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We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface
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Timed Asynchronous Circuits are Great
Timed asynchronous circuits exploit verifiable timing
relationships in a circuit to improve performance and reduce
power and area.

Many timed pipeline designs have been proposed:
micropipeline[Sut89], asP* pipelines[MJ+97], GasP[SF01],
Mousetrap[SN07].
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Timed Asynchronous Circuits are Challenging

Let’s look at the example of an asP* pipeline.

RS RS

Stage2

empty0

goEmpty0

full1

goFull1

empty1

goEmpty1

full2

goFull2

empty2

goEmpty2

full3

goFull3

Stage1

fulli asserts the stage is full and emptyi asserts the stage is empty.
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Timed Asynchronous Circuits are Challenging

Let’s look at the example of an asP* pipeline.

RS RS

goFull2↓

full3

goFull3

full2=F empty2=T

goEmpty2=T

Data In Stage2: EmptyStage1: Full

empty1=Ffull1=T

empty0=T

goEmpty0=T

goFull1=T goEmpty1↓

When the first stage is full, goEmpty1 and goFull2 are excited to go
low.
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Timed Asynchronous Circuits are Challenging

Let’s look at the example of an asP* pipeline.

RS RS

empty0=T full3

goFull3

goEmpty2=TgoEmpty1=F goFull2=F

goEmpty0=T

goFull1=T

full2=↑ empty2=↓empty1=↑full1=↓
Data In Stage2: EmptyStage1: Full

The SR-flops for stages 1 & 2 are both excited to change.
The pipeline transfers data from stage 1 to stage 2.
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Timed Asynchronous Circuits are Challenging

Let’s look at the example of an asP* pipeline.

RS RS

full1=F

full3

goFull3

goEmpty2=TgoEmpty1=F goFull2=F

goEmpty0=T

goFull1=T

empty2=F

empty0=T

Data In Stage1: Empty Stage2: Full

full2=Tempty1=T

The first stage is now empty and the second stage full.
The data ripples through the pipeline.
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Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

RS RS

goFull2 ↓goEmpty1=FgoFull1=T goEmpty2=TgoEmpty0=T

full3

goFull3

Data In

empty0=T empty2=Tfull2=F

Stage1: Full Stage2: Empty

full1↓ empty1↑

Let’s consider a scenario where the turn-around on the right of the
NAND gate is significant longer than the left of it, for example, due
to long wires in the layout.
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Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

RS RS

goEmpty1↑goFull1=T goEmpty2=T

empty1=Tfull1=F

goEmpty0=T goFull3

full3empty2=T

Stage1: EmptyData In

empty0=T full2=F

goFull2=?

Stage2: Empty

empty1 goes high, enabling goFull2 to return high before full2 has
a chance to change.
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Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

RS RS

empty0=T

goFull1=T goEmpty2=T

empty2=Tempty1=T

goEmpty1=T goFull2=T

full1=F full3

goFull3goEmpty0=T

full2=F

Stage1: EmptyData In Stage2: Empty

Now, full1 has gone low, but full2 never went high.
This disables stage two from going full.
A data value is lost. /
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Timed Asynchronous Circuits are Challenging

Timing properties are crucial for correctness of timed asynchronous
circuits. But how do we know we’ve defined enough timing
constraints?
As is pointed out in [MJ+97]:

For the circuit presented here, determining the delay condi-
tions that must be satisfied for reliable operation was diffi-
cult. We have used a mixture of ad hoc analysis and hSpice
simulation to achieve our results ...

Proved!

aaaaaaaahhhhhh My brain hurts!!!

(empty1 ↓ ∧full2 ↓) 7→ (empty1 ↑ ∧full2 ↑) ≺ (empty1 ↓ ∧full2 ↓)

goEmpty1 ↓7→ empty1 ↑≺ goEmpty1 ↑

goEmpty1↓ 7→ full2↑ ≺ goEmpty1↑
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Contributions

We propose a framework for modeling timed asynchronous
circuits using timed traces and trace recognizers. It naturally
models nondeterminism.

We verified timing properties of three configurations of asP*
pipelines, for each configurations:

We defined and proved the inductive timing invariants.
Using the invariants, we are able to prove hazard-freedom.

Our model can handle loop structures and allows
parameterized verification.

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface
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Traces and Trace Recognizers

C C

a2

r0
a1 r2

a2
r1

a0

a1

Every circuit contains a set of signal paths, representing nodes in the
circuit.
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Traces and Trace Recognizers

C C

a2 =F

a1 =Fr0 =F a1 =F r2 =F

a2 =Fa0 =F r1 =F

r0:F a0:F r1:F a1:F a1:F r2:F a2:F a2:F . . .

