs2 2 �2 j 9s1 2 �1 � s1�s2 ^ s1 2 Sg.

The composition, denoted �m, of an automaton m = (�; S;�) with a transliteration �

is given by �m = (�0; S;�0) where �0 = pre(�; �), and �0 � �0 � S � S has the following

de�nition.

(w0; i; f) 2 �0 def� 9w 2 post(�;
�
w0
	
) � (w; i; f) 2 �

In other words, the automata �m takes a transition on the trace w0 if and only if there

is a trace w upon which m would take a transition, that is related point-wise to w0 by

the transliteration �. To model the connection of an \output" of one real device, to the

\input" of another, we use an appropriately constructed relation �, to ensure that the

\connected" inputs of their models agree at all times.

The following proposition follows directly from the de�nitions of composition with a

transliteration and eagerness.

Proposition 3.3 If m is eager automaton, and � is a transliteration, then �m is an eager

automaton.

Returning to the water-tank example, we use a transliteration to \connect" the \input"

of the water-tank integrator, to the \output" of the actuator. Moreover, we \hide" this

connection from the outside world, so that all that is visible is the control input, and the

sensor output. In Table 6, such a transliteration, �P , is de�ned. Finally, we arrive at the

complete water-tank plant model, by composing the transliteration with MA kMI . This

composition is illustrated in Figure 4.

MP = �P (MA kMI)

17

Table 6: Transliteration connecting the actuator output with the integrator input

�P � �0 � �

�0 = f(cin0 �sout0) � cin0 2 fL;Hg ^ sout0 2 Rg

� = f(cin�wout)�(win�sout)�

cin 2 fL;Hg ^ wout 2 R ^

win 2 R ^ sout 2 Rg

�P ((cin
0 �sout0); ((cin�wout)�(win�sout)))

def
�

cin = cin0 ^

sout = sout0 ^

wout = win

MA

cin

wout

MI

win

mout

cin

mout

δP

∃

Figure 4: Transliteration connecting MA with MI

18

4 Conservative Approximation

Suppose we are given two system domains,
 = (M;Q) and b
 = (cM; bQ). We wish to

compare models in M and cM on the basis of the answers each gives to the questions in

Q and bQ respectively. For example, in earlier sections, we have proposed two models of

a water-tank. One model was given in the domain of discrete safety automata, while the

other was given in the analogous continuous domain. We would like to be able to claim

that any speci�cations that are satis�ed by the discrete model are also satis�ed by the

continuous one.

Such a claim, however, is clearly false, since the two models being compared do not

satisfy speci�cations from the same language. For example, let the system domain con-

tinuous safety automata be (Q;M), and the system domain, discrete safety automata be

(bQ; cM). The continuous model, m 2 M , answers questions (w; I; F) 2 Q where w is

a real-trace and I and F subsets of a continuous state-space. In contrast, the discrete

model, bm 2 bQ answers questions (bw; bI; bF) 2 bQ, where bw is a �nite sequence, and bI andbF are subsets of a discrete state-set. Clearly, to make the above claim, we need a way to

translate between these two speci�cation languages.

Suppose we are given a relation, R � Q� bQ. We can now de�ne conservative approx-

imation with respect to this translation relation R as follows.

De�nition 4.1 Conservative Approximation: Given two system domains,
 = (M;Q)

and b
 = (cM; bQ) and a relation R � Q� bQ we say that bm 2 cM is a conservative approx-

imation of m 2 M with respect to R if and only if the following implication holds for all

q 2 Q and for all bq 2 bQ.
(q; bq) 2 R ^ bq(bm) =) q(m)

If a model bm is known to be a conservative approximation of another model m with

respect to relation R, and if bm is known to satisfy a speci�cation bq, then every speci�cation
q that is related to bq by R must be satis�ed by m. Thus, if one wished to demonstrate

that m satis�ed a particular speci�cation q, it would su�ce to �nd a speci�cation bq that
is both related to q by R, and satis�ed by bm. The following proposition is an obvious

consequence of the de�nition of conservative approximation.

Proposition 4.2 If bm is a conservative approximation of m under R, and R0 � R, thenbm is a conservative approximation of m under R0.

5 Conservative Approximations Between Automata

We have introduced the notion of conservative approximation with respect to a question

translator R. One automaton, bm, is a conservative approximation of another, m, if and

only if m satis�es every speci�cation q that is related by R to a speci�cation bq satis�ed bybm. In this section, we present a practical method for constructing such a relation R, for

speci�cations from the system domains, continuous safety automata and discrete safety

automata. The method is based on relations between the input traces, and the states of

the system domains being compared.

Suppose that we are comparing automata m = (�; S;�) and bm = (b�; bS; b�) drawn
from the two system domains,
 = (Q;M) and b
 = (bQ; cM) respectively. We are given

relations � � S� bS and � � ��� b��. We construct the relation R(�; �) between questions

19

for the two automata in the following way. Recall that post(�; I) denotes the post-image

of I under �.

(w; I; F)R(�; �)(bw; bI; bF) def
�

w� bw ^
post(�; I) � bI ^
post(�;F) � bF

That is to say that the question (bw; bI; bF) is related to the question (w; I; F) if and

only if w and bw are related by � and the set of initial states bI (resp. �nal states bF) is a
superset of the post-image of I (resp. F) under �. The following propositions are obvious

consequences of the preceding de�nition, and Proposition 4.2

Proposition 5.1 If bm is a conservative approximation of m under R(�; �) and �0 � �

then bm is a conservative approximation of m under �0.

Proposition 5.2 If bm is a conservative approximation of m under R(�; �) and � � �0

then bm is a conservative approximation of m under qmap��0.

Before introducing some examples, we prove some lemmas about conservative approx-

imation, as it applies to safety automata. Lemma 5.3 allows us to restrict our attention

to singleton initial and �nal state-sets. Lemma 5.4 exploits the structure of the relation

R(�; �) to simplify the statement of conservative approximation.

Lemma 5.3 The trace w is in L(m; I; F) if and only if there exists states i 2 I and f 2 F

such that w 2 L(m; fig ; ffg).

Proof: To prove the \if" part of the lemma, suppose that i 2 I , f 2 F , and w 2

L(m; fig ; ffg). Then by de�nition, there exists a natural number z, and sequences

w1; w2; :::; wz and s0; s1; sz such that w = w1w2 � � �wz , s0 = i, sz = f , and (wk; sk�1; sk) 2

� for each k 2 f1; 2; :::; zg. Since i 2 I , and f 2 F , the same sequences witness the fact

that w 2 L(m; I; F).

To prove the \only if" part, we observe that if w 2 L(m; I; F), then there must exist a

natural number, z, and sequences w1; w2; :::; wz and s0; s1; sz such that w = w1w2 � � �wz,

s0 2 I , sz 2 F , and (wk; sk�1; sk) 2 � for each k 2 f1; 2; :::; zg. Letting i = s0 and f = sk
allows the same sequences to witness the fact that w 2 L(m; fig ; ffg). 2

Lemma 5.4 The automaton bm is a conservative approximation of m under the relation

R(�; �) if and only if the following predicate holds for all input traces w and bw and all

states i; f .

