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Verifying global convergence of a state-of-the-art digital PLL.
€¢ Phase-Locked Loop (PLL) introduction
@ Verification as a hybrid automata reachability problem
@ Verification as a SMT problem
@ Conclusion
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A PLL is a feedback control system that, given an input reference
clock, it outputs a clock at a frequency that’s N times of the input
clock frequency and aligned with the reference in phase.

PLLs are ubiquitous in analog and mixed-signal designs. E.g.
frequency multiplication for clock-acquisition in high-speed links,
modulators and demodulators for wireless communication.
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PLL: Global Convergence
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@ The most essential function of a PLL is to lock at the right phase
and frequency. The more quickly a PLL locks the better.

@ Showing convergence from a single initial state requires very long
simulation runs — this is intractable for many designs.

@ Global convergence requires that the PLL locks from all initial
states. This needs a formal approach.
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A State-of-the-Art Digital PLL (from CICC 2010)[CNA10]
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@ DCO has three control inputs:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital transitions).

@ Uses linear and bang-bang PFD.

@ Integrators are digital.

@ LPF and decap to improve power-supply rejection.

@ It is impractical to verify global convergence using simulation.
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Verification Outline
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Verifying global convergence of a state-of-the-art digital PLL.
Phase-Locked Loop(PLL) introduction
€¢ Verification as a hybrid automata reachability problem

» Digital PLL overview

» Modelling as a product hybrid automaton
» Verifying the digital PLL in three phases
» Modelling and Verifying the reset delay

@ Verification as a SMT problem
@ Conclusion
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Hybrid Automata Approach
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A Hybrid Automaton Corresponding Piecewise Model

@ Each mode has its own continuous dynamics: x = fp(x).

@ Each mode has an invariant, /,,. The automaton must transition
to another mode before I, is violated.

@ Transitions are guarded by conditions on the continuous state.
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Hybrid Automata product
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Hybrid Automata product of BBPFD and PFD Hybrid Automata product of DCO

@ DCO s linearized and vy is divided into 7 overlapping intervals.
@ vy has saturation modes, so 3 modes for each v .

@ Because of the BBPFD, C has 4 modes: up, down, saturated low
and saturated high.

@ PFD: 1 mode, with self-loop
@ Product automaton has 84 modes.
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Difficulty
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@ BBPFD causes limit-cycle oscillations which create thousands of
transitions on path to convergence.

@ SpaceEx[FLGD™11] uses a support function representation that
introduces large over-approximations on mode changes =
false-negatives.
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Verification Strategy

Identify the phases the digital PLL goes through when locking.
Phase 1: Large frequency difference — C heads to limit and saturates.

Phase 2: Large frequency difference, C-saturated, the linear phase
path acquires frequency lock.

Phase 3: A# changes sign — C and v,y converge to phase and
frequency lock.
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Phase 3: avoiding mode transitions

@ C leaves its saturation mode
@ make a change of variables, let

W = faco — frrer

@ the convergence of w is strong enough that
SpaceEx shows convergence, even with its
over-approximations for mode transitions.

@ SpaceEx shows that the reachable region
of w shrinks

@ Given the invariant that w will shrink
asymptotically, convergence of v, can be
obtained
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Verifying global convergence of a state-of-the-art digital PLL.
Phase-Locked Loop(PLL) introduction
Verification as a hybrid automata reachability problem
€ Verification as a SMT problem

» Verifying a simplified model with Lyapunov functions
» Improved model with quantization error and parameter
ranges

@ Conclusion
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Lyapunov Function
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@ A Lyapunov function defines a potential for the system.

» If this potential is always positive and decreasing outside of
the target region, then the system will eventually reach the
target.

» A Lyapunov function is the continuous counterpart of a
ranking function for discrete progress arguments.

@ A simple function for linear ODEs: x = Ax:
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Lyapunov Function

@ A Lyapunov function is the continuous counterpart of a ranking
function.
@ A simple function for linear ODEs: x = Ax:
» Let P be the solution of ATP + PA = —I. A possible Lyapunov
function becomes W(x) = X' PX.
» By construction, P is symmetric.
» If P is positive definite, then the system x = Ax globally
convergesto x =0
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Verifying a Simplified Nonlinear Model using Z3[DMBO08]
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entire process.

Verify Lyapunov This step guarantees soundness of the
Conditions

@ Z3 easily proves global convergence.

@ Fixed procedure: promising for automation.
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Improving the Model

@ Z3 easily proves the simple system (just shown)
@ We added details to the model to make it more realistic

» Parameters with ranges

» Quantization error: we approximate discrete sums in the real
digital PLL with integrals

» Both ranges and quantization

@ In all of these, Z3 would run longer than we had patience

@ Solution: manually simplify terms in the proposed Lyapunov
function

@ The approach remains sound because Z3 checks the Lyapunov
conditions, it doesn’t matter how we came up with the Lyapunov
function.
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Adjust the Proof in Z3

Parameters with ranges:
Inequality ranges for parameters o € 1 +0.2, 5 € 1+ 0.2,
vwelx02andcye1+£0.2

Strategy: Check where the parameters are used, try simplify
non-linear part. e.g. we replace some of the parameters in the
Jacobian matrix with its nominal value.

