
Hardware Verification Using Theorem Proving

and SMT/SAT Solving

Yan Peng1

1Department of Computer Science
University of British Columbia

November 7th 2018

Peng (UBC) Hardware Verification Using Smtlink 1 / 41

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 2 / 41

The Quest of FV of Timed/Continuous Systems

1 Formal verification for digital circuits involving only discrete
states has been extensively researched

2 Formal verification for timed and continuous systems is less
mature than formal verification of digital hardware

1 Huge area of applications: chip designs, robotics, autonomous
cars, neuromorphic chip designs and other cyber-physical
systems

2 Reachability analysis
1 over-approximation can be too large, refining over-approximation

might lead to run-time and memory issues
2 Usually the analysis start with a fixed set of parameters

Peng (UBC) Hardware Verification Using Smtlink 3 / 41

Bridging Theorem Proving and SMT/SAT Solving

1 We revisit the rigorous approach of using theorem proving and
aim to analytically verify timed and continuous systems

1 Can prove a system for a range of parameters
2 Doesn’t have the over-approximation problem
3 “Our designers are not going to learn these theorem provers ...”
4 Due to good reason ... theorem proving requires excessive

manual work, and ... expertise

2 We address this problem by combining theorem proving with
SMT/SAT solving

1 Theorem provers serve as a problem and property modeling
system and induction proof engine

2 SMT/SAT solvers crack out the details in large flattened lemma
instances

Peng (UBC) Hardware Verification Using Smtlink 4 / 41

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 5 / 41

The ACL2 Theorem Prover

1 A Computational Logic for Applicative Common Lisp

2 The ACL2 theorem prover is both interactive and automatic

3 ACL2 uses a subset of Common Lisp, which allows serious
programming

4 The use of clause-processors, computed hints,
meta-extract to allow logically sound extensions of the
theorem prover

5 ACL2 emphasize large system verification and has various
language supports for improving performance

Peng (UBC) Hardware Verification Using Smtlink 6 / 41

Smtlink

A sound framework for integrating SMT solvers into the ACL2
theorem prover.1

1Y. Peng and M. R. Greenstreet. “Smtlink 2.0”. In: 15th International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2018). 2018.

Peng (UBC) Hardware Verification Using Smtlink 7 / 41

What’s Supported in Smtlink

Integers
Rationals

Reals
(ACL2(r))

Booleans

Algebraic types

Symbols

Lists

Alists

Product types

Option types

1 These cover a moderate amount of datatypes that are required
for modeling systems

Peng (UBC) Hardware Verification Using Smtlink 8 / 41

The Architecture

The architecture is both extensible and has a compelling
argument for soundness

Smtlink interface

add
hypotheses

Original Clause
G

Computed-hint

Subgoals

the trusted
clause-processor

trusted

verified

G_SMT
SMT

solver

User hints: use Smtlink and provide smtlink-hint

Translate smtlink-hint into internal data structure
add hint to invoke next transform step

function
expansion

Subgoals

type
extraction

uninterpreted
function

Subgoals Subgoals

Verified clause-processors transform
ACL2 goal into SMT theories.
Each verified clause-processors adds a hint
indicating which step to take next.

Peng (UBC) Hardware Verification Using Smtlink 9 / 41

The Architecture - Cont’d

process-hint
clause-processor

a verified
clause-processor

smt-architecture table

smt-trusted-cp-customuninterpreted-custom

step tag

add-hypo-cp

type-extract-cp

uninterpreted-fn-cp

process-hint

uninterpreted

add-hypo expand-cp

smt-trusted-cp

next clause-processor

type-extract

expand

Original Clause
G

Computed-hint

The subgoals

ACL2 the trusted
clause-processor

trusted

verified

SMT
precondition

subgoal

G_SMT
SMT

solver

1 Each step is a verified clause-processor that can be configured
through a single table

2 Only the last step uses a trusted clause-processor

Peng (UBC) Hardware Verification Using Smtlink 10 / 41

The Trusted Clause Processor

SMT clause
G_py

not(G_py)
SAT? Z3

sat, unsat,
unknownunsat?

Proved!