(w� bw ^ w 2 L(m; fig ffg)) =) 9b{; bf � i�b{ ^ f� bf ^ bw 2 L(bm; fb{g ;n bfo)
Proof: To prove the \if" part, we suppose that bm is not a conservative approximation ofm,

and show the predicate to be false. Since m is not a conservative approximation of bm, there

must exist traces w and bw, and state-sets I , F , bI, bF such that (w; I; F)R(�; �)(bw; bI; bF)
and w 2 L(m; I; F), yet bw is not in L(bm; bI; bF). From w 2 L(m; I; F) and Lemma 5.3 we

20

can conclude that there exists a particular i 2 I and a particular f 2 F such that w 2

L(m; fig ; ffg). Since (w; I; F)R(�; �)(bw; bI; bF), we conclude that w� bw, fb{ j 9i 2 I � i�b{g �bI , and n bf j 9f 2 F � f� bfo � bF .
Recall that we wish to show under these assumptions, that the predicate is false.

Suppose with an eye towards contradiction that it is true. We have already established

that w� bw, and that w 2 L(m; fig ; ffg). The we can conclude that there exists b{ and bf
such that i�b{, f� bf and bw 2 L(bm; fb{g ;n bfo). Since fb{ j 9i � i�b{g � bI and n bf j 9f � f� bfo � bF ,
Lemma 5.3 allows us to conclude bw 2 L(bm; bI; bF) establishing the sought contraction, and

completing the proof.

To prove the \only if" part, we suppose that the predicate is false, and show that bm
is not a conservative approximation of m. Since the predicate is false, there must exist

traces w and bw and states i and f such that w� bw and w 2 L(m; fig ; ffg), yet there are

no states b{ and bf satisfying i�b{, f� bf and bw 2 L(bm; fb{g ;n bfo).
Suppose, with an eye towards contradiction, that bm is a conservative approximation

of m under R(�; �). Then the following predicate must hold for all I , F , bI, bF , w, and bw.
(w; I; F)R(�; �)(bw; bI; bF) ^ w 2 L(m; I; F) =) w 2 L(bm; bI; bF)

In particular let I = fig, F = ffg, bI = fb{ j i�b{g and bF =
n bf j f� bfo. Clearly, the question

(w; fig ; ffg) is related to (bw; fb{ j i�b{g ;n bf j f� bfo) by R(�; �). We have already established

that w 2 L(m; fig ; ffg). Thus, we must conclude that bw 2 L(bm; fb{ j i�b{g ;n bf j f� bfo).
Finally, from Lemma 5.3 we obtain 9b{; bf � i�b{ ^ f� bf ^ bw 2 L(bm; fb{g ;n bfo) establishing
the required contradiction. 2

5.1 A discrete conservative approximation of integration

To illustrate these ideas, we build a conservative approximations of the integrator and

actuator developed in Section 3.2. We begin, by establishing some standard discretisa-

tions of real-traces. These discretisations will form the basis of the approximations. For

example, suppose that w 2 R�[R] is a real-trace over the reals. We will approximate w

by a sequence bw of integers, as illustrated in Figure 5. Each position in the sequence

will represent an interval of length 1 in the real-trace. Thus, the �rst integer, bw(0), will
summarise the behaviour of the real-trace w(t) over the interval t 2 R[0; 1). The second,bw(1), will summarise the interval t 2 R[1; 2). In general, suppose we are given a relation e�
between real-traces of length not greater than 1 over some set �, and sequences of length

one of elements from an approximation b�. Informally, the relation e� de�nes what it means

for a single element of b� to summarise a short trace over �.

e� � ��[R]� b�1[N]

We de�ne an operator � which takes such a relation, and extends it over traces of arbitrary

length, as illustrated in the �gure.

�(e�)(w; bw) �
9w1; :::; wk �

9 bw1; :::; bwk �

21

Figure 5: Discretisation of a real-trace

22

w = w1w2 � � �wk ^bw = bw1 bw2 � � � bwk ^

8i 2 f1; :::; k� 1g � jwij = 1 ^ j bwij = 1 ^

jwkj � 1 ^ j bwkj = 1

8i 2 f1; ::; kg � (wi; bwi) 2 e�
That is, a trace w is related to the sequence bw by �(e�) if and only if each can be partitioned
in to traces, such that all but the last is of length 1, the last is of length less than or equal

to 1, and corresponding partitions are related by e�.
For example, consider an input trace w 2 ��

I
to the integrator de�ned in Table 2. Since

elements of �I are ordered pairs, we can view w = iko as the parallel combination of two

traces, the integrand, i, and the integral, o. We approximate each trace i of length not

greater than 1 by the ceiling of its integral. That is, de�ne e�i � R�[R]�I1[N] as follows.

e�i(i;b{) def
�

�b{ = ��Z
i

���
^ jij � 1

Each trace o is to be used as measurement output. In Section 8 we will want to argue that

the discretisation actually corresponds to the sampling behaviour of a real digital control

system. The control system will take a measurement once during each unit interval of

time. However, the precise time within this interval at which the measurement will be

taken is unknown. For this reason, we approximate the integral trace as follows.

e�o(o; bo) def
� 9t 2 R[0; 1) � bo = hdo(t)ei

That is to say, we relate a trace o to the trace bo if o takes on a value o(t) such thatbo = hdo(t)ei at any arbitrary time t in the interval R[0; 1). We use the notation e�i k e�o to
represent the product relation.

((iko); (b{k bo)) 2 (e�i k e�o) def
� (i;b{) 2 e�i ^ (o; bo) 2 e�o

Finally, we arrive at a trace-mapping relation �io, by using the gamma operator to extende�i k e�o over traces of arbitrary length.

�io
def
= �(e�i k e�o)

To build a discrete approximation of the integrator, we also need to de�ne a mapping

between the state-space of the integrator, and that of the discrete approximation. For

this, we will simply use the ceiling relation. That is each state s 2 R will be related to

the state dse 2 I.

�I(s; bs) def
� bs = dse

The complete discrete integrator for input ranging between �imax and imax, and output

between smin and smax is presented in Table 7. We claim that for any positive real-

valued imax, and any real-valued smin, and smax, the automaton cMI(imax; smin; smax) is a

conservative approximation of the automaton MI(imax; smin; smax) under the translation

R(�(e�i k e�o); �I). The interested reader may examine the proof in Appendix A.1.

23

Table 7: Discrete Integrator

cMI(smin; smax; imax) = (b�I ; bSI ; b�I)b�i = f(bwi� bwo) jbwi 2 fd�imaxe ; d1� imaxe ; :::; dimaxeg ^bwo 2 fdsmine ; dsmin + 1e ; :::; dsmaxeggbSI = fdsmine ; dsmin + 1e ; :::; dsmaxegb�i(h(bwi � bwo)i ; s; s
0) �

(bwi � bwo) 2 b� ^ s 2 bS ^ s0 2 bS ^
s = bwi = bwo 2 s0 2

any any
h
s+s0�dimaxe

2 ;
s+s0+dimaxe

2

i
[s+ bwi � 1; s+ bwi]

5.2 A discrete conservative approximation of the actuator

In the same way that we approximated the integrator, we give a discrete conservative

approximation, cMA, for the continuous event-driven model of the actuator, MA, that was

described in Table 3 on page 14.