A state of the circuit is a table mapping from node paths to
their values.

A state can contain other signals that are outside of the
component, allowing composability.
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Traces and Trace Recognizers

C C

a2

r0
a1 r2

a2
r1

a0

a1

r0:F a0:F r1:F a1:F a1:F r2:F a2:F a2:F . . .
r0:T a0:F r1:F a1:F a1:T r2:F a2:F a2:F . . .
r0:T a0:T r1:T a1:F a1:T r2:F a2:F a2:F . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

A trace of the circuit is a list of states.
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Traces and Trace Recognizers

Trace recognizers are functions defined for each component. It
specifies that for this component, every two consecutive states in the
trace must make valid transitions:

in2 C
c step(prev,next) ,

prev[out] = next[out]

∨(prev[in1] = prev[in2] ∧ prev[out] 6= prev[in1])

in1
out

For example, for the component C-element,

Either the output hasn’t changed, making no assumption about
the inputs.
Or the output changes only when the inputs match and the
output doesn’t.

The trace recognizers are receptive to all possible inputs[Dil88].

It defines allowed behaviour on the outputs based on the inputs.
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Introducing Time - Traces

C C

a2

r0
a1 r2

a2
r1

a0

a1

0 r0:F,0 a0:F,0 r1:F,0 a1:F,0 a1:F,0 . . .
0.3 r0:T,0.3 a0:F,0 r1:F,0 a1:F,0 a1:F,0 . . .
4 r0:T,0.3 a0:F,0 r1:F,0 a1:F,0 a1:T,4 . . .
10 r0:T,0.3 a0:T,10 r1:T,10 a1:F,0 a1:T,4 . . .
. . . . . . . . . . . . . . . . . . . . .

We extend the traces to include timing information.

Add a time for each state.

For each node signal in a state, we associate its value with a time
representing the most recent time the signal acquired that value.
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Introducing Time - Traces

C C

a2

r0
a1 r2

a2
r1

a0

a1

0 r0:F,0 a0:F,0 r1:F,0 a1:F,0 a1:F,0 . . .
0.3 r0:T,0.3 a0:F,0 r1:F,0 a1:F,0 a1:F,0 . . .
4 r0:T,0.3 a0:F,0 r1:F,0 a1:F,0 a1:T,4 . . .
10 r0:T,0.3 a0:T,10 r1:T,10 a1:F,0 a1:T,4 . . .
. . . . . . . . . . . . . . . . . . . . .

A few notes about time:

Time is non-negative and monotonically increasing.

Time of each signal must not be larger than the state time.

Every trace can be extended so that time progresses without
bound (“non-Zenoness” [AL94]).
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Introducing Time - Trace Recognizers

For each component, we use the delay model of a symbolic delay
bound [δlo , δhi) where δlo > 0 and δlo ≤ δhi .
The trace recognizer now defines valid behaviour of a component in
terms of both logic values and transition time. For example:

. . .

∧max(prev[in1].t, prev[in2].t) + δlo ≤ next.t

C

∧next[out].t = next.t

∨(prev[in1].v = prev[in2].v ∧ prev[out].v 6= prev[in1].v

∧prev[out].v 6= next[out].v

∧next.t < max(prev[in1].t, prev[in2].t) + δhi)

c step(prev,next) ,
in1

out
in2

This says, when the output of the C-element changes, it should
happen between delay bounds.
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Nondeterminism

states
states
∞ # of

states

states
∞ # of

states
∞ # of

states
∞ # of

states
∞ # of

states
∞ # of

∞ # of

∞ # of

Because of continuous time, a state in a trace can have an
infinite number of successors.

Our timed trace model naturally captures nondeterminism.
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The asP* Pipelines

We recall the asP* pipeline is:

SRS R

fulli+2

goFulli goEmptyi+1

goFulli+2

fulli fulli+1 emptyi+1emptyi

goEmptyi goFulli+1

emptyi−1

goEmptyi−1

We want to find a way to break the pipeline into stages.
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The asP* Pipelines

Apply a few logical equivalences to get:

goEmptyi−1

Q

S R

Q Q

S R

Q emptyi+2

goFulli+2

goFulli

emptyi

goEmptyi

fulli emptyi+1

goFulli+1

fulli+1

goEmptyi+1

fulli−1
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The asP* Pipelines

The obvious way is to split the AND gate into two halves:

goEmptyi−1

Q

S R

Q Q

S R

Q emptyi+2

goFulli+2

goFulli

emptyi

goEmptyi

fulli emptyi+1

goFulli+1

fulli+1

goEmptyi+1

fulli−1

But we don’t want to model half of an AND gate.
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The asP* Pipelines