CEX

ACL2 Z3(python)

clause G_tcp generated clause
G_SMT

The trusted clause-processor

Processing type
information

SMT precondition
subgoal

1 What’s not verified? The trusted clause-processor, Z3py
interface class, and Z3

2 SMT precondition subgoals: subgoals that have to be satisfied
to ensure soundness.

Peng (UBC) Hardware Verification Using Smtlink 11 / 41

Counter-example Generation

types counter-example examples
booleans ((X NIL))

integers ((X 0))

rationals ((X 1/4))

algebraic numbers ((Y (CEX-ROOT-OBJ Y STATE (+ (^ X 2) (- 2)) 1)) (X -2))

symbols ((X (SYM 0)))

lists ((L (CONS 0 (CONS 0 NIL))))

alists ((L (K SYMBOL (SOME 0))))

product types ((S2 (SANDWICH 0 (SYM 2))) (S1 (SANDWICH 0 (SYM 1))))

option types ((M2 (SOME 0)) (M1 (SOME 0)))

1 Algebraic numbers are represented by the k th root of some
polynomial

2 The (K s v) for alists represents an array mapping any values
of s sort/type into a constant value (or an expression) v .

3 Currently evaluable counter-examples are booleans, integers and
rationals

Peng (UBC) Hardware Verification Using Smtlink 12 / 41

Summary

In summary,

1 I built a novel sound framework for integrating the Z3 SMT
solver into the ACL2 theorem prover

2 There are several highlights of Smtlink:
1 This framework itself is mostly verified, leading to a compelling

argument of soundness
2 It supports a substantial number of datatypes and SMT

theories, therefore can find use in a large number of applications
3 Counter-examples are returned back into the ACL2 theorem

prover for further scrutiny
4 Coming together with ACL2 available at: https://github.

com/acl2/acl2/tree/master/books/projects/smtlink

with documentation at:
http://www.cs.utexas.edu/users/moore/acl2/manuals/

current/manual/?topic=SMT____SMTLINK

Peng (UBC) Hardware Verification Using Smtlink 13 / 41

https://github.com/acl2/acl2/tree/master/books/projects/smtlink
https://github.com/acl2/acl2/tree/master/books/projects/smtlink
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____SMTLINK

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 14 / 41

The digital Phase-Locked Loop example[CNA10]

Linear
Phase

Control

refΦ

ΦDCO/N

Fref

ΦDCO

Bang−Bang
Frequency

Control

PFD
+
− dn

up

Coarse

Control
Frequency

discarded

v DCO
φ

BBPFD

0:23

0:14

15:23

0:7

Σ

Fref

Σ

DAC

c

÷N

−
(
Center
code

)

A PLL is a feedback control system that, given an input
reference clock fref , it outputs a clock at a frequency fDCO that’s
N times of the input clock frequency and aligned with the
reference in phase.

Analog/Mixed-Signal design are composed of both analog and
digital circuits.

Peng (UBC) Hardware Verification Using Smtlink 15 / 41

The digital Phase-Locked Loop example[CNA10]

Linear
Phase

Control

refΦ

ΦDCO/N

Fref

ΦDCO

Bang−Bang
Frequency

Control

PFD
+
− dn

up

Coarse

Control
Frequency

discarded

v DCO
φ

BBPFD

0:23

0:14

15:23

0:7

Σ

Fref

Σ

DAC

c

÷N

−
(
Center
code

)

We published an early version of this proof2 using two
approaches – hybrid automaton and Lyapunov functions:

1 Main limitation with hybrid automaton: Reasoning about a
fixed design

2 Main limitation with Lyapunov approach: model is simplified
2J. Wei et al. “Verifying global convergence for a digital phase-locked loop”.

In: 2013 Formal Methods in Computer-Aided Design. 2013, pp. 113–120. doi:
10.1109/FMCAD.2013.6679399.

Peng (UBC) Hardware Verification Using Smtlink 15 / 41

http://dx.doi.org/10.1109/FMCAD.2013.6679399

Modelling the digital PLL

The digital PLL is naturally modelled using non-linear
recurrences that update the state variables on each rising edge
of φref .

c(i + 1) = nextc(c(i), v(i), φ(i))
v(i + 1) = nextv (c(i), v(i), φ(i))
φ(i + 1) = nextφ(c(i), v(i), φ(i))3

3Three state variables: capacitance setting c (digital), supply voltage v
(linear), phase correction φ (time-difference of digital transitions).

