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Outline

Verifying global convergence of a state-of-the-art digital PLL.
P Phase-Locked Loop (PLL) introduction

Verification as a hybrid automata reachability problem
Verification as a SMT problem
Conclusion
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PLL: Block Diagram
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A PLL is a feedback control system that, given an input reference
clock, it outputs a clock at a frequency that’s N times of the input
clock frequency and aligned with the reference in phase.

PLLs are ubiquitous in analog and mixed-signal designs. E.g.
frequency multiplication for clock-acquisition in high-speed links,
modulators and demodulators for wireless communication.

Wei & Peng & Greenstreet & Yu (UBC) Verifying a Digital PLL FMCAD (Oct. 22, 2013) 3 / 18



PLL: Global Convergence

PLL

Dynamical 
System

Analog

Always Lock

Digital

Continuous 
Model

Global 
Convergence

Recurrence 
Model

The most essential function of a PLL is to lock at the right phase
and frequency. The more quickly a PLL locks the better.
Showing convergence from a single initial state requires very long
simulation runs – this is intractable for many designs.
Global convergence requires that the PLL locks from all initial
states. This needs a formal approach.
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A State-of-the-Art Digital PLL (from CICC 2010)[CNA10]
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DCO has three control inputs:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital transitions).
Uses linear and bang-bang PFD.
Integrators are digital.
LPF and decap to improve power-supply rejection.
It is impractical to verify global convergence using simulation.
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Verification Outline
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Outline

Verifying global convergence of a state-of-the-art digital PLL.
◦ Phase-Locked Loop(PLL) introduction
P Verification as a hybrid automata reachability problem

I Digital PLL overview
I Modelling as a product hybrid automaton
I Verifying the digital PLL in three phases
I Modelling and Verifying the reset delay

Verification as a SMT problem
Conclusion
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Hybrid Automata Approach
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ẋ = f1(x)
I1(x)
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Each mode has its own continuous dynamics: ẋ = fm(x).
Each mode has an invariant, Im. The automaton must transition
to another mode before Im is violated.
Transitions are guarded by conditions on the continuous state.
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Hybrid Automata product
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DCO is linearized and vctrl is divided into 7 overlapping intervals.
vctrl has saturation modes, so 3 modes for each vctrl .
Because of the BBPFD, C has 4 modes: up, down, saturated low
and saturated high.
PFD: 1 mode, with self-loop
Product automaton has 84 modes.
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Difficulty

C  VS  time Ph_diff  VS  time

BBPFD causes limit-cycle oscillations which create thousands of
transitions on path to convergence.
SpaceEx[FLGD+11] uses a support function representation that
introduces large over-approximations on mode changes⇒
false-negatives.
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Verification Strategy
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Identify the phases the digital PLL goes through when locking.
Phase 1: Large frequency difference – C heads to limit and saturates.
Phase 2: Large frequency difference, C-saturated, the linear phase

path acquires frequency lock.
Phase 3: ∆θ changes sign – C and vctrl converge to phase and

frequency lock.
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Phase 3: avoiding mode transitions

C leaves its saturation mode
make a change of variables, let

w = fdco − ffref

the convergence of w is strong enough that
SpaceEx shows convergence, even with its
over-approximations for mode transitions.
SpaceEx shows that the reachable region
of w shrinks
Given the invariant that w will shrink
asymptotically, convergence of vctrl can be
obtained
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Outline

Verifying global convergence of a state-of-the-art digital PLL.
◦ Phase-Locked Loop(PLL) introduction
◦ Verification as a hybrid automata reachability problem
P Verification as a SMT problem

I Verifying a simplified model with Lyapunov functions
I Improved model with quantization error and parameter

ranges
Conclusion
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Lyapunov Function

v
c

A Lyapunov function defines a potential for the system.
I If this potential is always positive and decreasing outside of

the target region, then the system will eventually reach the
target.

I A Lyapunov function is the continuous counterpart of a
ranking function for discrete progress arguments.

A simple function for linear ODEs: ẋ = Ax :
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Lyapunov Function

v
c

A Lyapunov function is the continuous counterpart of a ranking
function.
A simple function for linear ODEs: ẋ = Ax :
I Let P be the solution of AT P + PA = −I. A possible Lyapunov

function becomes Ψ(x) = X T PX .
I By construction, P is symmetric.
I If P is positive definite, then the system ẋ = Ax globally

converges to x = 0
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Verifying a Simplified Nonlinear Model using Z3[DMB08]

entire process.

Strong candidate for automation

using symbolic/programatic differentiation

This step guarantees soundness of the
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(manual)

Construct

Lyapunov Fn (Z3)

Verify Lyapunov
Conditions

Point (Z3)

Find Equilibrium

Z3 easily proves global convergence.
Fixed procedure: promising for automation.
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Improving the Model

Z3 easily proves the simple system (just shown)
We added details to the model to make it more realistic
I Parameters with ranges
I Quantization error: we approximate discrete sums in the real

digital PLL with integrals
I Both ranges and quantization

In all of these, Z3 would run longer than we had patience
Solution: manually simplify terms in the proposed Lyapunov
function
The approach remains sound because Z3 checks the Lyapunov
conditions, it doesn’t matter how we came up with the Lyapunov
function.
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Adjust the Proof in Z3

Parameters with ranges:
Inequality ranges for parameters α ∈ 1± 0.2, β ∈ 1± 0.2,
v0 ∈ 1± 0.2 and c0 ∈ 1± 0.2.