The input-set, b�A, has two components. The �rst, drawn from fL;X;Hg represents

the control input. The second, drawn from f0; 1g represents the controlled output. As

with the integrator, we use a summarising relation to relate continuous input traces from

�1
A
to sequences from b�1

A
. Let the relation e�c � fL;Hg� [R]� fL;X;Hg1 [N] be de�ned

as follows.

e�c(cin;dcin) def
�

9l 2 R[0; 1] � l = jcinj ^dcin = hLi ^ 8t 2 R[0; l) � cin(t) = L _dcin = hHi ^ 8t 2 R[0; l) � cin(t) = H _dcin = hXi ^ 9t1; t2 2 R[0; l) � cin(t1) = L ^ cin(t2) = H

That is, a short trace cin is related to the sequence hLi, if it has the constant value

L. It is related to the sequence hHi, if it has the constant value H . It is related to the

sequence hXi if it has the value L at one time, and H at another. We use the relation e�i,
developed for the integrator input, to relate the continuous and discrete versions of the

actuator output.

Recall that states of the continuous model, MA have two components. The �rst takes

on one of the values H or L according to the current value of the control input. The

second is a real number between 0 and 0:5, which represents 0:5 minus the time since the

control input last changed, down to a minimum of zero. Thus, if the state is (L�0), then

the valve is fully closed, since the control input has been stable at L for at least 0:5 time

units. Similarly, if the state is (H �0) then the valve is fully open.

The discrete model has three states, named L, H , and X . Informally, we imagine

that the discrete state L represents the continuous actuator state (L � 0), in which the

valve is de�nitely completely closed. We imagine that the discrete state H represents the

continuous actuator state (H � 0), in which the valve is de�nitely fully open. Any state|

24

Table 8: Discrete Actuator

cMA = (b�A; bSA; b�A)b�A = f(i�o) j i 2 fL;X;Hg ^ o 2 f0; 1ggbSA = fL;X;Hgb�A(h(i�o)i ; s; s
0)

def
�

s = i = o 2 s0 2

L L f0g fLg

L X f0; 1g fL;X;Hg

L H f0; 1g fHg

X L f0; 1g fLg

X X f0; 1g fL;X;Hg

X H f0; 1g fHg

H L f0; 1g fLg

H X f0; 1g fL;X;Hg

H H f1g fHg

(L; t) or (H; t) where t > 0|in which the valve may be neither fully open nor fully closed

is represented in the discrete model by X .

It is not hard to convince oneself that the discrete model does behave as the continuous

model does, at least for traces with an integral length. For example, suppose that the

continuous automaton starts in state (H; 0), and receives an input trace, (cin k cout), of

length 1, where cin has the constant value L, and cout has the constant value 0. The

trace will be consumed in a minimum of two transitions, leaving the automaton in the

state (L; 0). Referring to Table 8, we can see that. if the discrete model is started in state

H , it is able to consume the sequence hL�0i, and move to the state L. Indeed, we show

in Appendix A.2 that cMI is a conservative approximation of MI under �(e�c k e�i) and this

state mapping, provided that e�i is restricted to traces of length 1.

Consider, however, the same trace, but with its length reduced to 1
4 . Once again, we

start the continuous automaton in state (H �0). This time, however, because the sequence is

short, it can only move to state (L �0:25). The sequence has the same translation, however,

and so the discrete automaton must be able to move from H to X , by consuming h(L�0)i,

which it cannot do. One might be tempted to simply add transitions to the discrete

automaton until it works. But if one did, the result would be excessively conservative.

Instead, we simply enlarge the state-mapping relation. In practise, we do not care

about the actuator state. To verify that the tank will not over�ll, we will only need to

ask questions about the height of the water. The position of the valve will be immaterial.

Thus, we simply relate every state of the continuous model, to every state in the discrete

model.

(s; bs) 2 �A def
� s 2 SA ^ bs 2 bSA

Under this relation, we will no longer be able to ask questions about the actuator state.

However, as we prove in Appendix A.2, cMA is a conservative approximation of MA under

R(�(e�c k e�i); �A).

25

Table 9: Discrete Controller

cMC = (b�C ; bSC ; b�C)b�C = f(sin�cout) j sin 2 f0; 1; 2; 3; 4g ^ cout 2 fL;X;HggbSC = fL;Hgb�C(h(sin�cout)i ; s; s
0)

def
�

s = sin 2 cout = s0 =

L f0; 1; 2g X H

L f3; 4g L L

H f0; 1; 2g H H

H f3; 4g X L

5.3 A discrete conservative approximation of the controller

The approximation of the controller, cMC is presented in Table 9. The model is a simple

two-state automaton. Let �P be the state translation relation that maps every state of

MC to every state of cMC . It is a simple matter to verify that cMC is a conservative

approximation of MC under the relation R(�(e�o k e�c); �P).
6 Composition of Conservative Approximations

In Section 3.3, we de�ned the parallel composition of two automata, and used this de�-

nition to compose the automata MI and MA. We now have in hand cMI and cMA, which

we have proved to be conservative approximations of MI and MA under the mappings

R(�(e�i k e�o); �I) and R(�(e�c k e�i); �A) respectively. In this section we show that cMA k cMI

is a conservative approximation of MA k MI , under the relation R(�((e�c k e�i) k (e�i ke�o)); �A��I).
We begin by specialising Lemma 5.3 for composite automata.

Lemma 6.1 w 2 L(m kn; I; F) if and only if there exist states i, j, f and g, and traces

u and v satisfying (i; j) 2 I, (f; g) 2 F , w = (u k v), u 2 L(m; fig ; ffg) and v 2

L(n; fjg ; fgg).

Proof: Let �m, �n and �mkn be the state transition relations for m, n and m k n

respectively. We prove the \only if" part of the lemma �rst. Since w 2 L(mkn; I; F) we

know that there exists an integer, z, a sequence w1; w2; :::; wz and a sequence s0; s1; :::; sz
such that (wk; sk�i; sk) 2 �mkn for each k 2 f1; :::; zg. From the de�nition of paral-

lel composition of automata, we know that each wk can be expressed as an ordered

pair, (uk; vk), and each state sk can be expressed as an ordered pair, (ak; bk), so that

(uk; ak�1; ak) 2 �m, and vk; bk�1; bk 2 �n for each k 2 f1; :::; zg. Thus, we can con-

clude that (u1u2 � � �uz) 2 L(m; fa0g ; fazg) and that (v1v2 � � �vz) 2 L(n; fb0g ; fbzg). On

the other hand, from repeated application of Lemma 3.1 we know that (u1u2 � � �uz) k

(v1v2 � � �vz) = (u1 k v1)(u2 k v2) � � �(uz k vz) and hence (u1u2 � � �uz) k (v1v2 � � �vz) = w as

required.

