Note: in order to play the pencast files you need to download and install livescribe desktop.
| Lecture | Slides | Chapter | Extras |
|---|---|---|---|
| 00 | Introduction | Intro to Matlab my_regress.m CH01PR19.txt plot_gpa_fit.m |
|
| 01 | Sum and Product Rules Bayes Nets |
||
| 02 | cont. | ||
| 03 | Computational Aspects of Discrete and Linear Gaussian Models | 8.1 | |
| 04 | Conditional Independence & Markov Random Fields |
8.2-3 | |
| 05 | Inference in Graphical Models & Factor Graphs | 8.4 | |
| 06 | cont. | ||
| 07 | Sum product Algorithm (Belief Propagation) | ||
| 08 | cont. | ||
| 09 | cont. | ||
| 10 | K-means clustering and Gaussian Mixture Models | 9.1 | |
| 11 | Expectation Maximization for GMM’s | 9.2 | |
| 12 | cont. | ||
| 13 | Generalized EM |
9.4 | |
| 14 | cont. | ||
| 15 | EM for linear regression,(pencast) | ||
| 16 | Variational Inference | 10.1 | |
| 17 | Variational Inference Cont. | 10.1 | |
| 18 | Variational GMM | 10.2 | |
| 19 | Variational Inference Usage | 10.6 | |
| 20 | Basic sampling methods | 11.1 | |
| 21 | Markov chain Monte Carlo | 11.2 | Neal tech. report |
| 22 | cont. | 11.3 | |
| 23 | PCA | 12.1 | |
| 24 | (Hidden) Markov Models | 13.1 | |
| 25 | Forward backward, Viterbi, Sum product again | 13.2 | |
| 26 | Linear dynamical systems, Kalman filter | 13.3 | |
| 27 | Particle filtering |