Technical Reports

The ICICS/CS Reading Room


UBC CS TR-2005-08 Summary

Nonparametric BLOG, April 06, 2005 Peter Carbonetto, Jacek Kisynski, Nando de Freitas and David Poole, 8 pages

The BLOG language was recently developed for defining first-order probability models over worlds with unknown numbers of objects. It handles important problems in AI, including data association and population estimation. This paper extends the expressiveness of the BLOG language by adopting generative processes over function spaces --- known as nonparametrics in the Bayesian literature. We introduce syntax for reasoning about arbitrary collections of objects, and their properties, in an intuitive manner. By exploiting exchangeability, distributions over unknown objects and their attributes are cast as Dirichlet processes, which resolve difficulties in model selection and inference caused by varying numbers of objects. We demonstrate these concepts with applications to air traffic control and citation matching. #U /grads2/pcarbo/npblog.pdf


If you have any questions or comments regarding this page please send mail to help@cs.ubc.ca.