To prove the \if' part, suppose that u 2 L(m; fig ; ffg) and v 2 L(m; fjg ; fgg). Then

there exist sequences (u1; :::; ux) and (a0; :::; ax) such that u = u1u2 � � �ux, a0 = i, ak = f

26

and (uk; ak�1; ak) 2 �m for each k 2 f1; 2; :::; xg. Similarly, there exist sequences v1; :::; vy
and b0; :::; by such that v = v1v2 � � �vx, b0 = j, bk = g and (vk; bk�1; bk) 2 �n for each

k 2 f1; 2; :::; yg. The problem is that the sequences will generally be of di�erent lengths, as

will each trace uk and vk. However, since u and v have the same length, and both automata

are eager, we can always further subdivide the traces in each sequence as necessary, so that

corresponding traces from each automaton have the same length. Thus, there exists an

integer z and sequences bv1; :::; bvz , bu1; :::; buz , ba0; :::;baz and bb0; :::;bbz such that ba0 = i, baz = f ,bb0 = j, bbz = g, v = bv1bv2 � � � bvz , u = bu1bu2 � � � buz , (buk; bak�1; bak) 2 �m, (bvv;bbk�1;bbk) 2 �n,

and jbukj = jbvkj for each k 2 1; 2; :::; z. Now, from the de�nition of parallel composition

for automata, we can conclude that (uk k vk; (ak�1; bk�1); (ak; bk)) 2 �mkn for each k 2

f1; 2; :::; zg. Thus (u1 kv1)(u2kv2) � � �(uk kvk) 2 L(mkn; f(i; j)g ; f(f; g)g). From repeated

application of Lemma 3.1 we obtain ((u1u2 � � �uz)k(v1v2 � � �vz)) = (u1 kv1)(u2 kv2) � � �(uk k

vk). Hence ((u1u2 � � �uz)k(v1v2 � � �vz)) 2 L(mkn; f(i; j)g ; f(f; g)g). Since u = u1u2 � � �uz ,

v = v1v2 � � �vz , f(i; j)g � I , and f(f; g)g � F we can conclude that (ukv) 2 L(mkn; I; F)

as required. 2

Before considering the speci�c case of MI and MA, we look at the more general sit-

uation. Suppose that we are given automata m1, bm1, m2, and bm2, along with relations

R1 = R(�1; �1) and R2 = R(�2; �2). Further, suppose that we have established that bm1

is a conservative approximation of m1 under the relation R1, and that bm2 is a conserva-

tive approximation of m2 under the relation R2. Theorem 6.2 states that bm1 k bm2 is a

conservative approximation of m1km2 under the relation R((�1k�2); (�1��2)).

Theorem 6.2 Parallel Composition: Let m1 = (�1; S1;�1), m2 = (�2; S2;�2), bm1 =

(b�1; bS1; b�1) and bm2 = (b�2; bS2; b�2) be safety automata. Let �1 � S1� bS1 and �2 � S2� bS2
be state translation relations. Let �1 � ��1 �

b��1 and �2 � ��2 �
b��2 be input translation

relations.

If bm1 (resp. bm2) is a conservative approximation of m1 (resp. m2) under R(�1; �1)

(resp. R(�2; �2)) then bm1 k bm2 is a conservative approximation of m1 km2 under R((�1 k

�2); (�1��2)).

Proof: To show that bm1 k bm2 is a conservative approximation of m1 k m2, we must

show that the following implication holds for any pair of questions q = (w1kw2; I; F) andbq = (bw1k bw2;
bI; bF).

(q; bq) 2 R((�1k�2); (�1��2)) ^ (w1kw2) 2 L(m1 km2; I; F) =)

(bw1k bw2) 2 L(bm1k bm2; bI; bF)
Let q = (w1 kw2; I; F) and bq = (bw1 k bw2; bI; bF) be such an arbitrary pair of questions. If

(q; bq) =2 R((�1 k �2); (�1 ��2)) or if (w1 k w2) =2 L(m1 km2; I; F), then the implication is

satis�ed trivially. Assume that

((w1kw2; I; F); (bw1k bw2; bI; bF)) 2 R(�1 k�2); �1��2)
and

(w1kw2) 2 L(m1km2; I; F):

Since (w1 kw2) 2 L(m1 km2; I; F) we can conclude from Lemma 6.1 that there exist

states i1, i2, f1 and f2, satisfying (i1 � i2) 2 I , (f1 �f2) 2 F , w1 2 L(m1; fi1g ; ff1g) and

w2 2 L(m2; fi2g ; ff2g). The automaton bm1 is a conservative approximation of m1 under

27

R(�1; �1). From Lemma 5.4 we can conclude that there exist states b{1 and bf1 such that

(i1;b{1) 2 �1, (f1; bf1) 2 �1 and bw1 2 L(m1; fb{1g ;n bf1o). Similarly, there exist states b{2 andbf2 such that (i2;b{2) 2 �2, (f2; bf2) 2 �2 and bw2 2 L(m2; fb{2g ;n bf2o). From the de�nition of

R((�1 k�2); (�1��2)) we can conclude that (b{1 �b{2) 2 bI, and that (bf1 � bf2) 2 bF . Lemma 6.1

allows us to conclude that bw1k bw2 2 L(m1km2; bI; bF) as required. 2

Returning to cMI and cMA from Sections 5.1 and 5.2, it is an immediate consequence

of Theorem 6.2 that cMA k cMI is a conservative approximation of MA k MI under the

translation R(�(e�c k e�i) k �(e�i k e�o); �A ��I). Lemma 6.3, which follows, allows us to

conclude that cMA kcMI is a conservative approximation of MA kMI under the translation

R(�((e�c k e�i)k(e�ik e�o)); �A��I).
Lemma 6.3 For all binary relations f and g the following equivalence holds.

�(f kg) � �(f)k�(g)

Proof: Let (u; v) be a pair in �(f kg). There exist traces u1; :::; uk and v1; :::; vk, each of

length 1 such that u = u1 � � �uk and v = v1 � � �vk, and such that (ui; vi) 2 f k g for each

i 2 f1; � � � ; kg. Since ui; vi 2 f kg, there must exist u
f

i
, u

g

i
, v

f

i
and v

g

i
such that (u

f

i
; v

f

i
) 2 f

and (u
g

i
; v

g

i
) 2 g. Clearly ((u

f

0 � � �u
f

k
); (v

f

0 � � �v
f

k
)) 2 �f and ((u

g

0 � � �u
g

k
); (v

g

0 � � �v
g

0)) 2

�(g). Hence (((u
f

0 � � �u
f

k
) k (u

g

0 � � �u
g

k
)); ((v

f

0 � � �v
f

k
) k (v

g

0 � � �v
g

0))) 2 �(f) k �(g). Repeated

application of Lemma 3.1 allows us to conclude that (((u
f

0 � � �u
f

k
) k (u

g

0 � � �u
g

k
)) = u and

(((v
f

0 � � �v
f

k
) k (v

g

0 � � �v
g

k
)) = v. The reverse construction shows that if (u; v) 2 �(f) k�(g)

then (u; v) 2 �(f kg). 2

7 Communication and Conservative Approximations

Suppose we have constructed a conservative approximation bm of an automaton m, under

some mapping relation R(�; �). Moreover, suppose that we have constructed translitera-

tions � and b� which we compose with m and bm respectively. We now wish to construct a

relation �0, so that b� bm is a conservative approximation of �m under the relation R(�0; �).

The reader is referred to Figure 7 for a graphic representation of the relationship between

the relations � and �0, and the transliterations � and b�.
Theorem 7.1 Serial Composition: Let m = (�; S;�) and bm = (b�; bS; b�) be arbitrary

safety automata. Let � � �0 � � and b� � b�0 � b� be transliterations. Let � � S � bS, be a

state translation relation, and let � � �� � b�� be an input translation relation.

