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We describe an Eulerian-on-Lagrangian solid simulator that reduces or
eliminates many of the problems experienced by fully Eulerian methods
but retains its advantages. Our method does not require the construction
of an explicit object discretization and the fixed nature of the simulation
mesh avoids tangling during large deformations. By introducing Lagrangian
modes to the simulation we enable unbounded simulation domains and re-
duce the time-step restrictions which can plague Eulerian simulations. Our
method features a new solver that can resolve contact between multiple ob-
jects while simultaneously distributing motion between the Lagrangian and
Eulerian modes in a least-squares fashion. Our method successfully bridges
the gap between Lagrangian and Eulerian simulation methodologies with-
out having to abandon either one.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]:
Types of Simulation

Additional Key Words and Phrases: Deformation, Continuum Mechanics,
Rigid Bodies, Eulerian, Contact

1. INTRODUCTION

Eulerian simulations have proven to be indispensable tools in the
computer graphics field. They are used to produce stunning an-
imations of complicated fluids, and more recently, of solids and
granular materials. Because these simulations rely on a fixed spa-
tial discretization they avoid many of the perils encountered by La-
grangian simulation of highly deformable objects. However, these
methods suffer from inherent drawbacks stemming from the fixed
spatial discretization which is their defining characteristic. Chief
amongst these is the necessary discretization of the entire simula-
tion domain, difficulties in computing accurate and dissipation free
advection, and potential time-step restrictions. Many algorithms at-
tempt to avoid these issues by replacing parts, or all of the sim-
ulation with Lagrangian methods, but this is done at the peril of
losing the advantages of the Eulerian approach. In this paper we
present a clean, hybrid technique which allows us to leverage the
benefits of Lagrangian and Eulerian simulators by treating rigid and
low frequency modes of a deformable object as Lagrangian and the
high frequency deformable modes as Eulerian. We will show that
this approach alleviates or significantly reduces all of the problems
listed above but still allows us to resolve large deformations con-
veniently in an Eulerian context. We also detail a contact-aware
solver for these types of mixed Eulerian-Lagrangian simulations.
See Figure 1 for a preview of the results.

2. RELATED WORK

Eulerian simulations have become commonplace in computer
graphics, especially in fluids simulation. Eulerian simulations have
been used to simulate melting solids [Carlson et al. 2002], vis-
coelastic fluids [Goktekin et al. 2004; Losasso et al. 2006] and elas-
tic or elasto-plastic solids [Sulsky et al. 1994; Trangenstein 1994;
Miller and Colella 2001; Tran and Udaykumar 2004; Banks et al.
2007; Barton and Drikakis 2010; Kamrin and Nave 2009; Levin
et al. 2011; Kamrin et al. 2012]. However, Eulerian simulations suf-

fer from several inherent drawbacks such as spatio-temporal time
step limitations [Osher and Fedkiw 2002], dissipation caused by
certain advection schemes [Stam 1999] and the necessity of defin-
ing a computational domain that extends throughout the simulation
domain [Foster and Metaxas 1996]. For Eulerian fluid simulations
these shortcomings have been addressed by using more compli-
cated, conservative advection schemes [Lentine et al. 2011] and
data structures [Wang et al. 2005]. An alternate approach involves
replacing the Eulerian computational machinery with Lagrangian
analogs [Premože et al. 2003]. However in theses cases we are
faced with losing the advantages conferred by Eulerian simulation.
Methods which maintain Eulerian and Lagrangian characteristics
simultaneously can prove to be useful alternatives to these either-or
approaches. Such methods have been used effectively for simula-
tion of constrained, one-dimensional strands [Sueda et al. 2011],
dissipation free advection [Zhu and Bridson 2005], robust pressure-
projection in particle-based fluid simulations [Narain et al. 2010;
Raveendran et al. 2011] and as a means of solid fluid coupling in
finite-element simulations [Belytschko and Kennedy 1978]. Ad-
ditionally, methods which translate [Shah et al. 2004] or rotate
and scale [Poludnenko and Khokhlov 2007] the simulation do-
main have been used in fluid simulation. In this paper we will take
a different approach from the methods listed above. Instead of as-
signing algorithmic steps or discrete points to be Lagrangian or Eu-
lerian we will imbue generalized configuration variables with these
characteristics via a sequence of mappings. This will allow us to
assign Lagrangian and Eulerian behavior to the different modes of
a motion (not just to the nodes of a domain). We will give two
specific examples of Eulerian-on-Lagrangian methods but note that
the algorithm described allows a completely general decomposition
to be applied. As opposed to the Arbitrary-Lagrangian-Eulerian
method [Belytschko et al. 2000] (ALE) and Lagrangian methods
which use remeshing to avoid ill-conditioned elements [Bargteil
et al. 2007; Wicke et al. 2010], our method describes a princi-
pled numerical “glue” that can be used to merge Eulerian and La-
grangian Simulations, both described using arbitrary generalized
coordinates, and inherit the advantages of both schemes.