Instead we duplicate the AND gates:

R

goEmptyi goFulli+1

fulli emptyi+1

Q

S

Q Q

S R

Q emptyi+2

goFulli+2

goFulli

emptyi fulli+1

goEmptyi+1

fulli−1

goEmptyi−1

This transformation includes all possible behaviours of the pipeline and
additional behaviours due to the duplicated AND gates.
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A Single Stage

So a single stage becomes:

asP* stage

eOut = 

eIn =

R

Q Q

S

fIn = 

fOut =

emptyi

fulli−1

fulli

emptyi+1

eOut stands for current stage being empty, and fIn stands for
previous stage being full. In this case, the current stage can set

fOut stands for current stage being full, and eIn stands for next
stage being empty. In this case, the current stage can reset
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We Care About the Environment

renv

fIn

eOut eIn

fOut fIn

eOut eIn

fOut

lenv

eIn

fOut
li

fIn

eOut eIn

fOut fIn

eOut
ri

To verify a pipeline, we need to consider actions of the
environment.

A lEnv is a “left-environment”

It acts like an asP* stage,
But it doesn’t have a left-neighbour.
An empty lEnv can spontaneously go full any time after a
minimum delay after going empty.
An internal signal li allows the environment to have a pending
output event.

A rEnv is similar – it can spontaneously go empty.
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rEnv + lEnv = Stage

A stage can be built with a right and a left environment with the
constraint that ri == li :

asP* stage

=

eIn

fOut
liri

fIn

eOut

renv lenv

fIn

eOut eIn

fOut

Signal ri == li represents the internal state of a stage when it
has acquired the value but hasn’t set/reset Q or Q yet.

This gives us the final model for the asP* pipeline:

eIn

fOut
ri=li

fIn

eOut

fIn

eOut
ri

renvlenv

eIn

fOut
li

eIn

fOut
ri=li

fIn

eOut
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Three configurations

Configuration 1: a lenv with a renv, 0 stage

ri

fInfOut

eIn

li

eOut

renvlenv

Configuration 2: a lenv, an arbitrary number of stages, and a
renv

eIn

fOut
ri=li

fIn

eOut

fIn

eOut
ri

renvlenv

eIn

fOut
li

eIn

fOut
ri=li

fIn

eOut

Configuration 3: a ring with an arbitrary number of stages

N−stages

(N−1)−stagesli
eIn

ri

fOut

eIneOut

fIn

fIn

renv

eOut

lenv

fOut
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Formalizing the Timing Invariant

We define the timing invariant for an empty pipeline, and the
invariant for the other two configurations can be defined recursively.
The timing invariant is composed of two parts:

Timing constraints within each individual component: lenv and
renv – Obvious, based on the trace recognizers.

Timing constraints on the interactions between components –
The interesting part.

We prove the inductive invariant by proving the theorem:

invariant env(s1) ∧ valid step(s1, s2)
⇒ invariant env(s2)

(1)
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Interaction invariants

0110 1111

0111

0011 0101

0001

1001 0000

10001101 0010

1100 1010

f and e will both go low

1110

l = lenv internal statel f e r f = lenv.fOut = renv.fIn
r = right internal state e = lenv.eIn = renv.eOut

ready to transferf and e will hold long enough
for both ri and li to change

before either goes high again

internal states reset

fOut and eOut reset

spontaneous action in lenv and renv

next enabling of fOut and eOut

 

li ri

fIn

eOut

fOut

eIn

lenv renv
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Proving Hazard-freedom

Definition 1 (Hazard)

Between two consecutive states, if some component output, y, is
excited to change in the first state, but has neither changed nor is
excited to make that change in the second state, we call this a
hazard.

For example, the hazard-free step condition for signal li of lenv
from state s1 to state s2 is:

s1[lenv.eIn].v ∧ s1[lenv.fOut].v∧
s1[lenv.li].v

⇒ s2[lenv.eIn].v ∧ s2[lenv.fOut].v
(2)
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Proving Hazard-freedom

Definition 1 (Hazard)

Between two consecutive states, if some component output, y, is
excited to change in the first state, but has neither changed nor is
excited to make that change in the second state, we call this a
hazard.