Peng (UBC) Hardware Verification Using Smtlink 16 / 41

Modelling the digital PLL

In more details,

c(i + 1) = saturate(c(i) + gc sgn(φ(i)), cmin, cmax)
v(i + 1) = saturate(v(i) + gv (ccenter − c(i)), vmin, vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref)− gφφ(i))
fdco(c , v) = 1+αv

1+βc
f0

saturate(x , lo, hi) = min(max(x , lo), hi)
wrap(φ) = wrap(φ + 1), if φ ≤ −1

= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

Peng (UBC) Hardware Verification Using Smtlink 16 / 41

The Convergence Proof3

V

fdco
= f ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

The global convergence property:

∃N ,∀[c(0), v(0), φ(0)] ∈ B ,

∀i ≥ N , [c(i), v(i), φ(i)] ∈ Y

In English: There exists a time
bound such that for any initial
state, the digital PLL reaches the
final convergence region within
that amount of time.

3Yan Peng and Mark Greenstreet. “Integrating SMT with Theorem Proving
for Analog/Mixed-Signal Circuit Verification”. In: NASA Formal Methods.
2015.

Peng (UBC) Hardware Verification Using Smtlink 17 / 41

The Convergence Proof3

V

fdco
= f ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

The convergence can be
formulated using four lemmas:

Coarse convergence: blue
region to red and green
region – Z3

Leaving saturation: red
region to green region – Z3

Fine convergence: green
region to yellow region –
Smtlink 1.0

Invariant: yellow region is
invariant

3Yan Peng and Mark Greenstreet. “Integrating SMT with Theorem Proving
for Analog/Mixed-Signal Circuit Verification”. In: NASA Formal Methods.
2015.

Peng (UBC) Hardware Verification Using Smtlink 17 / 41

Fine Convergence

5 0 5 100.015

0.01

0.005

0

0.005

0.01

c1 c2 (2n 1)

c (quantized)

 (c
on

tin
uo

us
)

Requires reasoning about sequences of states.

We proved that each crossing of φ = 0 is closer to the origin
than the previous one.

Peng (UBC) Hardware Verification Using Smtlink 18 / 41

An example from the DPLL proof

Definitions:

B-term(h) =(1− Kt)
−h(µ

1 + α(d0 + dv)

1 + β(g1h + (equc v0))
− 1)

B-sum(n) =
n∑

h=1

(B-term(h) + B-term(−h))

Peng (UBC) Hardware Verification Using Smtlink 19 / 41

An example from the DPLL proof

Key lemmas proved:

(defthm B-term-neg

(implies (and (dpll-hyps :g1 :Kt :v0 :dv :pos h)

(nc-ok h (- h)))

(< (+ (B-term h v0 dv g1 Kt) (B-term (- h) v0 dv g1 Kt)

) 0))

:hints (("Goal ’’"

:smtlink-custom

(: hypotheses (((implies (<= 2 h)

(<= (expt (gamma Kt) h)

(expt (gamma Kt) 2))))))))

:rule-classes :linear)

(defthm B-sum-neg

(implies (and (dpll-hyps :g1 :Kt :v0 :dv :pos n-minus-2)

(nc-ok (- n-minus-2)))

(< (B-sum n-minus-2 v0 dv g1 Kt) 0))

:hints (("Goal" :in-theory (e/d (B-sum) (B-term)))))

Peng (UBC) Hardware Verification Using Smtlink 19 / 41

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 20 / 41

Motivation

1 Asynchronous design offers many advantages:
1 It works when a design has more than one timing domain
2 In some cases asynchronous designs can be faster or simpler

than their synchronous counterparts
3 Problem is naturally event-driven: neuromorphic chip design

2 But asynchronous circuits are more intellectually challenging to
understand

3 The exact ordering of events is not statically determined; thus,
asynchronous designs are also non-deterministic

4 We want to be able to verify safety and liveness properties of
asynchronous circuits

Peng (UBC) Hardware Verification Using Smtlink 21 / 41

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_Freqn1n3 n2

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng (UBC) Hardware Verification Using Smtlink 22 / 41

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_FreqL L H

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng (UBC) Hardware Verification Using Smtlink 22 / 41

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_FreqL H H

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng (UBC) Hardware Verification Using Smtlink 22 / 41

Modeling the Ring Oscillator

n1
n2

.

.

.

T
F
.

 .
 .

n1
n2

.

.

.

T
F
.

 .
 .

n1
n2

.

.

.

T
F
.

 .
 .

Fstep(S1, S2)

S1 S2 Sn

…

1 We model circuits using trace recognizers (based on [Dil87])
1 A state is an alist mapping from signal paths to its state value
2 A stepping function constrains possible next state; allows

nondeterministic behaviors
3 A trace is a list of states

Peng (UBC) Hardware Verification Using Smtlink 23 / 41

The Theorem

(defthm ringosc3-one-safe

(implies (and (ringosc3-p r) (any-trace-p tr) (consp tr)

(ringosc3-valid r tr)

(ringosc3-one-safe-state r (car tr)))

(ringosc3-one-safe-trace r tr))

:hints (("Goal"

:induct (ringosc3-one-safe-trace r tr)

:in-theory (e/d ...))

