Extending ACL2 with SMT solvers

Yan Peng & Mark Greenstreet

University of British Columbia

October 2nd, 2015

Smtlink handles tedious details of proofs so you can focus on the interesting parts.
Contents

1 Motivation
 • AMS verification
 • Examples
 • Motivation

2 Integration architecture
 • Architecture
 • Interesting issues
 • Soundness

3 Customizing Smtlink
 • Customization interface
 • Customizing Smtlink
 • Our digital PLL proof example

4 Summary and Future work
A PLL is a feedback control system that, given an input reference clock f_{ref}, it outputs a clock at a frequency f_{DCO} that’s N times of the input clock frequency and aligned with the reference in phase.

- Analog/Mixed-Signal design are composed of both analog and digital circuits.
The digital PLL is naturally modelled using non-linear recurrences that update the state variables on each rising edge of ϕ_{ref}.

\[
\begin{align*}
 c(i + 1) &= \text{next}_c(c(i), v(i), \phi(i)) \\
 v(i + 1) &= \text{next}_v(c(i), v(i), \phi(i)) \\
 \phi(i + 1) &= \text{next}_\phi(c(i), v(i), \phi(i))
\end{align*}
\]

\(^1\)Three state variables: capacitance setting c (digital), supply voltage v (linear), phase correction ϕ (time-difference of digital transitions).
Motivation
Integration architecture
Customizing Smtlink
Summary and Future work

AMS verification
Examples
Motivation

Modelling the digital PLL

- In more details,

\[
\begin{align*}
 c(i + 1) &= \text{saturate}(c(i) + g_c \, \text{sgn}(\phi(i)), c_{\text{min}}, c_{\text{max}}) \\
 v(i + 1) &= \text{saturate}(v(i) + g_v(c_{\text{center}} - c(i)), v_{\text{min}}, v_{\text{max}}) \\
 \phi(i + 1) &= \text{wrap}(\phi(i) + (f_{dco}(c(i), v(i)) - f_{\text{ref}}) - g_\phi \phi(i)) \\
 f_{dco}(c, v) &= \frac{1 + \alpha v}{1 + \beta c} f_0 \\
 \text{saturate}(x, lo, hi) &= \min(\max(x, lo), hi) \\
 \text{wrap}(\phi) &= \text{wrap}(\phi + 1), \quad \text{if } \phi \leq -1 \\
 &= \phi, \quad \text{if } -1 < \phi < 1 \\
 &= \text{wrap}(\phi - 1), \quad \text{if } 1 \leq \phi
\end{align*}
\]

- Turns out to be a relatively large system of non-linear arithmetic formulas.
Convergence

- Requires reasoning about sequences of states.
- We want to show that each crossing of $\phi = 0$ is closer to the origin than the previous one.
Example: polynomial inequalities

Do you sometimes find it frustrating to prove a theorem like this?

```
(defthm poly-ineq-example-a
 (implies (and (rationalp x) (rationalp y)
               (<= (+ (* 4/5 x x) (* y y)) 1))
         (<= (- (* x x) (* y y)) 1))
         (<= y (- (* 3 (- x 17/8) (- x 17/8)) 3))))
```
Example: higher order polynomial inequalities

Maybe this? With a higher order term?

```lisp
(defthm poly-ineq-example-b
  (implies (and (rationalp x) (rationalp y)
                (<= (+ (* 2/3 x x) (* y y)) 1)
                (<= (- (* x x) (* y y)) 1))
    (<= y (+ 2 (- (* 4/9 x)) (- (* x x x x)) (* 1/4 x x x x x x)) )))
```
Example: exponential functions

Or even this one with exponential functions?

(1) (defun ||x^2+y^2||^2 (x y) (+ (* x x) (* y y)))
(2) (defthm poly-of-expt-example
 (implies (and (rationalp x) (rationalp y) (rationalp z)
 (integerp m) (integerp n)
 (< 0 z) (< z 1) (< 0 m) (< m n))
 (<= (* 2 (expt z n) x y)
 (* (expt z m) (||x^2+y^2||^2 x y)))))
Motivation

1. Motivation: provide better proof capabilities for AMS and other physical systems.

2. ACL2 provides extensive support for induction proofs and for structuring large, complicated proofs.

3. Z3 has automatic procedures for solving arithmetic formulas.
 - No direct support for induction.
 - Need to avoid “too much information” – important to give Z3 the relevant facts to keep the problems tractable.
Starting with a clause processor

- Verified clause processor & trusted clause processor. We use a trusted clause processor for the integration.
- We utilize clauses C_1, C_2 ... C_n to get ACL2 to check many of the steps of our translation.
Two-step translation architecture

- First translation step: clause transformation
- Second translation step: transliteration
Extract type predicates

ACL2 is not typed while Z3 is typed.

