Programming by Optimisation (PbO)

[What is PbO?] · [PbO Levels] · [Literature] · [Examples] · [Tools] · [Best Practices] · [FAQ]


Literature

  • NEW: Programming by Optimization.
    Holger H. Hoos - Communications of the ACM 55(2), pp. 70-80, February 2012.
    [comprehensive introduction to the PbO paradigm; the appendix contains the current description of the generic PbO programming language extension]>
    [access online version] [access online appendix]   (This article supersedes the earlier technical report, in which PbO was first introduced.)


  • NEW: Automatically Configuring Algorithms for Scaling Performance.
    James Styles, Holger Hoos, and Martin Müller - Proceedings of the 6th International Conference on Learning and Intelligent Optimization (LION 6), 2012
    [automated algorithm configurators, configurator protocols, travelling salesman problem, TSP, Go, mixed integer programming, MIP]
    (get PDF file - 328k)


  • NEW: Automated Algorithm Configuration and Parameter Tuning.
    Holger H. Hoos - Autonomous Search (edited by Y. Hamadi, E. Monfroy and F. Saubion), Chapter 3, pp. 37-71, Springer Verlag, 2012.
    [computer-aided algorithm design, empirical algorithmics]
    (PDF file - 236k; preprint)


  • Sequential Model-Based Optimization to General Algorithm Configuration.
    Frank Hutter, Holger Hoos and Kevin Leyton-Brown - Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5), LNCS 6683, pages 507-523, Springer, 2011.
    [computer-aided algorithm design, algorithm configuration, parameter tuning, empirical algorithmics, AI]
    (get PDF file - 385k or extended version - 385k)


  • HAL: A framework for the automated design and analysis of high-performance algorithms.
    Christopher Nell, Chris Fawcett, Holger H. Hoos, and Kevin Leyton-Brown - Proc. 5th Intl. Conference on Learning and Intelligent Optimization (LION 5), LNCS 6683, pages 600-615, Springer, 2011.
    [HAL, High-performance algorithm library, automated design, algorithm analysis]
    (get PDF file - 598k)


  • A framework for automatic generation of efficient domain-specific planners from generic parametrized planners.
    Mauro Vallati, Chris Fawcett, Alfonso Gerevini, Holger Hoos, and Alessandro Saetti - Proceedings of the Eighteenth IJCAI RCRA International Workshop on "Experimental Evaluation of Algorithms for Solving Problems With Combinatorial Explosion" (RCRA 2011), 2010.
    [parameterized planners]
    (get PDF file - 335k)


  • Time-bounded sequential parameter optimization.
    Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Kevin Murphy - Proceedings of the 4th International Conference on Learning and Intelligent Optimization (LION 4), LNCS 6073, pages 281-298, Springer, 2010.
    [discrete optimization, predictive performance models, Sequential Parameter Optimization, SPO]
    (get PDF file - 508k)


  • Automated configuration of mixed integer programming solvers.
    Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown - Proc. 7th Intl. Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2010), LNCS 6140, pages 186-202, Springer, 2010.
    [mixed integer programming, MIP, automated algorithm configuration, CPLEX, GUROBI, LPSOLVE]
    (get PDF file - 410k)


  • Hydra: Automatically configuring algorithms for portfolio-based selection.
    Lin Xu, Holger H. Hoos and Kevin Leyton-Brown - Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI- 10), pages 210-216, 2010.
    [Hydra, automated algorithm configuration, porfolio based algorithm selection, stochastic local search, propositional satisfiability]
    (get PDF file - 279k)


  • Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT.
    Dave A. D. Tompkins and Holger H. Hoos - Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT 2010), LNCS 6175, pages 278-292, Springer, 2010.
    [stochastic local search, propositional satisfiability, variable expressions, dynamic scoring functions, design architecture for variable expressions, DAVE]
    (get PDF file - 389k)


  • Automatic configuration of multi-objective aco algorithms.
    Manuel López-Ibáñez and Thomas Stützle - Proceedings of the 7th International Conference on Swarm Intelligence, ANTS'10, LNCS 6234, pages 95-106, Springer, 2010.
    [ant colony optimization, ACO, multi-objective optimization, multi-objective stochastic local search]
    (get PDF file - 606k)


  • Isac - instance-specific algorithm configuration.
    Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann and Kevin Tierney - Proc. 19th European Conference on Artificial Intelligence (ECAI 2010), pages 751-756, 2010.
    [instance specific algorithm configuration, GGA, feature vector]
    (get PDF file - 152k)


  • F-Race and Iterated F-Race: An overview.
    Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle - Experimental Methods for the Analysis of Optimization Algorithms, pages 311-336, 2010.
    [F-Race, automatic algorithm configuration]
    (get PDF file - 520k)