2.1 Contributions

Our main contribution is an Eulerian-on-Lagrangian simulator for
deformable elastic and elastoplastic solids, which decomposes the
motion of objects using both Lagrangian and Eulerian configura-
tion variables. Our second contribution is a novel solver that auto-
matically resolves the inherent redundancy of this decomposition
in an optimal fashion by projecting momentum onto the low di-
mensional Lagrangian space while simultaneously resolving con-
tact constraints acting on the system. Our third contribution is a
method for simulating plasticity without smoothing of the plastic
deformation in an Eulerian context but that avoids remeshing as
is used in previous methods [Bargteil et al. 2007; Wicke et al.
2010]. The presented method also features a dynamic time step-
ping scheme which maximizes the time step of the Eulerian inte-
grator while attempting to guarantee that the stability requirement
of the Eulerian advection stage will be met in the presence of con-
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(a) Eulerian-on-Lagrangian Grids (b) Large Deformation (c) Plasticity (d) Multiple Objects

Fig. 1: (a) The Eulerian-on-Lagrangian method embeds an Eulerian solid simulator in a Lagrangian grid. (b) Elastic spheres undergo a
collision with large deformations, and return to precise rest shapes. (c) Two plastic cylinders after colliding with a rigid rod. (d) Complex
contact between several Eulerian-on-Lagrangian objects.

tact. The end result is a simulator that can adaptively function as a
Lagrangian simulator, a fully Eulerian simulator or a combination
of the two.

3. METHODS

For the reader’s convenience we will begin by outlining the nota-
tional conventions used in this paper (Table I). With a slight abuse
of notation we denote both nodal variables for single elements as
well as entire objects by the same bold face letters, and the mean-
ing will be evident from the context. When necessary we denote
the stacked vector of all configuration variables as q.

Table I. : Notation used

Notation Definition
f scalar or 3-vector
f n× 1 vector resulting from stacking all f
•
f df

dt in spatial domain
ḟ df

dt in intermediate domain
[f ] cross product matrix: f×

Material(z)  Intermediate(y) Spatial(x ) 

Fig. 2: The continuous domains used for the Eulerian-on-Lagrangian sim-
ulator as well as the discrete grid structure stores in the Eulerian domain.
The mapping between the domains is described using a set of generalized
configuration variables.

Our exposition begins by describing three separate continu-
ous domains: The material domain, the intermediate domain (also
known as the reference domain) and the spatial domain (Figure 2).
We define invertible mappings φi between these spaces and param-
eterize these mappings using generalized configuration variables

qi. φ2 maps reference objects into their deformed state due to Eu-
lerian motion and φ1 maps deformed objects into space via La-
grangian motion. The use of configuration variables is key to our
approach since it allows us to build in any Lagrangian motion us-
ing a reduced set of coordinates. In practice we compute φ−1

2 by
advecting material coordinates on a uniform grid located in the in-
termediate domain. In order to elucidate the mechanics involved,
we begin with the pedagogical case of a rigid Lagragangian mo-
tion.