It is common for the users to include type-recognizers in the hypotheses.

We are currently translating `rationalp` in ACL2 into reals in Z3.
Extract type predicates

\[C_1 = (T \lor G) \land ((T \Rightarrow G_T) \Rightarrow G) \]

Original Clause \(G \)

Clause Processor

\(G_T \)

Extract type predicates

\(T \)

\(C_1 \)

\(T \) \(\Rightarrow \) \(G_T \)

\(G \) \(\lor \) \(G_T \) \(\Rightarrow \) \(G \)

\((\text{implies} \ (\text{and} \ (\text{rationalp} \ x) \ (\text{rationalp} \ y) \ (\text{rationalp} \ z) \ (\text{integerp} \ m) \ (\text{integerp} \ n) \ (< \ 0 \ z) \ (< \ z \ 1) \ (< \ 0 \ m) \ (< \ m \ n)) \ (<= \ (* \ 2 \ (\text{expt} \ z \ n) \ x \ y) \ (* \ (\text{expt} \ z \ m) \ (||x^2+y^2||^2 x \ y)))))\)

\((\text{and} \ (\text{rationalp} \ x) \ (\text{rationalp} \ y) \ (\text{rationalp} \ z) \ (\text{integerp} \ m) \ (\text{integerp} \ n)))\)

\((\text{implies} \ (\text{and} \ (< \ 0 \ z) \ (< \ z \ 1) \ (< \ 0 \ m) \ (< \ m \ n)) \ (<= \ (* \ 2 \ (\text{expt} \ z \ n) \ x \ y) \ (* \ (\text{expt} \ z \ m) \ (||x^2+y^2||^2 x \ y))))\)
Expand functions

- Functions are expanded into primitive functions.
- Recursive functions are expanded to a user specified level then replaced with a variable of appropriate type.
- Uninterpreted functions stay the same.

\[C_2 = (T_{func} \lor G) \land (G_F \Rightarrow G) \]
Expand functions

$C_2 = (T_{func} \lor G) \land (G_F \Rightarrow G)$

T_{func}

$((\text{lambda} (\text{VAR1} \text{ VAR2}) (+ (* \text{VAR1} \text{VAR1}) (* \text{VAR2} \text{VAR2}))) \times y)$

(function expansion)

$((\text{rationalp} (||x^2+y^2||^2 \times y)))$

(function type clause)
Revisit the expt proof

Let’s take a look at the expt theorem again:

```lisp
(defun \|x^2+y^2\|^2 (x y) (+ (* x x) (* y y)))
(deftm poly-of-expt-example
  (implies (and (rationalp x) (rationalp y) (rationalp z)
    (integerp m) (integerp n)
    (< 0 z) (< z 1) (< 0 m) (< m n))
  (= (* 2 (expt z n) x y)
    (* (expt z m) (\|x^2+y^2\|^2 x y)))
)
)
```

The reason that this is a theorem is because:

- $0 < z < 1$ and $0 < m < n \Rightarrow 0 < z^n < z^m$
- $2xy \leq x^2 + y^2$
The user can substitute subexpressions with variables.
Substitute subexpressions

Original Clause G

Clause Processor

SMT solver

G

G_S

$C_1 \land C_2 \land C_3$

Expand functions

Extract type predicates

Substitute subexpressions

$C_3 = (T_{subs} \lor G) \land (G_S \Rightarrow G)$

(subexpression types)

T_{subs}

(expt z m)

(expt z n)

(expt z n)

(expt z m)

subexpression substitution

expt_z_m

expt_z_n

(and (rationalp (expt z m))
(rationalp (expt z n)))
User given hypotheses

- The user can provide hypotheses about this theorem.
- The hypothesis feature conveys facts from the ACL2 world about these variables to the SMT solver.