  • ParamILS: An automatic algorithm configuration framework.
    Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle - Journal of Artificial Intelligence Research, 36:267-306, 2009.
    [performance optimizing parameter settings, automatic framework, local search, CPLEX]
    (get PDF file - 782k)


  • An experimental investigation of model-based parameter optimisation: SPO and beyond.
    Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown and Kevin P. Murphy - Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO'09), pages 271-278, 2009.
    [parameter tuning, noisy optimization, sequential experiment design, gaussian processes, active learning]
    (get PDF file - 322k)


  • An automatically configured modular algorithm for post enrollment course timetabling.
    Chris Fawcett, Holger H. Hoos, and Marco Chiarandini - Technical Report TR-2009-15, University of British Columbia, Department of Computer Science, 2009.
    [post enrollment timetabling, automated exploration of large design spaces, parameterised stochastic local search]
    (get PDF file - 172k)


  • SATenstein: Automatically building local search sat solvers from components.
    Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos and Kevin Leyton-Brown - Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), pages 517-524, 2009.
    [stochastic local search, propositional satisfiability, SATenstein]
    (get PDF file - 254k)


  • A gender-based genetic algorithm for the automatic configuration of algorithms.
    Carlos Ansótegui, Meinolf Sellmann and Kevin Tierney - Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP 2009), LNCS 5732, pages 142-157, Springer, 2009.
    [inherently parallel genetic algorithm, gender separation, selection of SAT solvers]
    (get PDF file - 233k)


  • Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm
    Marco A. Montes de Oca, Thomas Stützle, Mauro Birattari - Evolutionary Computation, IEEE Transactions on , vol.13, no.5, pp.1120-1132, Oct. 2009
    [Particle Swarm Optimization, PSO]
    (get PDF file - 1.2M)


  • Computer-aided design of high-performance algorithms.
    Holger Hoos. - Technical Report TR-2008-16, University of British Columbia, Department of Computer Science, 2008.
    [designing high performance algorithms]
    (get PDF file - 152k)


  • A modular multiphase heuristic solver for post enrollment course timetabling (extended abstract).
    Marco Chiarandini, Chris Fawcett and Holger H. Hoos - Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008). 6 pages, 2008.
    [International Timetabling Competition, stocastic local search, ParamILS]
    (get PDF file - 123k)


  • Automatic algorithm configuration based on local search.
    Frank Hutter, Holger H. Hoos and Thomas Stützle - Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-07), pages 1152-1157, 2007.
    [parameter tuning, local search, minimising runtime, maximizing solution quality, heuristic tree search, CALIBRA, ParamILS]
    (get PDF file - 176k)


  • Boosting verification by automatic tuning of decision procedures.
    Frank Hutter, Domagoj Babić, Holger H. Hoos, and Alan J. Hu - Proc. Formal Methods in Computer-Aided Design (FMCAD'07), pages 27-34, 2007.
    [parameterized heuristics, computer aided design and verification, design procedures, boolean satisfiability, search parameter optimization]
    (get PDF file - 283k)


  • Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle - Proc. 4th Intl. Workshop on Hybrid Metaheuristics (HM 2007), LNCS 4771, pages 108-122, Springer, 2007.
    [parameter tuning, F-Race]
    (get PDF file - 233k)


  • Fast and effective orchestration of compiler optimizations for automatic performance tuning.
    Zhelong Pan and Rudolf Eigenmann - CGO '06: Proceedings of the International Symposium on Code Generation and Optimization, pages 319-332, Washington, DC, USA. IEEE Computer Society, 2006.
    [dynamic, feedback-oriented optimization orchestration, combined elminiation]
    (get PDF file - 233k)


  • A racing algorithm for configuring metaheuristics.
    Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp - GECCO '02: Proc. of the Genetic and Evolutionary Computation Conference, pages 1-18, 2002.
    [racing procedure, configuration, metaheuristic, combination optimization problem, cross validation, ant colony optimization, traveling salesman]
    (get PDF file - 127k)


  • Automated empirical optimizations of software and the ATLAS project.
    R. Clint Whaley, Antoine Petitet, Jack J. Dongarra - Parallel Computing, 27(1-2):3-35, 2001.
    [ATLAS, Automatically Tuned Linear Algebra Solver, AEOS, Automatic Empirical Optimization Software, BLAS, Basic Linear Algebra Subprograms]
    (get PDF file - 381k)


  • Optimizing for reduced code space using genetic algorithms.
    Keith D. Cooper, Philip J. Schielke, and Devika Subramanian - Proceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded Systems, LCTES '99, pages 1-9, 1999.
    [optimization, genetic algorithms, code space]
    (get PDF file - 143k)


  • Delaying Commitment.
    Harold Thimbleby - Software, IEEE , vol.5, no.3, pp.78-86, May 1988.
    [programming strategy, delaying programming decisions, design commitment]
    (get PDF file - 1.1M)