3.1 Rigid Motion Eulerian-on-Lagrangian Simulation

To begin we define mappings φ1 and φ2 as

φ1 : x = R (y + p)

φ2 : y = z + u (z, t) ,
(1)

where R and p are a rotation and translation (in the intermediate
space) that map y to x, and u is the displacement of a material point
at z to its deformed position y. Thus φ1 represents the rigid motion
(Lagrangian), while φ2 represents the deformation (Eulerian). By
taking the time derivative of the composition of these functions we
arrive at the spatial velocity of any point in the material domain

•
x = R

(
[y]T ω + v + ν

)
, (2)

where [y] is the cross product matrix, ω is an angular velocity and
ν is a linear velocity of the rigid motion and v = u̇ which results
from Equation 1. In the intermediate space u is a function of y(t)
and so u̇ corresponds to the material derivative, Du

Dt
. This gives rise

to the Eulerian-Lagrangian velocity

•
x = R

(
[y]T ω +

Du

Dt
+ ν

)
. (3)

We take the Lagrangian configuration variables, q1, to be the
axis-angle of rotation θ, i.e., R = exp[θ], and position p (as seen in
y) of the rigid frame in which the Eulerian simulation is embedded.

The displacements are then discretized in the intermediate do-
main, y; this is in contrast with the material domain in the La-
grangian approach and the spatial domain in the Eulerian approach.
We use a hexahedral finite element grid with trilinear shape func-
tions; the nodal displacements become our configuration variables
q2. For a single element this yields

q =

θp
u

 q̇ =

ων
v

 . (4)
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Again we note that the total time derivative of the Eulerian veloc-
ity implies the application of the material derivative. In our method
this is computed using an independant advection step (as is usually
done in fluid mechanics, see Bridson [2008] for a good descrip-
tion). Other methods bake this material derivative into the equa-
tions of motion (see Sueda et al. [2011] for a depiction of such an
approach).

For the ith element we can define the Lagrangian function of our
system as

L =
1

2
q̇TM iq̇ − V (q) (5)

where

M i =

∫
Ωi

ρJ̄

 [y] [y]T [y] [y]N i

[y]T I N i

N iT [y]T N iT N iTN i

 dΩi, (6)

ρ is the density, J̄ is the deformation gradient determinant, N i is
the matrix of element shape functions and V is a potential energy
accounting for all integrable forces. We evaluate these integrals nu-
merically [Belytschko and Moran 2000]. It is convenient to think
of this mass matrix in block form in which the diagonal blocks are
the Lagrangian and Eulerian mass matrices while the off-diagonal
blocks are coupling matrices (Figure 3). Note that, as in a reference
coordinate formulation, the Eulerian displacements can be used to
directly compute strain and avoid drift away from the object’s rest
configuration. We pause here to offer a second derivation which
demonstrates the general nature of the method.

3.2 Linear Modal Eulerian-on-Lagrangian Simulation

In order to show how other Lagrangian discretizations can be uti-
lized we will now repeat the process above for a more general case
in which the Lagrangian motion is represented using linear modal
models. We again begin by defining our mappings for an arbitrary
mesh element, i:

φ1 : x = N (y)Uq1

φ2 : y = z + u (z, t) ,
(7)

where N is a matrix of shape functions, U is the matrix of linear
modes for the element (comprised of the appropriate rows from the
global linear deformation basis), and q1 are the degrees of freedom
for the modal model. The spatial position of a given reference point
is then

x = N (z + u (z, t)))Uq1 (8)

and the velocity can be computed as
•
x = F 1v + NUq̇1 (9)

where F 1 is the Lagrangian deformation gradient, given by
∇y
(
qT1 U

TNT
)

and v is (as before) the intermediate space Eu-
lerian velocity. In this case we choose our generalized coordinates
to be q1 and the intermediate space, Eulerian displacements u. We
form the Lagrangian of the system and write the per-element mass
matrix, which in this case becomes

M i =

∫
Ωi

ρJ̄

(
UTNTNU UTNTF 1N
NTF T

1 NU NTF T
1 F

T
1 N

)
dΩi. (10)

3.3 The Momentum Equation

We note that both the rigid body and linear modal element mass ma-
trices share a similar block structure. In fact this structure is com-
mon to all Eulerian-on-Lagrangian (EoL) derivations. The mass

Fig. 3: The block structure of the Eulerian-on-Lagrangian mass matrix using
rigid motion. The diagonal blocks are Lagrangian and Eulerian respectively
while the off-diagonal blocks represent the coupling terms of the system.

