ACM SIGSOFT Distinguished Paper Award (ICSE)
Coverage Is Not Strongly Correlated With Test Suite Effectiveness was awarded an ACM SIGSOFT Distinguished Paper Award at the International Conference on Software Engineering (ICSE) 2014 in Hyderabad, India. The abstract for this work is:
The coverage of a test suite is often used as a proxy for its ability to detect faults. However, previous studies that investigated the correlation between code coverage and test suite effectiveness have failed to reach a consensus about the nature and strength of the relationship between these test suite characteristics. Moreover, many of the studies were done with small or synthetic programs, making it unclear whether their results generalize to larger programs, and some of the studies did not account for the confounding influence of test suite size. In addition, most of the studies were done with adequate suites, which are are rare in practice, so the results may not generalize to typical test suites.
We have extended these studies by evaluating the relationship between test suite size, coverage, and effectiveness for large Java programs. Our study is the largest to date in the literature: we generated 31,000 test suites for five systems consisting of up to 724,000 lines of source code. We measured the statement coverage, decision coverage, and modified condition coverage of these suites and used mutation testing to evaluate their fault detection effectiveness.
We found that there is a low to moderate correlation between coverage and effectiveness when the number of test cases in the suite is controlled for. In addition, we found that stronger forms of coverage do not provide greater insight into the effectiveness of the suite. Our results suggest that coverage, while useful for identifying under-tested parts of a program, should not be used as a quality target because it is not a good indicator of test suite effectiveness.