\[C_4 = (H \lor G) \land (G_H \Rightarrow G) \]
User given hypotheses

Original Clause G

G

H

Clause Processor

SMT solver

Extract type predicates

G_H

C_1 \land C_2 \land C_3 \land C_4

Substitute subexpressions

Expand functions

User given hypothesis

C_4 = (H \lor G) \land (G_H \Rightarrow G')

;; given hypotheses in the theorem
((lambda (expt_z_n expt_z_m)
 (and (< expt_z_n expt_z_m) (< 0 expt_z_m) (< 0 expt_z_n)))
(expt z n) (expt z m))

H

hypothesis clause

expt_z_m

expt_z_n

added hypotheses

(and (< expt_z_n expt_z_m) (< 0 expt_z_m) (< 0 expt_z_n)))
The transformed result clause G' becomes:

```lisp
(lambda (expt_z_m expt_z_n)
 ;; bind substitution variables to their original expressions
 (implies (and (and (< 0 z) (< z 1) (< 0 m) (< m n))
                (and (< expt_z_n expt_z_m)
                     (< 0 expt_z_m) (< 0 expt_z_n)))
    (<= (* 2 expt_z_m x y)
       (* expt_z_n
          ((lambda (VAR1 VAR2)
              (+ (* VAR1 VAR1) (* VAR2 VAR2))) x y))
    (expt z m) (expt z n)))
```

The returned clauses are respectively: $T \lor G$, $T_{func} \lor G$, $T_{subs} \lor G$ and $H \lor G$.
The clause processor hint:

```lisp
:hints ("Goal" :clause-processor
(Smtlink clause
  '((:expand (:functions ((||x^2+y^2||^2 rationalp)))
     (:expansion-levels 1)))
  (:let ((expt_z_m (expt z m) rationalp)
         (expt_z_n (expt z n) rationalp))
     (:hypothesize ((< expt_z_n expt_z_m)
                    (< 0 expt_z_m)
                    (< 0 expt_z_n)))))))
```
Trust a little, but not too much

Let G be the original clause, A be all auxiliary clauses generated during the first translation step and G' be the main clause after this step. Let G_{SMT} be the transliteration result after the second translation step. Q_1 and Q_2 are the two sets of clauses returned to ACL2.

$$
\begin{align*}
Q_1 &= (G' \land A) \Rightarrow G \\
Q_2 &= A \lor G
\end{align*}
$$

Since we assume that the second translation step is sound, meaning $G_{SMT} \Rightarrow G'$, and the SMT solver proves G_{SMT}, we conclude that G is a theorem.
The default Smtlink and the customizable Smtlink uses different trust tags.
As an example, we created a customized Smtlink that adds a partial theory of `expt` to Z3.

\[
\begin{align*}
\text{(expt } x \ 0) & \rightarrow 1 \\
\text{(expt } 0 \ n) & \rightarrow 0, \text{ if } n > 0 \\
\text{(expt } x \ (+ \ n1 \ n2)) & \rightarrow (* \ (\text{expt } x \ n1) \ (\text{expt } x \ n2)) \\
\text{(expt } x \ (* \ c \ n)) & \rightarrow (* \ (\text{expt } x \ n) \ (\text{expt } x \ n) \ ...) \\
(< \ (\text{expt } x \ m) \ (\text{expt } x \ n)), \text{ if } 1 < x \text{ and } m < n \\
\ldots
\end{align*}
\]

This simplified the use of Smtlink to produce a simpler proof. The new proof is about half the length of the original.
Definitions:

\[\text{B-term}(h) = (1 - K_t)^{-h} \left(\mu \frac{1 + \alpha(d_0 + d_v)}{1 + \beta(g_1 h + (equ_c \, v_0))} - 1 \right) \]

\[\text{B-sum}(n) = \sum_{h=1}^{n} (\text{B-term}(h) + \text{B-term}(-h)) \]
An example from the digital Phase-Locked Loop proof

Proof of B-term-neg and B-sum-neg using Smtlink:

(defthm B-term-neg
 (implies (a-bunch-of-hypothesis)
 (< (+ (B-term h v0 dv g1 Kt)
 (B-term (- h) v0 dv g1 Kt)) 0))
 :hints (("Goal"
 :clause-processor
 (smtlink-custom-config clause
 (smt-std-hint "B-term-neg"))))
 :rule-classes :linear)

(defthm B-sum-neg
 (implies (a-bunch-of-hypothesis)
 (< (B-sum 1 n-minus-2 v0 dv g1 Kt) 0))
 :hints (("Goal" :in-theory (e/d (B-sum) (B-term)))))
Future work