matrices appear as (
M1 M12

MT
12 M2

)
(11)

where the diagonal blocks are the mass matrices for our individ-
ual Lagrangian and Eulerian dynamical systems (respectively) and
the off-diagonal blocks are the coupling matrices. Applying the
Lagrange-d’Alembert principle [Lanczos 1986] gives rise to the
equations of motion for our element. After assembling the per-
element mass matrices and force vectors we arrive at

Mq̈ = fqvv + fe + f b + fc = f (12)

where M is the global mass matrix, fqvv are the centrifugal and
Coriolis forces acting on the Eulerian domain, fe are the forces of
elasticity, f b are body forces, and fc are forces due to contact.
The force fqvv results from the quadratic velocity terms in the
Euler-Lagrange equations [Murray et al. 1994]. We observe that
this global mass matrix retains the block structure of Equation 11
which is illustrated in Figure 3. From here we can proceed in a com-
pletely general fashion, assuming only that the mass matrix has the
described structure.

The crucial part of this system is the acceleration term q̈, which
can be thought of as the solution to the set of differential equations(

q̈1
∂v
∂t

+ v · ∇v

)
= M−1f (13)

where we have expanded the material derivative for the sake of
clarity. One oft-used method of solving such a differential equation
is splitting, wherein one first solves(

q̈1
∂v
∂t

)
= M−1f (14)

and then uses the result, v∗, to solve nodal equations of the form

∂v∗

∂t
+ v · ∇v∗ = 0 (15)

which is now an advection and can be solved using any relevant
algorithm (e.g., [Lentine et al. 2011]). Advection occurs on an Eu-
lerian grid defined in the intermediate space.

Thus our solution procedure is equivalent to a standard La-
grangian dynamics simulator with extra advection steps required
at the velocity and position levels (Algorithm 1). Below we will
describe our particular solver in greater detail.
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Algorithm 1 A high level overview of the Eulerian-on-Lagrangian
solution procedure. Here we explicitly denote the partial time
derivatives of Eulerian qualities for clarity.

1: Solve M

(
q̈1
∂v
∂t

)
= f for q̇t+1

1 and v∗

2: vt+1 = advect(v∗)

3: Solve
(
q1
∂u
∂t

)
=

(
q̇1
t+1

vt+1

)
for q1 and u∗

4: u = advect(u∗)

To solve step 1 of Algorithm 1, we discretize the acceleration q̈
and solve at the velocity-impulse level, which gives

Mq̇t+1 = ∆tf + Mq̇t
def
= pt+1. (16)

Using the block structure of M and suppressing the time step t+ 1
for clarity,

M1q̇1 + M12v
∗ = p1 (17a)

MT
12q̇1 + M2v

∗ = p2, (17b)

where M1 is the nonsingular Lagrangian mass matrix, M2 is the
nonsingular Eulerian mass matrix, M12 is the coupling matrix be-
tween the two modes, p1 is the generalized Lagrangian momentum
and p2 is the generalized Eulerian momentum(Figure 3). Because
we lump the mass to the nodes, M2 is diagonal.

3.4 Exploiting Redundancies

Solving Equation 16 is difficult because the mass matrix, M , con-
tains a non-trivial nullspace. Consider the case of a simple trans-
lation. The same motion can be described by advection through
the Eulerian grid or a Lagrangian translation of the grid itself (see
Figure 4). The total velocity of the system is unique but its decom-
position into Eulerian and Lagrangian parts is not. We can illustrate
this more formally using the fundamental property of EoL: Any mo-
mentum acting on the system can be solved purely on the Eulerian
velocities v∗. Thus, by setting q̇1 = 0 we get

p1 = M12v
∗

p2 = M2v
∗

⇒ p1 = M12M
−1
2 p2.

(18)

Now suppose we induce a momentum via a Lagrangian velocity
vL. Then

p1 = M1vL

p2 = MT
12vL.