("Subgoal *1/1.1"

:use ((: instance ringosc3-one-safe-lemma

(r r)

(tr tr)))

)))

1 ringoc3-one-safe-lemma: the inductive step proved using
Smtlink

2 Smtlink expands out definitions and z3 is able to derive enough
relationships between terms to figure out the proof

3 Smtlink is very good at flattened formulas with large amount of
details

Peng (UBC) Hardware Verification Using Smtlink 24 / 41

Extend the Proof to Arbitrary Number of Stages

inv1 inv3inv2 Q_Freqnk n1 n2 … invk

1 We’ve proven a theorem that states the one-safe property with a
ring oscillator of arbitrary number of stages

2 Some statistics of the proof:

FTY types Functions Total thms Smtlink thms LOC
5 17 55 23 2375

3 Smtlink is smarter than I thought it was
4 There are still potential of improvements

1 Much of the lengthiness of the proof is coming from having to
expand terms out enough, so that Smtlink can handle the proof

Peng (UBC) Hardware Verification Using Smtlink 25 / 41

The Micropipeline [Sut89]

C C

C C

R(in) A(1) R(2) A(3) R(out)

D(in)

A(in) R(1) A(2) R(3) A(out)

~D(out)

1 This is a timed-circuit: the correctness depends on the inverters
propagating data values faster than the C-elements
propagating control events

2 We’ve verified that the control path of a single stage
micropipepline is one-safe

3 We plan to verify safety and functional correctness of the FIFO
in the near future using trace theory as is used for the ring
oscillator

Peng (UBC) Hardware Verification Using Smtlink 26 / 41

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 27 / 41

Motivation

1 Chip designs commonly contain multiple clock domains,
multi-cycle paths, test circuits with long logic delays

2 Synthesis tools are based on circuit models that ignore the
possibility that signals from other clock domains can change at
arbitrary times

3 Glitch bugs are hard to find, nearly impossible in simulation
1 Have to do frequency sweeping

4 This is a bug that has been found in real designs

5 The work shown here are published results in a paper in
ASYNC2016 and a poster in DAC2018

Peng (UBC) Hardware Verification Using Smtlink 28 / 41

Synthesis-generated Glitch

synthesisin N

in S out S

RTL
clk N

clk S

in N

in S
out S

glitch output

netlist
clk N

clk S

Glitch: a transition on a non-synchronous signal can cause the
output of the combinational logic to temporarily change to an
unstable value.
Synthesis-generated Glitch: synthesis tools can introduce glitches.
This can happen even though the RTL design is free of such a glitch.

Peng (UBC) Hardware Verification Using Smtlink 29 / 41

Is the netlist equivalent to the RTL?

netlist

S1

S_N1_VALID

N2

N1

N_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

Designer’s expectation

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

S_Q

yy

S_OUT

D Q

clk2

YES! When using standard logical-equivalence checking

Logical equivalence formulation:
“For every input from {T, F}, the netlist produces the same output as the
RTL.”

Signal naming:

S – signals Synchronous to output clock domain
N – signals Non-synchronous to output clock domain

Peng (UBC) Hardware Verification Using Smtlink 30 / 41

Glitches caused by non-synchronous signals

S1 = 1

S_N1_VALID = 0

N2 = 1

N1 =

N_OUT

synthesized 1

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

S_QS_OUT

D Q

clk2

Standard logical-equivalence is not enough, e.g., when
S N1 VALID is 0:

RTL: permits only S1 to pass to the MUX output, S OUT

netlist: allows a glitch to propagate from N1 to S OUT

Peng (UBC) Hardware Verification Using Smtlink 31 / 41

Using ternary simulation to detect glitch

S1 = 1

S_N1_VALID = 0

N2 = 1

N1 = X

N_OUT

synthesized 1

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

S_QS_OUT

D Q

clk2

X X

X

11

Ternary logic values {T, F, X} facilitate detection of glitch paths

Peng (UBC) Hardware Verification Using Smtlink 32 / 41

The Formal Definition

netlist
S1 = 1

S_N1_VALID
= 0

N2 = 1

N1 =

S_OUT =
D Q

clk1

D Q

clk2
N_OUT

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

S1 = 1

N1 =

N2 = 1

S_N1_VALID
 = 0

S_OUT =

N_OUT
D Q

clk2

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

X
1

X

X

For a state-bit, q, let Sq denote the synchronous inputs to the
combinational logic for the next-state of q, and Nq denote the
non-synchronous inputs. Let B = {0, 1}, and BX = {0, 1,X}

glitchFree(q) = ∀Sq ∈ B∗. ∀Nq ∈ BX∗
.

