Home Page
Higher Order Logic Programming with Untyped Lambda Expressions.
 
by James H. Andrews 
 
formalWARE 
    project  

  Participating 
     Organizations 
  Research   
     Topics 
  People 
   

formalWARE 
    results  

  Overview 
  Publications 
  Presentations 
  Tools   
  Methods 
  Examples   
  Training 

formalWARE  
  information  

  Events 
  Index  
  Links   
  Contacts

Abstract 
A higher order logic programming system is presented.  The declarative semantics of the system is based on the type-free higher order logic NaDSyL, which takes a nominalist approach to solving the set-theoretic paradoxes.  The operational semantics is based on the deterministic and useful subset of higher order unification known as pattern unification.  It is shown that the   system allows all expressions of the untyped lambda calculus, including the Y combinator and expressions capturing recursive functions, without losing consistency due to Curry's paradox.   The system automatically performs lazy function application and thus unifies higher order logic and functional programming in a simple and elegant manner. 
 

Download Postscript 
Download PDF 

This paper was submitted to Computer Science Logic 1998 (CSL '98)