If bm is a conservative approximation of m under R(�; �) then b� bm is a conservative

approximation of �m under R(�0; �), provided that every pair of traces (w0; bw0) 2 �0 satis�es

the following condition.

8w 2 post(�;
�
w0
	
) � 9 bw 2 post(b�; � bw0

	
) � (w� bw)

Proof: Suppose that (w0; I; F) and (bw0; bI; bF) are questions such that w0 2 L(�m; I; F)

and ((w0; I; F); (bw0; bI; bF)) 2 R(�0; �). We must show that bw0 2 L(bm; bI; bF). Since w0 2

L(�m; I; F), there must exist a trace w 2 post(�; fw0g) such that w 2 L(m; I; F). Let

28

8w � ! 9 bw
" "

� b�
#

w0 �0 ! bw0

Figure 6: The relationship between transliterated traces and their approximations

w be such a trace. By assumption, ((w0; I; F); (bw0; bI; bF)) 2 R(�0; �), hence (w0; bw0) 2 �0.

According to the de�nition of �0 given in the theorem, there exists a trace bw 2 post(b�; f bw0g)

such that (w� bw). Let bw be such a trace. Since ((w0; I; F); (bw0; bI; bF)) 2 R(�0; �), and

w� bw, we must have ((w; I; F); (bw; bI; bF)) 2 R(�; �). By assumption, bm is a conservative

approximation of m under R(�; �), so we can conclude that bw 2 L(bm; bI; bF). Since bw0b� bw,
we can conclude that bw0 2 L(b� bm; bI; bF) as required. 2

Theorem 7.2 If bm is a conservative approximation of m under the relation R(�(e�); �),
then b� bm is a conservative approximation of �m under the relation R(�(e�0); �) provided
that every pair (w0; bw0) 2 e�0 satis�es the following condition.

8w 2 post(�;
�
w0
	
) � 9 bw 2 post(b�; � bw0

	
) � (we� bw) (1)

Proof: We prove the theorem by showing that if every pair of traces (w0; bw0) 2 e�0 satis�es
condition 1, then every pair (w0; bw0) 2 �(e�0) must satisfy the following condition.

8w 2 post(�;
�
w0
	
) � 9 bw 2 post(b�; � bw0

	
) � (w; bw) 2 �(e�) (2)

The theorem then follows as a direct consequence of Theorem 7.1. Assume that every pair

(w0; bw0) 2 e�0 satis�es condition 1. Let (w0; bw0) be an arbitrary pair of traces in �(e�0). By
the de�nition of � there must exists traces w0

1; :::; w
0
k
, and bw0

1; :::; bw0
k
, each of length 1, such

that w0 = w0
1 � � �w

0
k
, bw0 = bw0

1 � � � bw0
k
, and such that (w0

i
; bw0

i
) 2 e�0 for each i 2 f1; ::; kg.

Let w be a trace in post(�; fw0g). Since � is a transliteration, there must be traces

w1; :::; wk, each of length 1, such that w = w1 � � �wk, and such that wi 2 post(�; fw
0
i
g) for

each i 2 f1; :::; kg. By assumption, there exists bwi 2 post(b�; f bw0
i
g) such that wie� bwi. Letbw = bw0 � � � bwi. By the de�nition of �, (w; bw) 2 �(e�). Thus we have shown that every pair

of traces w0; bw0 2 �(e�0) satis�es condition 2 as required. 2

To conclude this section, we complete the conservative approximation of the water tank

plant-model. So far, we have established that cMA k cMI is a conservative approximation

of MA kMI under the translation R(�((e�c k e�i) k (e�i k e�o)); �A ��I). Ultimately, we wish

to provide a conservative approximation for the plant-model �P (MA kMI). Let b�P be the

following transliteration.

b�P ((cin0�mout0); ((cin�cout)�(win�mout)))
def
�

cin0 = cin ^

mout0 = mout ^

cout = win

29

MC

min

cout

MP

mout

cin

m

c

δWT

Figure 7: Connecting the controller with the plant

8 Veri�cation Using Conservative Approximations

Throughout this paper, we have focused on the task of building conservative models. Ulti-

mately, we would like to use these models to verify that the system has certain properties.

For example, we show how to verify that the controller modeled in Section 3.2 will not

allow the water tank to over-�ll.

We have developed a hybrid plant model MP = �P (MA kMI), by composing and con-

necting two continuous safety automata. We have developed a discrete approximation of

this model, cMP = b�P (cMA kcMI), by composing and connecting two �nite-state automata.

Moreover, we showed that cMP was a conservative approximation ofMP under the relation

R(�(e�c k e�o); �A � �I), by virtue of its construction.

We have also developed a model MC of the proposed controller for this plant, and a

discrete conservative approximation of it, cMC . We model the behaviour of the combined

plant and controller by composing and connecting MC with MP . Let �WT be the following

transliteration.

�WT ((s � c); ((sin � cout) � (cin � sout)))
def
�

s = sin = sout ^

c = cin = cout

The combination of controller and plant, as illustrated in Figure 7, is modeled by the

automaton, MWT = �WT (MC kMP). The automaton has states (c �p), consisting of two

components, the controller state c and the plant state p. Its input-set combines sensor

and control signals. The automaton is able to make a transition from one state (c � p) to

another (c0 � p0) if and only if the controller model MC can make the transition from c to

c0, and the plant model MP can make the transition from p to p0.

For convenience, let �WT = �(e�o k e�c), and let �WT = �c�(�A��I). It is a straightforward

application of the theory developed in Sections 6 and 7 to show that cMWT = �WT (cMC kcMP) is a conservative approximation of MWT under the relation R(�WT ; �WT).

30

Suppose we wish to show that, provided the system is started with the water-tank

empty, the controller will never �ll the water-tank to the brim. We �rst translate this

question, in to questions about the continuous model MWT . Let I be the set of system

states in which the tank is empty.

I = f(c � (a � i)) 2 SWT j i = 0g

Let F be the set of system states in which the tank is full.

F = f(c � (a � i)) 2 SWT j i = 4g

We wish to show that for all traces w 2 ��
WT

[R], w =2 L(MWT ; I; F). That is, we wish

to show that L(MWT ; I; F) is the empty set. Of course, it may well be possible to show

this directly, from analysis of the continuous model MWT . In general, however, such

analysis will be too complex to be tractable. Instead, we will use the discrete conservative

approximation cMWT . We need to show that for all w 2 �WT , there exists bw, bI , and bF
such that ((w; I; F); (bw; bI; bF)) 2 R(�WT ; �WT) and such that bw =2 L(cMWT ; bI; bF).

Expanding the de�nition of R(�; �) shows that we need to �nd bw, bI, and bF such that

(w; bw) 2 �WT , post(�WT ; I) � bI , and post(�WT ;F) � bF . It is straightforward to show

that bI =
nbc�(bs�b{) 2 bSWT j b{ = 0

o
, and bF =

nbc�(bs�b{) 2 bSWT j b{ = 4
o
will su�ce for bI andbF . To complete the proof, we must show that for every trace w in which we are interested,

there is a related trace bw, with which we can form a question to pose to the approximation.