(nextq,net(Sq,Nq) = X)⇒ (nextq,RTL(Sq,Nq) = X)
(1)

Peng (UBC) Hardware Verification Using Smtlink 33 / 41

Sequential Glitch Hunter4

Load Verilog Extract&match
state-bits

For each
state-bit

Construct
theorems

Run
SAT solver

Report any
glitches

Symbolic
simulation

ACL2 Verilog
front-end

SAT solver
interface

yes

no

Has non-sync
inputs?

1 ACL2 provides a comprehensive Verilog front end and a SAT
solver interface

2 Theorems are automatically constructed and proved for all
statebits

3 When a glitch is found, a counter-example is shown indicating
the glitch inputs

4Y. Peng, I. W. Jones, and M. R. Greenstreet. “Finding Glitches Using
Formal Methods”. In: 2016 22nd IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC). 2016.

Peng (UBC) Hardware Verification Using Smtlink 34 / 41

Parallel Glitch Hunter

Proof
Job 0

Proof
Job 1

Proof
Job 2

Proof
Job 100…

Preprocess

Load
RTL

Load
netlist

RTL netlist

Summary

Job-tldr 0 Job-tldr 1 Job-tldr 2 Job-tldr 100

Summary-tldr

Extract and match
state-bits

Learn clock domain

Calculate fan-in DAG

…

1 distribute computation over multiple machines by leveraging the
ACL2 certification method and the Unix Make utility

2 Fault-tolerant parallel runs
3 Other performance improvements: fast-alists (i.e. applicative

maps backed by hash tables), memoization and guards

Peng (UBC) Hardware Verification Using Smtlink 35 / 41

Experimental Results

Table: Modules and Run Time

Module #gates #FFs #GH-FFsa T32
b Tmin

c Pmin
d

Module A 1264 721 221(30.7%) 6 6 16
Module B 10923 4256 2378(55.9%) 17 13 96
Module C 90432 14874 2045(13.7%) 22 20 96
Module D 29018 5092 2293(45.0%) 84 84 32
Module E 238783 177996 53415(30.0%) 446 280 100

aGH-FFs are state-bits that include non-synchronous inputs in their
fan-in trees

bTime (in minutes) with 32 parallel jobs
cTmin is the fastest run (in minutes) for the module
dPmin is the number of processors for the fastest run

Peng (UBC) Hardware Verification Using Smtlink 36 / 41

Experimental Results – Cont’d

0 1 2 3 4 5 6

Module Size (#GH_FFs) 10
4

0

100

200

300

400

500

E
la

p
s
e
d
 T

im
e
 (

 m
in

s
)

AC

D

B

E

1 For modules with a few thousand gates, the time to dispatch
jobs dominates, and 16 or 32 processors seems optimal

2 For modules with hundreds of thousands of gates, the
preprocessing step is a sequential bottleneck accounting for
about 2% of the total computation and limiting speed-up to
around 50

3 Outlier module D for preprocessing time due to combinational
loops

Peng (UBC) Hardware Verification Using Smtlink 37 / 41

1 Motivation

2 Smtlink

3 AMS Verification

4 Asynchronous Circuit Verification

5 Glitch Hunting

6 The Exciting Future Work

Peng (UBC) Hardware Verification Using Smtlink 38 / 41

The Exciting Future Work

Short term:
1 For Smtlink, we want to add reflection and type inference
2 We are interested in applying Smtlink to several asynchronous

designs
1 Formally verify Sutherland’s micropipepline
2 The verification of an initialization problem of an deskew ASP*

FIFO

Long term: I’m very interested in applying Smtlink to software
problems.

1 Distributed systems: bares similarities to asynchronous circuits
2 Machine learning algorithms: convergence of various versions of

stochastic gradient problems

Peng (UBC) Hardware Verification Using Smtlink 39 / 41

Conclusion

Conclusion: we showed how combining theorem proving and
SMT/SAT solving have great potential in verifying timed and
continuous systems.