(19)

Combining this with Equation 18 yields

M1vL = M12M
−1
2 MT

12vL

⇒M1 = M12M
−1
2 MT

12

(20)

since vL was arbitrary. Finally, suppose we have a solution (q̇1,v
∗)

to Equation 17b which we write as v∗ = M−1
2 (p2 −MT

12q̇1).
Evaluating the left hand side of Equation 17a gives

M1q̇1 + M12v
∗

=(M1 −M12M
−1
2 MT

12)q̇1 + M12M
−1
2 p2

=M12M
−1
2 p2

=p1,

(21)

which follows from Equation 18 and Equation 20. Thus a solution
to Equation 17b always satisfies Equation 17a and it is therefore
redundant.

Examination of Equation 17b reveals an underdetermined sys-
tem with a nullspace of dimension equal to the number of La-
grangian configuration variables. To see this, observe that any so-
lution to Equation 17b may be written as

(
q̇1

v∗

)
=

(
I

−M−1
2 MT

12

)
q̇1 +

(
0

M−1
2 p2

)
. (22)

Due to the full row rank of M12, the matrix
(

I
−M−1

2 MT
12

)
is

a basis for the nullspace. In other words, we are free to choose any
q̇1 and the Eulerian velocities “compensate” via Equation 22.

Fig. 4: Due to redundancy of the Lagrangian modes, the motion of an object
can be specified by advection through the fixed Eulerian grid (top right), or
fixing the object in the grid and moving the grid itself via the Lagrangian
degrees of freedom (bottom right).

We specify a unique solution by maximizing the size of the time
step taken which is equivalent to minimizing ||v∗||. Since the time
step is specified by the maximum grid velocity, the∞-norm would
be ideal; however, this requires the solution of a linear program on
the order of the number of Eulerian variables. Instead we approxi-
mate with the 2-norm, giving

q̇t+1
1 = argmin

q̇1

||M−1
2 p2 −M−1

2 MT
12q̇1||2, (23)

v∗ = M−1
2 p2 −M−1

2 MT
12q̇

t+1
1 . (24)

This is a least squares problem (LS) in the small number of La-
grangian variables, which can be computed efficiently. As M2 is
diagonal its inverse is computed explicitly. In this discussion we
have assumed an Eulerian momentum p2 is given. In subsection 3.5
we detail a method for computing the global Eulerian velocity v in
the spatial domain. We then simply compute p2 = M2Ov, where
O selects the components of v for the given object and transforms
its spatial velocity to its intermediate velocity, since this is the space
in which advection occurs. Finally, it will be useful for us to rewrite
Equation 24 as

v∗ = projMC
Ov, (25)

where MC = M−1
2 MT

12 and proj is the projection operator.

3.5 Solving the Dynamics in the Presence of Contact

We first solve the dynamics exclusively on the Eulerian grid (i.e.
only using the Eulerian degrees of freedom), which can be done us-
ing any Eulerian simulation method suitable for resolving contact.
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In our case, we invoke Gauss’ principle of least constraint [Lanczos
1986], which gives the constrained optimization problem

minimize
1

2
aTM̃a− f̃

T
a

subject to a ∈ A,
(26)

where M̃ is a global mass matrix, a and f̃ are the accelerations and
forces defined in the spatial domain, andA is a constraint manifold
imposed on the acceleration; these constraints ensure interpenetra-
tion between objects does not occur. Notice that M̃ is assembled
from the Eulerian mass matrices M2 in Equation 17. First order
discretization of the acceleration gives rise to a quadratic program
(QP) on the spatial velocities with constraints we now derive. Con-
sider a colliding pair of objects A and B with surfaces ΓA and ΓB ,
respectively. Due to the discrete time integration there is some vol-
ume of intersection Ω. We impose a velocity level constraint spec-
ifying that the volume of intersection at the next time step must be
smaller than Ω, giving the surface integration constraint∫

ΓA∩Ω

vA · ndΓ +

∫
ΓB∩Ω

vB · ndΓ ≤ 0, (27)

where n are surface normals. Spatial velocities are represented
on the Eulerian grid by trilinear shape functions. Thus expanding
the velocity terms in Equation 27 yields the constraint

n∑
s=1

vAs

∫
ΓA∩Ω

Φs · ndΓ + vBs

∫
ΓB∩Ω

Φs · ndΓ


= jTv ≤ 0 (28)

where s indexes the nodal velocities and their associated interpo-
lating functions given by Φs.