To show that a module’s invariant ensures hazard freedom, we prove
the theorem:

invariant mod(s1) ∧ valid step mod(s1,s2)

⇒ hazard free mod(s1, s2)
(2)

Inductively, we prove that every step of a valid trace satisfies the
hazard-free property.
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The Proof Tree

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

env-invariant-step
(2.88s)

env-invariant-trace 
(0.24s)

env-hazard-free-
step (5.05s)

env-hazard-free-
trace (0.06s)

asp-pipeline-cdr-
invariant (0.02s)

asp-pipeline-
invariant-step (0.07s)

asp-pipeline-
invariant-trace (0.04s)

asp-pipeline-hazard-
free-lemma (24.79s)

asp-pipeline-hazard-
free-step (0.55s)

asp-pipeline-hazard-
free-trace (0.12s)

asp-ring-invariant-
step (0.01s)

asp-ring-invariant-
trace (0.14s)

asp-ring-hazard-
free-step (0.01s)

asp-ring-hazard-
free-trace (0.16s)

This graph represents
all theorems proved.

The proof is greatly
automated by using
the Smtlink package.

Counter-example
driven manual
learning of invariant.
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Conclusion and Future Work

ACL2 is a general purpose theorem prover that can be used to
verify correctness of timed, asynchronous circuits.

Using Smtlink, proofs are nearly automatic:

Prove each invariant is maintained by a single step (Smtlink).
Prove the invariant holds for a valid trace (ACL2 excels at
induction).

The performance is comparable to dedicated tools:

Most proofs complete within a second, the longest was less than
30 seconds.
The verification problem is formulated in the ACL2 logic rather
than writing special-purpose timing analysis algorithms.

We can verify parameterized designs:

An arbitrary number of pipeline or ring stages.
Symbolic constraints on timing delays.
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Future Work

Integrate with existing ACL2 Verilog front-end (SV and VL).

Use model checking algorithms to automatically generate
invariants.

Explore more sophisticated timing models including metastability.

Combine with verification of functionality:

Prove that timed designs implement untimed abstractions.
Reason about functionality in untimed model (e.g. [CCS19]).

Continue to extend Smtlink and make proofs even more
automatic.
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Future Work

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

Integrate with existing ACL2 Verilog front-end (SV and VL).

Use model checking algorithms to automatically generate
invariants.

Explore more sophisticated timing models including metastability.

Combine with verification of functionality:

Prove that timed designs implement untimed abstractions.
Reason about functionality in untimed model (e.g. [CCS19]).

Continue to extend Smtlink and make proofs even more
automatic.

Thank You!
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Proving Deadlock-freedom

Definition 2 (Deadlock-freedom)

For all valid states, there always exist a valid next state that’s
different from the current state.

We prove deadlock-freedom by defining a witness function that
provides a valid next state.
To show that a module’s invariant ensures deadlock-freedom, we
prove the theorem:

invariant mod(s1)⇒ witness mod(s1) 6= nil

∧valid mod(s1, witness mod(s1))

∧changed(s1, witness mod(s1))

(3)
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Traces and Trace Recognizers

C C

a2

r0
a1 r2

a2
r1

a0

a1

For example, this is an invalid trace:

r0:F a0:F r1:F a1:F a1:F r2:F a2:F a2:F . . .
r0:T a0:F r1:F a1:F a1:F r2:F a2:F a2:F . . .
r0:T a0:T r1:F a1:F a1:F r2:F a2:F a2:F . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 as the output of the first C-element makes an unexplained
transition, violating the trace recognizer for the first C-element:

c step(prev, next) ,
next[out] = prev[out]

∨ prev[in1] = prev[in2] ∧ prev[in1] 6= prev[out]

(4)
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Datatypes

In ACL2, we use algebraic datatypes for modeling traces:1

Trace list of TimedState
TimedState product of Time and StateMap

StateMap map from Path to TimedValue

Path list of PathElement
PathElement product of Name and Index

TimedValue product of Time and Value

Using this timed trace model, when proving properties of a circuit,
usually we will prove a theorem in the shape:

Circuit(circuit) ∧ Trace(tr)
∧valid circuit(circuit, tr)

=⇒ property(circuit, tr)

(5)

1Basic types: Time - rationalp; Value - booleanp; Name - Symbolp; Index
- integerp
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Related Work

Timed automaton based approaches, relative timing, theorem
proving, other parameterized methods.

Comparing to timed automaton based approaches, our method
allows symbolic delays on gates and allows parameterized
verification.

Comparing to relative timing, our approach models full timing
information that allows verification of a larger set of circuits.

Comparing to theorem proving based methods, our use of an
SMT solver at the backend greatly reduced human effort.

Existing parameterized methods suffers from loss of precision, we
can achieve precision by using induction proofs.
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Cool Animation

x2 = 14

This is an awesome animation.
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Cool Animation

e iπ = −1

This is an awesome animation.
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Cool Animation

π = 4 arctan 1

This is an awesome animation.
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