1 We have built a novel connection of SMT solvers into the
theorem prover ACL2, called Smtlink

2 We verified convergence of a digital Phase-Locked Loop and
plan to reason about asynchronous circuits in the near future
using Smtlink

3 During my internship at Oracle, I applied a similar idea of using
the ACL2 theorem prover and SAT solvers for solving an
industry problem of detecting synthesis-generated glitches

Peng (UBC) Hardware Verification Using Smtlink 40 / 41

Questions?

Maybe you should consider asking Smtlink that question? ...

Peng (UBC) Hardware Verification Using Smtlink 41 / 41

References I

J. Crossley, E. Naviasky, and E. Alon. “An
energy-efficient ring-oscillator digital PLL”. In: Custom
Integrated Circuits Conference (CICC), 2010 IEEE. 2010,
pp. 1–4. doi: 10.1109/CICC.2010.5617417.

David L. Dill. “Trace Theory for Automatic Hierarchical
Verification of Speed-independent Circuits”.
AAI8814716. PhD thesis. Pittsburgh, PA, USA: Carnegie
Mellon University, 1987. url: http://reports-
archive.adm.cs.cmu.edu/anon/scan/CMU-CS-88-

119.pdf.

Yan Peng and Mark Greenstreet. “Integrating SMT with
Theorem Proving for Analog/Mixed-Signal Circuit
Verification”. In: NASA Formal Methods. 2015.

Peng (UBC) Hardware Verification Using Smtlink 42 / 41

http://dx.doi.org/10.1109/CICC.2010.5617417
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-88-119.pdf
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-88-119.pdf
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-88-119.pdf

References II

Y. Peng and M. R. Greenstreet. “Smtlink 2.0”. In: 15th
International Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2-2018). 2018.

Y. Peng, I. W. Jones, and M. R. Greenstreet. “Finding
Glitches Using Formal Methods”. In: 2016 22nd IEEE
International Symposium on Asynchronous Circuits and
Systems (ASYNC). 2016.

I. E. Sutherland. “Micropipelines”. In: Commun. ACM
32.6 (June 1989), pp. 720–738. issn: 0001-0782. doi:
10.1145/63526.63532. url:
http://doi.acm.org/10.1145/63526.63532.

Peng (UBC) Hardware Verification Using Smtlink 43 / 41

http://dx.doi.org/10.1145/63526.63532
http://doi.acm.org/10.1145/63526.63532

References III

J. Wei et al. “Verifying global convergence for a digital
phase-locked loop”. In: 2013 Formal Methods in
Computer-Aided Design. 2013, pp. 113–120. doi:
10.1109/FMCAD.2013.6679399.

Peng (UBC) Hardware Verification Using Smtlink 44 / 41

http://dx.doi.org/10.1109/FMCAD.2013.6679399

There are Always Exceptions - Precondition

Example

(fty:: deflist intlist

:elt-type integerp

:true-listp t)

(defthm bogus

(implies (intlist-p x)

(or (< (car x) 0)

(equal (car x) 0)

(> (car x) 0))))

x = nil is a counter-example to this bogus theorem:
let x = nil:
(or (< (car nil) 0) (equal (car nil) 0) (> (car nil) 0))

(car nil) = nil:
(or (< nil 0) (equal nil 0) (> nil 0))

All comparisons of non-numbers produce nil:
(or nil nil nil) = nil

Peng (UBC) Hardware Verification Using Smtlink 45 / 41

Precondition Example Cont’d.

A direct translation of the ACL2 goal:

IntList = Datatype(’IntList ’)

IntList.declare(’cons’, (’car’, IntSort ()),

(’cdr’, IntList))

IntList.declare(’nil’)

IntList = IntList.create ()

x = Const(’x’, IntList)

prove(Or(IntList.car(x) > 0, IntList.car(x) == 0,

IntList.car(x) < 0))

But x = nil is not a counter-example to this Z3 theorem.
Because IntList.car(nil) in Z3 denotes an arbitrary integer
value, and the theorem trivially holds.

Peng (UBC) Hardware Verification Using Smtlink 46 / 41

Precondition Example Cont’d.

The problem:

ACL2: Taking car of nil gives us nil

Z3: Taking car gives us an arbitrary value of the appropriate
type

Solution: add precondition check x 6= nil in places where (car x)

is applied;
Similarly, for (cdr (assoc-equal key alist)), precondition
check (assoc-equal key alist) 6= nil

Peng (UBC) Hardware Verification Using Smtlink 47 / 41