The constraints are assembled into a global constraint matrix J
and the QP solved at each time step is given by

minimize
1

2
vTM̃v − p̃Tv

subject to Jv ≤ 0,
(29)

where p̃ is a globally assembled momentum vector. In the case
of rigid bodies with externally prescribed motion the formulation
changes slightly as the right hand side is no longer 0.

Collision detection and the computation of the surface integrals
in Equation 28 require a representation of each object’s surface in
the spatial domain. Any suitable method could be used, such as the
volumetric method of [Levin et al. 2011] or recent methods based
on ray tracing [Wang et al. 2012]. In our implementation we use the
reconstructed surface (see subsection 3.8), with a ray tracing colli-
sion detector to produce a collection of intersection rays, barycen-
tric coordinates w.r.t. the surface mesh, and normals for every pair
of colliding objects. Since spatial velocities are stored in the inter-
mediate domain (on the Eulerian grid), we use the barycentric co-
ordinates of the intersected rays to find the corresponding positions
y and their associated degrees of freedom, from which the shape
function values can be computed as well as the nonzero pattern
of J . Finally, we note that constraints between objects are decom-
posed via a collision grid defined on the spatial domain to enhance
the resolution of constraints along deforming surfaces.

Equation 29 is solved via an efficient primal-dual active set
method [Ito and Kunisch 2008]. Due to the diagonal structure of the
mass matrix, the complexity of the QP solver isO(m3), wherem is
the number of constraints. Once the spatial velocity v is known, we

can compute the Eulerian momentum p2 of each object. Thus step
1 of Algorithm 1 amounts to a QP solve to determine the global
momentum followed by a LS solve to optimally compute Eulerian
and Lagrangian velocities. See Table II for computational runtimes.

3.6 Dynamic Time Step

Crucial to the efficiency of our approach is determining an ap-
propriate time step ∆t. Here we follow the approach of [Levin
et al. 2011] and extend it to the Eulerian-on-Lagrangian formula-
tion. First-order advection has the stability requirement

∆t max
(
||v∗x||
∆x

,
||v∗y||
∆y

,
||v∗z||
∆z

)
≤ α (30)

for a parameter α < 1. We use a pseudo-implicit method to deter-
mine ∆twhich satisfies Equation 30. One can describe the solution
to the QP Equation 29 as

v = v0 + ∆tv1, (31)

where v0 and v1 are basis vectors which can be found by solving
Equation 29 at a given time followed by a linear solve. Substituting
Equation 31 into Equation 25 yields

v∗ = projMC
O(v0 + ∆tv1) (32a)

= projMC
Ov0 + ∆tprojMC

Ov1 (32b)

= v∗0 + ∆tv∗1 (32c)

where v∗0 and v∗1 can be computed from v0 and v1 by solving
two least squares problems. Finally, we combine Equation 32c and
Equation 30 to get a quadratic equation in ∆t:

γ1∆t2 + γ0∆t− α = 0, (33)

where γi =
(
||v∗ix||

∆x
+
||v∗iy ||

∆y
+
||v∗iz ||

∆z

)
. The resultant time step

is optimal in the sense that it minimizes ||v∗|| while obeying the
stability criterion.

3.7 Plasticity

One advantage of Eulerian simulations is that we can avoid ma-
terial, intermediate and spatial domain remeshing when simulat-
ing plastic deformations. Our implementation of elastoplasticity is
based on that of Bargteil et al. [2007] and Wicke et al. [2010]. The
multiplicative plasticity model starts from the following decompo-
sition of the total deformation gradient

F total = F eF p, (34)

where F e is the elastic deformation gradient and F p is the plas-
tic deformation gradient. The evolution of the plastic deformation
gradient is given by

(F −1
p )t+1 = (F −1

p )t∆F −1
p , (35)

where ∆F −1
p is an update applied to F p. This update is computed

using the singular value decomposition (SVD) of the current elastic
deformation gradient:

F e = UΣV T . (36)

The plastic update is then computed as

∆F −1
p = V

(
Σ

(detΣ)1/3

)−γ
V T , (37)
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where γ = ν
(
‖σ‖−‖σy‖
‖σ‖

)
, 0 ≤ γ ≤ 1 and ‖σy‖ is the plastic yield.