- Support better counter-example report
 - Fetch counter-example result from the SMT solver and interpret it into ACL2 constants.
 - The clause processor can execute the counter-example to make sure they are indeed counter-examples.
- Add bounded model checking ability
 - We can use the SMT solver to build a bounded model checker that can be called through the customizable Smtlink interface.
- Typing with less typing
 - Type information can be extracted from `define`.
 - `type-alist` may contain lemmas/facts that Smtlink can send to the SMT solver to help with proofs.
- Explore other interesting applications
Summary

Smtlink handles tedious details of proofs so you can focus on the interesting parts.

- We have demonstrated Smtlink for AMS design verification. Other cyberphysical problems should benefit as well.
- Smtlink is designed to be extensible to support, for example: other domains, and using more of the SMT solver’s capabilities.
Summary

Smtlink handles tedious details of proofs so you can focus on the interesting parts.

- It provides an architecture and examples for further research on combining the complementary strengths of ACL2 and SMT solvers.

Thank you!

Questions or thoughts?
Primitive functions are:
binary-+, unary--, binary-*, unary-/, equal, <, if, not, and lambda along with the constants t, nil, and arbitrary integer constants.
An example from the digital Phase-Locked Loop proof

Definition of B-term (I've removed guards and returns to save space):

```
(define B-term-expt (Kt nco)
  (expt (gamma Kt) (- nco)))

(define B-term-rest (nco v0 dv g1)
  (1- (* (mu) (/ (1+ (* *alpha* (+ v0 dv)))
                     (1+ (* *beta* (+ (* g1 nco) (equ-c v0)))))))

(define B-term (nco v0 dv g1 Kt)
  (* (B-term-expt Kt nco) (B-term-rest nco v0 dv g1)))
```
An example from the digital Phase-Locked Loop proof

Definition of B-sum (I’ve removed guards and returns to save space):

1 (define B-sum (nco_lo nco_hi v0 dv g1 Kt)
2 :measure (if (and (integerp nco_hi) (integerp nco_lo)
3 (>= nco_hi nco_lo))
4 (1+ (- nco_hi nco_lo)) 0)
5 (if (and (integerp nco_hi) (integerp nco_lo) (>= nco_hi nco_lo))
6 (+ (B-term nco_hi v0 dv g1 Kt)
7 (B-term (- nco_hi) v0 dv g1 Kt)
8 (B-sum nco_lo (- nco_hi 1) v0 dv g1 Kt))
9 0))
An example from the digital Phase-Locked Loop proof

```
std-smt-hint:
  (define smt-std-hint (clause-name)
    :guard (stringp clause-name)
    `( (expand (:functions ( (B-term rationalp)
                               (B-term-expt rationalp)
                               (B-term-rest rationalp)
                               (dv0 rationalp)
                               ...
                               (fdco rationalp)
                               (gamma rationalp)
                               (m rationalp)
                               (mu rationalp)))
       (:expansion-level 1)))
    (:uninterpreted-functions ((expt rationalp rationalp rationalp))
                                (:python-file ,clause-name)))
```
An example from the digital Phase-Locked Loop proof

Proof of B-term-neg using Smtlink:

```lisp
(defthm B-term-neg
  (implies (and (integerp h) (<= 1 h) (< h (/ (* 2 g1)))
               (hyp-macro g1 Kt v0 dv))
           (< (+ (B-term h v0 dv g1 Kt) (B-term (- h) v0 dv g1 Kt)) 0))
  :hints ("Goal"
           :in-theory (enable B-term B-term-expt B-term-rest mu equ-c gamma dv0)
           :clause-processor
           (smtlink-custom-config clause (smt-std-hint "B-term-neg") )))
```

:rule-classes :linear)
An example from the digital Phase-Locked Loop proof

Proof of B-sum-neg:

```
(deffthm B-sum-neg
  (implies (and (integerp n-minus-2)
                (<= 1 n-minus-2)
                (< n-minus-2 (/ (* 2 g1)))
                (hyp-fn (list :v0 v0 :dv dv :g1 g1 :Kt Kt)))
           (< (B-sum 1 n-minus-2 v0 dv g1 Kt) 0))
  :hints (("Goal" :in-theory (e/d (B-sum) (B-term))))))
```