Simplifying an element of the Jacobian matrix:

(e} — [¢]]
Co+BCcode Co+BCcode

The approximation is based on the observation that o € 1 + 0.2.

Z3 happily proved the conditions, again.

Wei & Peng & Greenstreet & Yu (UBC) Verifying a Digital PLL FMCAD (Oct. 22, 2013) 17/18



Adjust the Proof in Z3

Adding quantization error:
Need to show: Vx € Qr — Qy and v € Err, f(x +7)"Px < 0,
where f is nonlinear. This creates nonlinear terms for the
components of 7.

Strategy: Chooseany y = x+nandanyn e Err. lf y+n e Qy— Qr,
then need to show f(y)"P(y +n) <0

n e krr
X €00

X+n

F(X +n)'PX <0
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Conclusion and Future Work

@ We verified global convergence for a state-of-the-art, digital
phase locked loop (PLL) using piecewise linear differential
inclusions with SpaceEx.

@ Using a simplified model, we showed convergence where
specifications for components are interval bounds using Z3.
@ Future Work:
» Provide bounds on lock time.
» Complete models for low-pass filter and Delta-Sigma
modulator.
» Examine other digital PLL architectures to assess the
reusability and automatability of this verification.
» Component validation: formalize the connection between the
models used and those used in other phases of the analog
and mixed-signal design process.
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Conclusion and Future Work

@ We verified global convergence for a state-of-the-art, digital
phase locked loop (PLL) using piecewise linear differential
inclusions with SpaceEx.

@ Using a simplified model, we showed convergence where
specifications for components are interval bounds using Z3.
@ Future Work:
» Provide bounds on lock time.
» Complete models for low-pass filter and Delta-Sigma
modulator.
» Examine other digital PLL architectures to assess the
reusability and automatability of this verification.
» Component validation: formalize the connection between the
models used and those used in other phases of the analog
and mixed-signal design process.

Thank You!
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Appendix: the Simplified Continuous Nonlinear Model

The ODE model:

& = g1 (fof— %%) where ¢ € (Cmin, Cmax)
vV = go-(C— Ccoge)

Note: ¢ = 0 when ¢ = Cpjp OF C = Cmax

Quantization error is included in later work.
Linear phase path is simplified away for convenience.
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Appendix: the Proposition

Formal definition of the proposition we introduced:

Proposition:

Let Err denote quantization error and assume Err is symmetric around
0: if n € Err then —n € Err as well. We can easily show:

Vx € Qy — Qr.¥n € Err.h(x +1)Px < 0 &
Vy € (Qo—Qr) & Em.n € Emr.(y+n€ Q — Qr) = (h(y)" P(y +n) <0)

The Minkowski sum of two sets, A @ B, is the set of elements that can be obtained as
the sum of an element from A and an element from B:

AeB = {z|3JacA 3beB z=a+b}
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PLL: Verified digital PLL
()

Fref

@ We omitted the Delta-Sigma modulator, low-pass filter, and linear
regulator for simplicity.

@ We believe all of these could be included using the same methods
that we’ve used for the rest of the digital PLL.
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Modeling the DCO

>k simulation data > simulation data
35 ___linear fit for 1/fDCO 35 a5 —— linear fit a5
g 3F g 3 13
§ 2.5F § 25 2.5
g 2 g 2 I
& 15}
5 z
£ 15¢ £ 15 1.5
Q Q
8 1 8 1 4
0.5 0.5 10.5
0 2 4 6 8 10 ° G0.4 05 06 07 08 09 1 11 1.2{J
load capacitance, ¢ (pF) operating voltage, v (volts)

@ Simulation results (Spectre, 65nm, simple ring-oscillator) show
DCO period is nearly linear in C.

@ DCO frequency is linear in vgy.

@ Our model:

14+ aVey
f c ———fhder
DCO 11 3C oD errpco
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Reset Delay

o LML
!., w UL LTLL
o oo I ey
JaL I g T g
e UL T i

@ Because of reset delays, edges of ¢, or ¢4, maybe missed.

» This can cause occasional flips in the sign of the
phase-detector output.

@ Analytically, we derived a vy bound, [V}, V4] that precludes such
sign flips.

@ Our bound shows that such sign flips cannot occur for the design
parameters of the CICC’10 PLL.
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Reset Delay in Phase two

@ In Phase two, the c signal could move from its saturation value
because of the spurious sign changes at the output of the PFD.

@ We simulated the PFD in Spectre to measure the reset delay.

@ SpaceEx verified that V will still make process even with these
spurious sign changes.
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Appendix: Comparison

@ The hybrid-automaton @ The SMT approach is more
approach very closely followed general:
the structure of the dlglta' PLL. » Handles some of the
» Seems likely to be more non-linearities directly.
intuitive for real-world » Verified the digital PLL
designers and verifiers. with model parameters in
» Verified the digital PLL for interval ranges.
a specific choice of model » “Feels” like theorem
parameters. proving.

» ’Feels” like
model-checking.

» Manual decomposition
into lemmas required.
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