Our approach is distinguished from previous methods [Bargteil
et al. 2007; Wicke et al. 2010] by the manner in which the plastic
deformation is stored. Though we allow Eulerian deformation, the
availability of a mapping to z allows us to store the plastic deforma-
tion in the material domain. When computing (Equation 34) in the
spatial domain, we perform a lookup for F p in z. When evolving
F p, we construct a mapping from the material domain to the spa-
tial domain using local meshless interpolation methods. Using this
interpolated displacement ũ, F total can be computed as I + ∂ũ

∂z .
Subsequently, F e can be computed, followed by the SVD (Equa-
tion 36). We incorporate the Lagrangian displacements into ũ in
order to ensure proper evolution of F p. Our approach does not re-
quire remeshing, and by storing F p in the material domain, the
plastic deformation gradient will not smear out during advection.

3.8 Surface Reconstruction

We leverage our Eulerian displacements to perform surface recon-
struction directly from the material coordinates z. This imparts a
guarantee that the surface mesh will always return to its original
shape when the simulation displacements are zero (something that
cannot be said for advecting mesh vertices in an Eulerian flow).We
store a surface mesh for our object in the material domain. Due to
the use of Lagrangian modes and adaptive time stepping, the Eule-
rian displacements stay small over the course of a time step. This
allows us to perform a search for the intermediate position, in y,
for a given vertex of our mesh using the simple, iterative procedure
given by Algorithm 2. Once this is done we can use the Lagrangian
degrees of freedom to transform the mesh into the spatial domain
for rendering. The availability of a fixed surface representation in
z allows us to perform texture mapping with zero drift. In Algo-

Algorithm 2 Search procedure for surface reconstruction.

1: for v ∈ Surface Mesh do
2: p = yt−1(v)
3: repeat
4: e = φ−1

2 (v, t)− φ−1
2 (p, t)

5: p = p+ F e
6: until ||e|| < ε
7: end for

rithm 2 v is a vertex in our surface mesh, ε > 0 is a user defined
tolerance and F is the Eulerian deformation gradient computed at
p. Note that at time t we do not know the intermediate space po-
sition of v so we guess that it has not moved since time t − 1. We
compute a reference space error using the function φ−1

2 (y, t) which
is simply our Eulerian mapping (and is thus always known) and fi-
nally an intermediate space correction using F . Upon completion
of the algorithm p holds the correct intermediate space position of
v at t. In practice we execute Algorithm 2 in parallel for each mesh
vertex.

4. RESULTS AND DISCUSSION

Figure 6 shows the benefits of the Eulerian-on-Lagrangian simu-
lation for simple translation. Note that the Eulerian case (top row)
requires the discretization of all of space. This has two obvious
limitations: a drastic increase in memory use and the restriction of
the object’s motion to the domain. Note that the EoL simulation
is free to roam wherever it pleases while wasting far less mem-
ory on extraneous grid points. The numerical advantages are made

clear during rotation. When a constant angular velocity is applied
to a purely Eulerian object it can be damped out by elastic forces
on the grid (Batty et al. [2008] show this for viscoelastic fluids).
When the rotational degree of freedom is Lagrangian damping is
greatly reduced. Given an initial angular velocity the purely Eule-
rian case comes to rest while the EoL method continues turning
almost indefinitely (Figure 7). Our solver automatically extracts
these Lagrangian modes from arbitrary motion. In some sense our
method serves as a generalization of floating frame-based methods
for purely Lagrangian simulation [Galoppo et al. 2007; Barbič and
Zhao 2011] wherein a deformable Lagrangian simulation is cou-
pled with a rigid frame. Explicitly exploiting the singularities in
the EoL mass matrix allows us to utilize any kinematic represen-
tation for the Lagrangian component such as linear modal models
(Figure 5)

