Recommended reading
Next: About this document
Up: No Title
Previous: Learning
These papers are what I consider as some of the more readable entry
points to the field.
- Books
- E. Castillo and J. M. Gutierrez and A. S. Hadi, 1997.
"Expert systems and probabilistic network models".
Springer-Verlag.
- D. Edwards, 1995.
"Introduction to graphical modelling",
Springer.
- B. Frey, 1998.
"Graphical models for machine learning and digital communication",
MIT Press.
- F. Jensen, 1996.
"An introduction to Bayesian Networks".
UCL Press.
- M. I. Jordan (ed), 1998.
"Learning in Graphical Models",
Kluwer Academic Press.
- S. Lauritzen, 1996.
"Graphical Models",
Oxford.
- J. Pearl, 1988.
"Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference",
Morgan Kaufmann.
- S. Russell and P. Norvig, 1995.
"Artificial Intelligence: A Modern Approach".
Prentice Hall.
- J. Whittaker, 1990.
"Graphical Models in Applied Multivariate Statistics",
Wiley.
- Inference
- U. Kjaerulff, 1990.
"Triangulation of graphs - algorithms giving small total state space",
Tech report R-90-09, Dept. of Math. and Comp. Sci., Aalborg Univ., Denmark.
- M. Peot and R. Shachter, 1991.
"Fusion and propogation with multiple observations in belief networks",
Artificial Intelligence, 48:299-318.
- S. Shafer and S. Lauritzen, 1996.
"Computing Marginals Using Local Computation,"
Working Paper No. 267, School of Business, University of Kansas.
- Learning
- W. L. Buntine, 1994.
"Operations for Learning with Graphical Models",
J. AI Research, 159-225.
- N. Friedman, 1998.
"The Bayesian Structural EM Algorithm",
Proc. UAI.
- D. Heckerman, 1996."A tutorial on learning with Bayesian networks".
Microsoft Research tech. report, MSR-TR-95-06.
- P. Krause, 1998. "Learning probabilistic networks", Philips
Research Labs tech. report.
- DBNs
- N. Friedman, K. Murphy, and S. Russell, 1998.
"Learning the Structure of DPNs", UAI.
- Z. Ghahramani, 1997.
"Learning Dynamic Bayesian Networks",
to appear in "Adaptive Processing of Temporal Information. Lecture Notes in Artificial Intelligence",
ed., C.L. Giles and M. Gori, Springer-Verlag.
- L. R. Rabiner, 1989.
"A Tutorial in Hidden Markov Models and Selected Applications in Speech Recognition",
Proc. of the IEEE, 77(2):257-286.
- P. Smyth and D. Heckerman and M. I. Jordan, 1996.
"Probabilistic Independence Networks for Hidden Markov Probability Models".
Microsoft Research Tech. Report, MSR-TR-96-03.
- Hybrid (discrete/continuous) networks
- K. Murphy, 1998.
"Switching Kalman Filter models",
in preparation.
- Z. Ghahramani and G. Hinton, 1998.
"Switching State-Space Models".
Submitted.
- K. P. Murphy, 1998.
"Inference and Learning in Hybrid Bayesian Networks"
Tech Report No. 990, U.C. Berkeley, Dept. Comp. Sci.
- S. Roweis and Z. Ghahramani, 1997.
"A Unifying Review of Linear Gaussian Models", submitted.
Next: About this document
Up: No Title
Previous: Learning
Sun Oct 18 12:11:28 PDT 1998