Strategy: Check where the parameters are used, try simplify
non-linear part. e.g. we replace some of the parameters in the
Jacobian matrix with its nominal value.

Example:
Simplifying an element of the Jacobian matrix:

g1α
c0+βccode

→ g1
c0+βccode

The approximation is based on the observation that α ∈ 1± 0.2.

Z3 happily proved the conditions, again.
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Adjust the Proof in Z3

Adding quantization error:
Need to show: ∀x ∈ QT −Q0 and ∀η ∈ Err , f (x + η)T Px < 0,
where f is nonlinear. This creates nonlinear terms for the
components of η.

Strategy: Choose any y = x + η and any η ∈ Err . If y + η ∈ Q0 −QT ,
then need to show f (y)T P(y + η) < 0

v
c
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Conclusion and Future Work

We verified global convergence for a state-of-the-art, digital
phase locked loop (PLL) using piecewise linear differential
inclusions with SpaceEx.
Using a simplified model, we showed convergence where
specifications for components are interval bounds using Z3.
Future Work:
I Provide bounds on lock time.
I Complete models for low-pass filter and Delta-Sigma

modulator.
I Examine other digital PLL architectures to assess the

reusability and automatability of this verification.
I Component validation: formalize the connection between the

models used and those used in other phases of the analog
and mixed-signal design process.
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Conclusion and Future Work

We verified global convergence for a state-of-the-art, digital
phase locked loop (PLL) using piecewise linear differential
inclusions with SpaceEx.
Using a simplified model, we showed convergence where
specifications for components are interval bounds using Z3.
Future Work:
I Provide bounds on lock time.
I Complete models for low-pass filter and Delta-Sigma

modulator.
I Examine other digital PLL architectures to assess the

reusability and automatability of this verification.
I Component validation: formalize the connection between the

models used and those used in other phases of the analog
and mixed-signal design process.

Thank You!
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Appendix: the Simplified Continuous Nonlinear Model

The ODE model:

ċ = g1 · (fref − 1
N

v0+αv
c0+βc ) where c ∈ (cmin, cmax )

v̇ = g2 · (c − ccode)

Note: ċ = 0 when c = cmin or c = cmax

Quantization error is included in later work.
Linear phase path is simplified away for convenience.
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Appendix: the Proposition

Formal definition of the proposition we introduced:

Proposition:
Let Err denote quantization error and assume Err is symmetric around
0: if η ∈ Err then −η ∈ Err as well. We can easily show:

∀x ∈ Q0 − QT .∀η ∈ Err .h(x + η)T Px < 0⇔

∀y ∈ (Q0 − QT )⊕ Err .∀η ∈ Err .(y + η ∈ Q0 − QT )⇒ (h(y)T P(y + η) < 0)

The Minkowski sum of two sets, A⊕ B, is the set of elements that can be obtained as
the sum of an element from A and an element from B:

A⊕ B = {z | ∃a ∈ A. ∃b ∈ B. z = a + b}
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PLL: Verified digital PLL
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We omitted the Delta-Sigma modulator, low-pass filter, and linear
regulator for simplicity.
We believe all of these could be included using the same methods
that we’ve used for the rest of the digital PLL.

Wei & Peng & Greenstreet & Yu (UBC) Verifying a Digital PLL FMCAD (Oct. 22, 2013) 22 / 18



Modeling the DCO
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Simulation results (Spectre, 65nm, simple ring-oscillator) show
DCO period is nearly linear in C.
DCO frequency is linear in vctrl .
Our model:

fDCO ∈ 1 + αvctrl

1 + βC
f0 ⊕ errDCO
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Reset Delay
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Because of reset delays, edges of Φref or Φdco maybe missed.
I This can cause occasional flips in the sign of the

phase-detector output.
Analytically, we derived a vctrl bound, [Vlo,Vhi ] that precludes such
sign flips.
Our bound shows that such sign flips cannot occur for the design
parameters of the CICC’10 PLL.
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Reset Delay in Phase two
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In Phase two, the c signal could move from its saturation value
because of the spurious sign changes at the output of the PFD.
We simulated the PFD in Spectre to measure the reset delay.
SpaceEx verified that V will still make process even with these
spurious sign changes.
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Appendix: Comparison

The hybrid-automaton
approach very closely followed
the structure of the digital PLL.
I Seems likely to be more

intuitive for real-world
designers and verifiers.

I Verified the digital PLL for
a specific choice of model
parameters.

I ”Feels” like
model-checking.

I Manual decomposition
into lemmas required.

The SMT approach is more
general:
I Handles some of the

non-linearities directly.
I Verified the digital PLL

with model parameters in
interval ranges.

I ”Feels” like theorem
proving.
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