Recall that �WT = �(e�o�e�c). Clearly, for every trace w 2 ��WT
of length less than 1, there

is a related trace bw 2 b�1 such that (w; bw) 2 (e�o k e�c). The operator � partions longer

traces into a sequence traces of length not greater than 1, to which (e�o k e�c) can be applied.
We wish to show that no traces are in L(MWT ; I; F). Since every possible trace w

has a translation bw, and since cMWT is a conservative approximation of MWT , we need

only show that there are no traces in L(cMWT ; bI; bF). This can easily be con�rmed by

conventional model-checking techniques, such as those described by Burch et al. in [2].

9 Conclusions and Future Work

In this paper, we have presented an approach to the problem of verifying hybrid sys-

tems. We model the system initially using a combination of both continuous and discrete

mathematics. Subsequently, a discrete conservative approximation of this model is build.

Finally, the discrete model is veri�ed against a translation of the original speci�cation

using conventional techniques.

To illustrate this approach, we have veri�ed that a simple control mechanism does

not over
ow the water-tank to which it is attached. The example system, a water tank,

is composed of several parts, each with di�erent behaviours. The tank itself behaves

continuously according to the laws of physics. The valve mechanism is event driven, while

the controller is essentially discrete. Each of these parts is modeled independently by a

continuous automata. The models of the parts are then composed and connected, to form

a model of the complete system.

We then developed a discrete �nite-state approximation of this continuous model. We

began by developing approximations of the components | the tank, the actuator, and the

controller. Each of these primitive approximations was demonstrated to be a conservative

approximation of the corresponding continuous model. An approximation of the entire

31

system was developed by performing the same composition and connection operations on

these primitive approximations that were performed on the originals. The composition

and connection operations that were used preserve conservative approximation for our

speci�cation language. Thus, we were able to conclude that the resulting discrete �nite-

state automata was a conservative approximation of the original continuous automata.

Finally, we argued that conventional model-checking techniques could be used to show that

the discrete model satis�ed a related speci�cation, and hence that the original speci�cation

was satis�ed by the continuous system.

This research was originally motivated by the desire to design and verify a control

system for our model train set. Although this goal remains unful�lled, the theory de-

veloped here represents a signi�cant step in this direction. In principle, the process of

composing and connecting the primitive approximations could have been accomplished

automatically. We envision a tool, with a built-in set of primitive continuous models and

their (parameterised) approximations. The user would construct a model of the system

under investigation, by composing and connecting these built-in primitives. The tool

would automatically perform the same compositions and connections on the primitive ap-

proximations, producing a conservative approximation of the entire system, suitable for

veri�cation. Identifying a useful set of primitives, and appropriate approximations of them

remains a matter for future research.

For the purpose of illustration, we have limited the expressiveness of our speci�cation

language. The modeling frameworks, continuous and discrete automata, are likewise very

simple. In spite of this simplicity, we have been surprised by their expressiveness. Nonthe-

less, these limitations are more historical than fundamental to the approach. Developing

approximations for other types of speci�cations seems like a natural way to extend the

work. Here it seems likely that one will wish to develop di�erent approximations for dif-

ferent kinds of questions. For example it may well be best to develop one approximation

that is conservative with respect to safety questions, and another that is conservative with

respect to liveness.

We are suggesting an approach to hybrid system veri�cation, which essentially reduces

the problem to that of verifying discrete systems. The latter, has been extensively studied,

and considerable progress has recently been made. One possible objection to this approach

is its failure to exploit the underlying continuity of the physical systems being modelled.

As it stands, this continuity is exploited, if at all, only in the development of primitive

approximations. Whether the continuity of an underlying system can be exploited to

simplify the veri�cation of its discrete approximation, remains an intriguing question for

future research.

A Proofs of conservative approximations

A.1 Integrator

In Section 5.1 we claimed that the discrete model cMI was a conservative approximation of

the integrator model MI under the relation R(�(e�i k e�o); �I). We o�er the following proof.

We begin by providing a simpli�ed way to prove that conservative approximation holds

in the special case that the state-mapping relation � actually describes a function from S

to bS.
Lemma A.1 If � is a function, that is, for all s; bs1; bs2, ((s; bs1) 2 � ^ (s; bs2) 2 �) =)bs1 = bs2, and if bm is a discrete conservative approximation of m under R(e�; �), then bm is

32

a conservative approximation of m under R(�(e�); �).
Proof: Let � and S be the input-set and state-set of m, and let b� and bS be the input-

set and state-set of bm. Lemma 5.3 says that we can prove that bm is a conservative

approximation of m under R(�(e�); �) by showing that the following implication holds for

all traces w and bw, and for all states i and f .

(w; bw) 2 �(e�) ^ w 2 L(m; fig ; ffg) =)

9b{; bf 2 bS � (i�b{) ^ (f� bf) ^ bw 2 L(bm; fb{g ;n bfo)
Let w be an arbitrary trace in ��[R] and let i and f be arbitrary states in S. Also,

let bw be an arbitrary trace in b��[N]. If (w; bw) =2 �(e�) or if w =2 L(m; fig ffg) then the

implication is satis�ed trivially. Assume that (w; bw) 2 �(e�) and that w 2 L(m; fig ; ffg.

From the de�nition of �, and the assumption that (w; bw) 2 �(e�), we can conclude that

there exists a natural number k, traces w1; :::; wk, and traces bw1; :::; bwk satisfying the

following conditions.
w = w1w2 � � �wkbw = bw1 bw2 � � � bwk

8i 2 f1; 2; :::; kg � (wi; bwi) 2 e�
Since m is eager, and w 2 L(m; fig ; ffg), there must exists states s0; :::; sk satisfying

the following conditions.
s0 = i

sk = f

8i 2 f1; :::; kg � wi 2 L(m; fsi�1g ; fsig)

Moreover, since bm is a conservative approximation of m under R(e�; �), we know that there

exist states bs0; :::; bsk�1, and states bs01; :::; bs0k such that the following conditions hold for all

8i 2 f1; :::; kg.

(si�1; bsi�1) 2 � ^

(si; bs0i) 2 �

Now, since � is known to be a function, we can conclude that each bs0
i
= bsi = e�(si). Thus,

by progressing through the sequence of states bs0; bs00; bs01; :::; bs0k�1 the automaton bm is able to

accept the trace bw. Thus, we have demonstrated that there exists initial state bs0 such that
(i; bs0) 2 e�, and a �nal state bs0

k�1 such that (f; bs0
k�1) 2 e� and such that bw 2 L(bm; bs0; bs0k�1)

as required. 2

The relation �I is a total function over the state-set SI . Lemma A.1 says that we can

prove that cMI is a conservative approximation of MI under R(�(e�i k e�o); �I). by proving

that for all traces w 2 ��
I
[R], and bw 2 b�I�[N], and for all states i and f in SI , the

following implication holds.

(w; bw) 2 (e�i k e�o) ^ w 2 L(MI ; fig ; ffg) =)

9b{; bf 2 bSI � (i�Ib{) ^ (f�I bf) ^ bw 2 L(cMI ; fb{g ;n bfo)
Let w be an arbitrary trace in ��[R] and let i and f be arbitrary states in S. Also,

let bw be an arbitrary trace in b��[N]. If (w; bw) =2 (e�i k e�o) or if w =2 L(MI ; figffg)

then the implication is satis�ed trivially. Assume that (w; bw) 2 (e�i k e�o) and that w 2

L(MI ; fig ; ffg). We will show that bw 2 L(cMI ; f�I(i)g ; f�I(f)g).