Figure 8 shows our dynamic time-stepping scheme in action,
which ensures stability for the latter advection scheme. Once ob-
jects exit the collision they gradually become Lagrangian. At this
point the time step returns to its maximum value which is de-
termined by the (typically less restrictive) stability conditions of
the Lagrangian time integrator. The dynamic time stepping and
the continuous transition between Eulerian and Lagrangian states
are handled automatically by the EoL solver. Figure 9 shows that
the Eulerian-on-Lagrangian simulator enjoys a large advantage in
terms of timestep size over its purely Eulerian counterpart. This
manifests itself as an order-of-magnitude increase for most of the
simulation. Note that the dissipative effect of Eulerian advection,
in the purely Eulerian case, can also be seen; the collision be-
gins later in time, indicating that the object has lost some velocity.
Figure 1 shows results from several applications of the Eulerian-
on-Lagrangian method. The method is well suited for simulating
highly deformable objects in an unbounded domain. Furthermore,
like its Eulerian relatives it does not require an object specific dis-
cretization thus avoiding the complexities of mesh generation.

All the examples in the video are simulated on an Intel i7 2.8GHz
CPU with an Nvidia GeForce GTX 580 graphics card. Timings are
reported in Table II. In our current implementation each object is
processed in serial, so the runtime for the least squares solver is
proportional to the number of objects. For complex scenes, more
collisions yield greater number of constraints and the QP solver
performs accordingly. Memory requirements are large due to the
use of the ray-tracing based collision detection engine [Wang et al.
2012].

5. LIMITATIONS AND FUTURE WORK

The Eulerian-on-Lagrangian Simulation framework does away
with many of the issues that plague previous approaches of Eu-
lerian simulation. However, there are still many opportunities to
explore. First, the EoL integrator treats elastic forces explicitly.
Though dynamic time stepping provides stability, performance can
suffer when simulating very stiff materials. Implicit integrators for
these types of dynamics algorithms would be a useful avenue of
work. Implicit integration may also aid adaptive time stepping as,
in rare cases, instabilities may occur even when consecutive time
steps satisfy the stability criteria [Wright 1998] (though we do not
observe this problem in our work). An extension to incompress-
ible materials using a pressure projection step in the intermediate
space would also be interesting and such an algorithm would be of
great utility for the simulation of fluids and of other incompressible
solids such as many biological tissues. Incompressibility is nicely
described in the intermediate space as a divergence free velocity
making the Eulerian-on-Lagrangian approach an intriguing method
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for this type of simulation. Other fascinating areas to explore in-
clude the application of Eulerian soft-tissue to skeleton based char-
acters or simulating large fluid flows using many simultaneous EoL
domains.

Fig. 5: Left: Purely Eulerian motion. Middle: Purely Lagrangian motion.
Right: Overall motion

Fig. 6: Top Row: Purely Eulerian translation. Bottom Row: Eulerian-on-
Lagrangian Translation

0 2 4 6 8 10 12
0

1

2

3

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 (m
/s

)

E−on−L
Eulerian

Fig. 7: The angular velocity of an Eulerian-on-Lagrangian object (E-on-L)
and a purely Eulerian object undergoing rotation. Both were given an initial
angular velocity of π radians/s.

6. CONCLUSION

We introduced an Eulerian-on-Lagrangian simulation method that
leverages a mixed formulation to alleviate many of the shortcom-
ings of purely Eulerian and purely Lagrangian simulation meth-
ods. The method allows Eulerian simulations over an unbounded
domain of elastic and elastoplastic objects, reduces time step re-
strictions induced by Eulerian advection but retains the Eulerian
robustness with regard to large deformations and allows the simu-
lation of plastic materials. All this is accomplished while simulta-
neously resolving complicated contact scenarios involving multiple
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Fig. 8: The timestep, in seconds, of an Eulerian-on-Lagrangian simulation.
Note that during contact the time step is automatically reduced. After con-
tact the time step increases until it reaches the rendering frame rate.
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Fig. 9: The timestep size for both the purely Eulerian and Eulerian-on-
Lagrangian simulations for the two ball collision. Note that in most cases
the EoL timestep is an order of magnitude greater than that of the purely
Eulerian simulation.

deforming bodies. It is a significant step in increasing the utility of
Eulerian simulations for materials other than fluids.
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