Probabilistic Machine Learning Lectures
	
				
- 
Lecture 1. Introduction.
PS 
- 
Lecture 2. PageRank - Why Math helps.
PS
 
-  Lecture 3. Probability introduction.
PS
 
-  Lecture 4. Probabilistic graphical models.
PS
  
-  Lecture 5. Linear modelling: least squares, ridge and
  lasso. Regression and classification.
PS
  
-  Lecture 6. Nonlinear supervised learning.
PS
  
-  Lecture 7. Constrained optimisation and SVMs.
PS
  
-  Lecture 8. Unsupervised Learning. K-means, mixtures and EM.
PS
Demos:
-  Lecture 9. Dynamic models. 
PS
-  Lecture 10.  
PS