33

The trace w is expressible as the parallel combination of its two components. Let

wi 2 R[�imax; imax] and wo 2 R[smin; smax] be the two components of w. That is,

w = wi k wo. The sequence bw consists of a single symbol, which has two compo-

nents. Let these components be bwi and bwo, so that bw = h(bwi � bwo)i. To show thatbw 2 L(cMI ; f�I(i)g ; f�I(f)g), we must show that (bwi � bwo) 2 b�I , that �I(i) 2 bSI , and
that �I(f) 2 bSI . Additionally, we must show that there is a sequence of transitions inb�I that starts in state �I(i), consumes bw, and ends in �I(f). We show that there is a

sequence conisting of a single transition. From the last row of Table 7 we can see that we

need to show that the following two conditions are satis�ed

�I(i) + bwi � 1 � �I(f) � �I(i) + bwi (3)

d�I(i)e+ d�I(f)e � dimaxe

2
� bwo �

d�I(i)e+ d�I(f)e+ dimaxe

2
(4)

The preliminary requirements are easily satis�ed. The states i and f must lie in the

range [smin; smax], hence �I(i) and �I(f) must lie in the range [dsmine ; dsmaxe]. Any

real-valued function, g, must satisfy the following inequality for any t � 0.

min
0�x�1

tg(x) �

Z
t

0
g(x)dx � max

0�x�1
tg(x)

The value of wi(t) is restricted to the interval [�imax; imax]. Let l = jwij. Since (wi; h bwii) 2e�i, l � 1. Now bwi =
lR

l

0 wi(t)dt
m
. Thus bwi is restricted to the interval [d�imaxle ; dimaxle].

The value of wo(t) must remain in the range [smin; smax], and bwo = dwo(t)e for some time

t 2 [0; 1]. Thus bwo must lie in the interval [dsmine ; dsmaxe.

We are left with conditions 3 and 4. Let k =
R
wi. We know, from the de�nition of

MI , that k = i � f . Moreover, from the de�nitions of e�i and �I we know that bwi = dke,

�I(i) = die, and �If = dfe. We begin with some simple observations of the function

g(x) = dxe, which we simply state without proof.

Observaton A.2 8x 2 R � x � dxe < x+ 1

Observaton A.3 8x; y 2 R � dx+ ye � dxe + dye

Substituting f for x in Observation A.2 we obtain

f � dfe < f + 1

Substituting i+ k for f yields

i+ k � dfe < i+ k + 1

The following sequence of inequalities follows trivially by repeated application of the Ob-

servations A.2 and A.3.

dke + die � 2 < dfe < dk + ie+ 1

dke + die � 2 < dfe < dke + die+ 1

dke + die � 1 � dfe � dke + die

Replacing dke with bwi, die with �I(i) and dfe with �I(f) gives the following result, demon-

strating that condition 3 is satis�ed.

bwi + �I i� 1 � �I(f) � bwi + �I(i)

34

1

wi(1) wi(0)

min

slope = imax

slope = –imax

max

t

wi(t)

0

Figure 8: Constraints on integration output

The values of function wi are restricted to the interval [�imax;+imax]. Since wo is

the integral of wi, the slope of wo is likewise constrained. Thus, for all times t 2 [0; 1],

wo(t) must lie above the line with slope �imax that goes through the point (0; wi(0)).

Similarly, wi(t) must lie above the line with slope imax that goes through the point

(1; wi(1)). As shown in Figure 8, the function wo(t) must remain above the point (12 +
wi(0)�wi(1)

2imax

;
wi(0)+wi(1)�imax

2), labelled min in the �gure, at which these two lines intersect.

Replacing wo(0) with i, and wo(1) with f gives a lower bound, w(t) � i+f�imax

2 . Simi-

lar analysis yields an upper bound, w(t) � i+f�imax

2 . From the de�nition of e�o, we can
conclude that the following inequality holds.�

i+ f � imax

2

�
� bwo �

�
i+ f + imax

2

�
Repeated application of observation A.2 and A.3 yields the following sequence of inequal-

ities. �
i+ f � imax

2

�
� bwo �

�
i+ f + imax

2

�
i+ f � imax

2
� bwo <

i+ f + imax

2
+ 1

die+ dfe � 2� dimaxe

2
< bwo <

die+ dfe + dimaxe

2
+ 1

die+ dfe � dimaxe

2
� 1 < bwo <

die+ dfe + dimaxe

2
+ 1

die+ dfe � dimaxe

2
� bwo �

die+ dfe + dimaxe

2

Replacing die with �I(i), and dfe with �I(f), yields the following �nal result, satisfying

35

condition 4
�I(i) + �I(f)� dimaxe

2
< bwo �

�I(i) + �I(f) + dimaxe

2

Thus all the conditions have been satis�ed, and we have shown that bw is indeed a string

in the language L(cMI ; f�I(i)g ; f�I(f)g), as required to complete the proof.

A.2 Actuator

We begin by extending concatenation from traces, to relations over traces. That is, if �1
and �2 are binary relations between traces, then we de�ne their concatenation as follows:

(u; v) 2 �1�2
def
�

9u1; u2; v1v2 � u = u1u2 ^ v = v1v2 ^ (u1; v1) 2 �1 ^ (u2; v2) 2 �2

Let e� be e�c k e�d, restricted to traces of length 1.

(w; bw) 2 e� def
� jwj = 1 ^ j bwj = 1 ^ (w; bw) 2 (e�c k e�i)

Observe that �(e�c k e�i) is equal to the concatenation of �(e�) and (e�c k e�i).
�(e�c k e�i) = �(e�)(e�c k e�i)

Let e� be the the following function from SA to bSA.
((s�c); bs) 2 e� def

�

s = L ^ c = 0 ^ bs = L _

s = H ^ c = 0 ^ bs = L _

c > 0 ^ bs = X

Recall that e�A relates every state in SA to every state in bSA. Clearly, e� � e�A.
We prove that cMA is a conservative approximation of MA under R(�(e�c k e�i); �A) as

follows. First, we show that cMA is a conservative approximation of MA under R(�(e�); e�).
We then show that for all w and bw such that (w; bw) 2 (e�c k e�i), and for all states i

and f in SA, if w 2 L(MA; fig ; ffg), then there exists a �nal state bf 2 bSA such thatbw 2 L(cMI ; e�(i); bf). It follows immediately that cMA is a conservative approximation of

MA under the relation R(�(e�)(e�c k e�i); �A).
Lemma 6.3 says that in order to show that cMA is a conservative approximation of

MA under R(�(e�); e�), it su�ces to show that it is a conservative approximation under

R(e�; e�). We do this by simple case analysis. Let w be an arbitrary trace in ��
A
, for which

there exists a sequence bw 2 b��
A
such that (w; bw) 2 e�. Moreover, suppose that i and f

are arbitrary states, subject to the condition that w 2 L(MA; fig ; ffg). We must show

that bw 2 L(cMA; fe�(i)g ; fe�(f)g). Now, w can be expressed as cin k cout, and bw can be

expressed as
D
(dcin � dcout)E. Since w; bw 2 e� we know that (cin;

DdcinE) 2 e�c and that

(cout;
DdcoutE) 2 e�i. We base our case analysis on the values of e�(i) and dcin.

