
Finding Glitches Using Formal Methods

Yan Peng1 Ian W. Jones2 Mark R. Greenstreet1

1University of British Columbia, Vancouver, BC, Canada
2Oracle Labs, Redwood City, California, USA

May 9th 2016

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 1 / 12

Outline

RTL

Boolean equivalent
Synthesis

Logic Optimization

netlist

P Warming up
I A Small Example
I Glitch Detection Using Ternary Simulation

• Our Glitch Hunting Tool
• Experimental Results
• Conclusion

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 2 / 12

Is the netlist equivalent to the RTL?

S1 = 1

S_N1_VALID = 0

N2 = 0

N1 = 0

N_OUT = 0

S_OUT = 1

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

D Q

clk1

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk2

S_Q <= 1

xx = 0

xx_bar = 1

N2_bar

yy

zz = 1

1

• YES! When using standard logical-equivalence checking
• Logical equivalence formulation:

“For every input from {T, F}, the netlist produces the same output as the RTL.”
• Signal naming:

I S – signals Synchronous to output clock domain
I N – signals Non-synchronous to output clock domain

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 3 / 12

Glitches caused by non-synchronous signals

S1 = 1

S_N1_VALID = 0

N2 = 1 N_OUT = 0

S_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

D Q

clk1

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk2

S_Q

N2_bar

yy

zz = 1

1

xx =

xx_bar =

N1 =

• Standard logical-equivalence is not enough, e.g., when
S N1 VALID is 0:
I RTL: permits only S1 to pass to the MUX output, S OUT
I netlist: allows a glitch to propagate from N1 to S OUT

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 4 / 12

Using ternary simulation to detect glitch

S1 = 1

S_N1_VALID = 0

N2 = 1 N_OUT = 0

S_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

D Q

clk1

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk2

S_Q

N2_bar

yy

zz = 1

1

xx = X

xx_bar = X

N1 = X

X X

• Ternary logic values {T, F, X} facilitate detection of glitch paths

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 5 / 12

Our Formal Methods Glitch Hunting Tool

Theorem
prover

SAT interface

VL
interface

Report
generator

SAT solver

ACL2

RTL

netlist

Verilog Prove netlist is
glitch-free

OR
Report

counter-example

* SAT solver: automatic reasoning about logic formulas

• Warming up
P A Formal Methods Glitch Hunting Tool using ACL2

I Tool Architecture and Work Flow
I The Formal Definition

• Experimental Results
• Conclusion

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 6 / 12

The Formal Definition

netlist
S1 = 1

S_N1_VALID
= 0

N2 = 1

N1 =

S_OUT =
D Q

clk1

D Q

clk2
N_OUT

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

S1 = 1

N1 =

N2 = 1

S_N1_VALID
 = 0

S_OUT =

N_OUT
D Q

clk2

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

X
1

X
X

• For a state-bit, q, let Sq denote the synchronous inputs to the
combinational logic for the next-state of q, and Nq denote the
non-synchronous inputs. Let B = {0,1}, and BX = {0,1,X}

glitchFree(q) = ∀Sq ∈ B∗. ∀Nq ∈ BX∗
.

(nextq,net(Sq ,Nq) = X)⇒ (nextq,RTL(Sq ,Nq) = X)
(1)

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 7 / 12

Outline

RTL

Boolean equivalent
Synthesis

Logic Optimization

netlist

• Warming up
• Our Glitch Hunting Tool
P Experimental Results

I Real Designs
I Performance

• Conclusion

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 8 / 12

Experimental Results: Real Designs

Module A Module B
Description control module interface module
RTL file size 0.7M 2.5M
netlist file size 8.2M 5.4M
state-bits 22473 4439
state-bits w N1 1253 (5.6%) 957 (21.6%)
Glitches found 0 148

• Modules have multiple clock domains
• Found all previously known glitches
• Discovered glitch paths that were benign due to unstated

assumptions in the RTL

1N stands for non-synchronous input
Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 9 / 12

Some remarks about performance

0

1

2

3

4

5

6

Preprocessing Theorem	checking

Ti
m
e/
h

Performance

Module	A Module	B

• Theorem checking is compute intensive, but each fan-in tree can be run
in parallel

• Preprocessing overhead expected to grow linearly with size of netlist and
RTL Verilog

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 10 / 12

Conclusion and future work

• Implemented a tool using SAT solving and theorem proving to
detect synthesis inserted glitches
• Provide a formal definition of the required glitch-free property
• Successfully demonstrated our tool on real industrial designs
• Future work:

I Automatically generate simulation scripts for glitch found
I Larger designs
I Integrate the method into chip design flow

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 11 / 12

Finding Glitches Using Formal Methods

Thank You! Questions?

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 12 / 12

Glitches caused by non-synchronous signals

S1 = 1

S_N1_VALID = 0

N1 = 1

N_OUT

S_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

D Q

clk1

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk2

S_Q

xx = 1

xx_bar =0

N2_bar

1

N2 =

yy =

zz =

• RTL: N2 is specified to generate only N OUT

• netlist: even when S N1 VALID is 0, a posedge on N2 can cause
a glitch to propagate to S OUT

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 13 / 12

Glitch Demonstration - Glitch Path Extraction

S1 = 1

S_N1_VALID = 0

N2 = 1 N_OUT = 0

S_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

D Q

clk1

clk1

D Q

clk1

D Q

clk2

D Q

clk2

D Q

clk2

S_Q

N2_bar

yy

zz = 1

1

xx = X

xx_bar = X

N1 = X

X X

• Combinational logic fan-in trees often have 100+ inputs
• Challenge:

I succinctly present glitch path results

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 14 / 12

	Appendix

