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Is the netlist equivalent to the RTL?
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• YES! When using standard logical-equivalence checking
• Logical equivalence formulation:

“For every input from {T, F}, the netlist produces the same output as the RTL.”
• Signal naming:

I S – signals Synchronous to output clock domain
I N – signals Non-synchronous to output clock domain
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Glitches caused by non-synchronous signals
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• Standard logical-equivalence is not enough, e.g., when
S N1 VALID is 0:
I RTL: permits only S1 to pass to the MUX output, S OUT
I netlist: allows a glitch to propagate from N1 to S OUT
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Using ternary simulation to detect glitch
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• Ternary logic values {T, F, X} facilitate detection of glitch paths
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Our Formal Methods Glitch Hunting Tool
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The Formal Definition
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• For a state-bit, q, let Sq denote the synchronous inputs to the
combinational logic for the next-state of q, and Nq denote the
non-synchronous inputs. Let B = {0,1}, and BX = {0,1,X}

glitchFree(q) = ∀Sq ∈ B∗. ∀Nq ∈ BX∗
.

(nextq,net(Sq ,Nq) = X)⇒ (nextq,RTL(Sq ,Nq) = X)
(1)
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Experimental Results: Real Designs

Module A Module B
Description control module interface module
RTL file size 0.7M 2.5M
netlist file size 8.2M 5.4M
# state-bits 22473 4439
# state-bits w N1 1253 (5.6%) 957 (21.6%)
# Glitches found 0 148

• Modules have multiple clock domains
• Found all previously known glitches
• Discovered glitch paths that were benign due to unstated

assumptions in the RTL

1N stands for non-synchronous input
Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 9 / 12



Some remarks about performance
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• Theorem checking is compute intensive, but each fan-in tree can be run
in parallel

• Preprocessing overhead expected to grow linearly with size of netlist and
RTL Verilog
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Conclusion and future work

• Implemented a tool using SAT solving and theorem proving to
detect synthesis inserted glitches
• Provide a formal definition of the required glitch-free property
• Successfully demonstrated our tool on real industrial designs
• Future work:

I Automatically generate simulation scripts for glitch found
I Larger designs
I Integrate the method into chip design flow
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Finding Glitches Using Formal Methods

Thank You! Questions?
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Glitches caused by non-synchronous signals
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• RTL: N2 is specified to generate only N OUT

• netlist: even when S N1 VALID is 0, a posedge on N2 can cause
a glitch to propagate to S OUT
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Glitch Demonstration - Glitch Path Extraction
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• Combinational logic fan-in trees often have 100+ inputs
• Challenge:

I succinctly present glitch path results
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