Suppose that e�(i) = L, and hence i = (L � 0). Suppose that dcin = L. Then cin must

be the constant trace L. Clearly, the only transitions that MA can take are those in row 1

of Table 3. Thus, the �nal state f must be (L � 0) as well, and cout must be the constant

trace 0. Since cout is the constant trace 0, dcout must be h0i. From row 1 of Table 8 we

36

can see that indeed, the discrete model can start in state L, consume h(L�0)i and arrive

in state L.

Suppose that dcin = X . From row 2 of Table 8 we can see that the discrete can start

in L, consume
D
(X; dcout)E for any symbol cout, and arrive in any other state. Thus, it

will be able to arrive in state e�(f) regardless of the value of cout.
Suppose that dcin = H . Then cin must be the constant trace H , and must have a

length of 1. The only transition that MA can take on a trace of non-zero length is that

given by row 2 of Table 3. However, this transition cannot consume the whole trace,

since it must end in the state (H � (0:5� l) where l is the length of the trace, and 0:5� l

must remain greater than zero. Suppose it makes such a transition, consuming a pre�x

of length �1. It must then be in the state (H �0:5� �1). If �1 is less than 0:5, then the

next transition must be from row 6 of the table. The trace consumed must be of length

�2 such that �2 � 0:5��1. It arrives in the state H�0:5��1��2. Clearly any sequence of

k such transitions, whose length totals less than 0:5 is equivalent to a single transition of

the same total length. Since, eventually, we must consume the whole trace of length 1, we

must arrive at state (H �0) after consuming a trace of length 0:5. Having arrived at state

(H �0), the only transition that can be taken is that given by row 4, and the state remains

(H �0) for the remainder of the trace. Thus, if MA starts in state (L �0) and consumes

a trace of length 1 where the �rst component is the constant H , it must arrive at state

(H �0). From row 3 of Table 8 can make the corresponding transition, regardless of the

value of cout.

Suppose on the other hand that e�(i) = X . If dcin = L, then by the same argument as

used above, for the case e�(i) = L ^ dcin = H , the �nal state f must be (L�0). From row 4

of Table 8, the discrete model can go from state X to state L by consuming the input

trace, regarless of the value of dcout. If dcin = X , then the discrete model can go to any

state by consuming the input trace. If dcin = H , then by the same argument used for the

case in which dcin = L, the continuous model must arrive in state (H�0). Row 5 of Table 8

shows that the discrete model can do the same.

Finally, if e�(i) = H , the arguments are exactly symmetric to those for the cases in

which e�(i) = L.

Thus, we have succeeded in showing that cMA is a conservative approximation of M

under R(�(e�); e�).
We now show that for arbitrary traces w and bw such that (w; bw) 2 (e�c k e�i), and

arbitrary states i and f in SA such that w 2 L(MA; fig ; ffg), there exists a state f
0 2 bSA

such that bw 2 L(cMA; fe�(i)g ;n bfo. Let w and bw be such arbitrary traces and let i and f

be such states. Let cin and cout be the components of w so that w = cinkcout and let dcin
and dcout be the components of the single symbol of bw, so that bw =

D
(dcin � dcout)E. Observe

from Table 8, that, with the following exceptions, there is a transition from every possible

starting state on every possible input trace of length 1. The exceptions are that the

discrete model cannot make a transition from state L by consuming the trace h(L � 1)i,

nor can it make a transition from state H by consuming the trace h(H � 0)i. We must

therefor be assured that no related traces w can be consumed by the continuous model

when started from a related state.

Suppose that MA is started in (L � 0), the only state that is related by e� to to L. If

a trace w = (cin k cout) is related to the trace bw = h(L � 1)i by (e�c k e�i), then it must

have length at most 1, cin must have the constant value L, and cout must attain a value

greater than 0 at some point during the trace. From Table 3, we can see that only traces

37

for which cout has the constant value 0 can be accepted from a starting state of (L � 0)

while cin has the constant value L.

Suppose that MA is started in (H � 0), the only state related by e� to H . If a trace

(cinkcout) is related to bw = h(H � 0)i by (e�c k e�i) then it must have length at most 1, cin

must have the constant value H , and cout must attain the value 0 at some point during

the trace. From Table 3, we can see that only traces for which cout has the constant value

1 can be accepted from a starting state of (H � 0) while cin has the constant value H .

A.3 Transliteration

We wish to show that b�P (cMA k cMI) is a conservative approximation of �P (MA kMI) under

the relation R(�(e�c k e�o); �A��I). According to Theorem 7.2, we must show that every pair

of traces (w0; bw0) 2 (e�c k e�o) satis�es the following condition.

8w 2 post(�P ;
�
w0
	
) � 9 bw 2 post(b�P ; � bw0

	
) � (w; bw) 2 ((e�c k e�i)k(e�ik e�o)) (5)

Let (w0; bw0) be an arbitrary pair of traces in (e�c k e�o). By de�nition there are traces w0
c
,

w0
o
, bw0

c
and bw0

o
such that w0 = w0

c
kw0

o
, bw0 = bw0

c
k bw0

o
, w0

c
e�c bw0

c
, and w0

o
e�o bw0

o
. Let w be a trace

in post(�P ; fw
0g). From the de�nition of �p we know that there exists a trace wi 2 R

1

such that w = (w0
c
kwi) k (wi k w

0
m
). From the de�nition of e�i there exists bwi = h

R
wii,

such that wie�i bwi. Let bw be the trace (bw0
c
k bwi)k(bwik bw0

m
) Clearly bw0 2 post(b�P ; f bw0g). By

construction, (w; bw) 2 ((e�c k e�i)k(e�i k e�m)) as required.
References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorith-

mic approach to the speci�cation and veri�cation of hybrid systems. In R. Grossman,

A. Nerode, R. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture

Notes in Computer Science, pages 209{229. Springer-Verlag, 1993.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142{

170, June 1992.

[3] Jerry R. Burch. Trace Algebra for Automatic Veri�cation of Real-Time Concurrent

Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, August

1992.

[4] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and ab-

straction. In Procedings 19th Annual ACM Symposium on Principles of Programming

Languages, January 1992.

[5] R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker and W.

-P. de Roever and G. Rozenberg, editor, Stepwise Re�nement of Distributed Systems,

volume 430 of Lecture Notes in Computer Science, pages 414{453. REX Project,

Springer-Verlag, May 1989.

[6] Anthony McIsaac. A formalization of abstraction in lambda. In Carl Seger and Je�rey

Joyce, editor, HUG '93 HOL User's Group Workshop, pages 229{240. University of

British Columbia, Department of Computer Science, August 1993.

38

[7] Anders P. Ravn, Hans Rischel, and Kirsten Mark Hansen. Specifying and verify-

ing requirements of real-time systems. IEEE Transatcions on Software Engineering,

19(1):41{55, January 1993.

[8] Derick Wood. Theory of Computation. John Wiley & Sons, Inc., Toronto, 1987.

[9] Ying Zhang and Alan K. Mackworth. Constraint nets: A semantic model for real-

time embedded systems. Technical Report 92-10, University of British Columbia,

Vancouver, B.C., Canada, October 1992.

[10] Ying Zhang and Alan K. Mackworth. Will the robot do the right thing? Technical

Report 92-31, Department of Computer Science, The University of British Columbia,

November 1992.

39

