Verifying Timed, Asynchronous Circuits

Using ACL2

Yan Peng! Mark R. Greenstreet!

!Department of Computer Science
University of British Columbia

May 14th 2019

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 1/26

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

@ Motivation

© Timed Traces

© Modeling asP* Pipelines
@ Verifying the asP* Pipelines

© Conclusions

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 2/26

Timed Asynchronous Circuits are Great

@ Timed asynchronous circuits exploit verifiable timing
relationships in a circuit to improve performance and reduce
power and area.

@ Many timed pipeline designs have been proposed:
micropipeline[Sut89], asP* pipelines[MJ*97], GasP[SF01],
Mousetrap[SNO7].

Rin A1) R@ A@B) R(out)

N } %97 2, LY, |oew

Alin) R(1) A2) R(3) A(out)

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 3/26

Timed Asynchronous Circuits are Challenging

Let's look at the example of an asP* pipeline.

Stagel Stage2

full, empty, full, empty,

goFull, goEmpty; goFull, goEmpty,

full; asserts the stage is full and empty, asserts the stage is empty.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 4/26

Timed Asynchronous Circuits are Challenging

Let's look at the example of an asP* pipeline.

Data In Stagel: Full Stage2: Empty

full;=T emptyl%F full,=F empty,=T

When the first stage is full, goEmpty, and goFull, are excited to go
low.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 4/26

Timed Asynchronous Circuits are Challenging

Let's look at the example of an asP* pipeline.

Data In Stagel: Full Stage2: Empty
fully=| emptyl%ifmimmmfiljlllz:T empty,=|
empty,=T }o ‘ : fulls
goEmpty,=T goFull,

The SR-flops for stages 1 & 2 are both excited to change.
The pipeline transfers data from stage 1 to stage 2.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 4/26

Timed Asynchronous Circuits are Challenging

Let's look at the example of an asP* pipeline.

Data In Stagel: Empty Stage2: Full

full;=F empty,=T full,=T empty,=F

empty,=T

goEmpty =T

The first stage is now empty and the second stage full.
The data ripples through the pipeline.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 4/26

Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

Data In Stagel: Full Stage2: Empty

empty,=T fullyl emptyﬁ fully=F empty,=T fu11,

goEmpty,=T goFull;=T goEmpty,=F goFull, | goEmpty,=T goFulls

Let's consider a scenario where the turn-around on the right of the
NAND gate is significant longer than the left of it, for example, due
to long wires in the layout.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 5/26

Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

Data In Stagel: Empty Stage2: Empty

empty,=T full;=F empty,=T fully=F empty,=T fulls

_ m |
goEmpty,=T goFull;=T goEmpty,T i goEmpty,=T goFull,

empty,; goes high, enabling goFull, to return high before full, has
a chance to change.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 5/26

Timed Asynchronous Circuits are Challenging

What can go wrong when timing constraints are violated?

Data In Stagel: Empty Stage2: Empty

empty,=T full;=F emptyl%T] full,=F empty,=T fulls

goEmpty =T goFull;=T goEmpty,;=T goFull,=T goEmpty,=T goFull;

Now, full; has gone low, but full, never went high.
This disables stage two from going full.
A data value is lost. &)

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 5/26

Timed Asynchronous Circuits are Challenging

Timing properties are crucial for correctness of timed asynchronous
circuits. But how do we know we've defined enough timing
constraints?
As is pointed out in [MJT97]:
For the circuit presented here, determining the delay condi-
tions that must be satisfied for reliable operation was diffi-
cult. We have used a mixture of ad hoc analysis and hSpice
simulation to achieve our results ...

goEmpty; [empty; 1< goEmpty; T

T

(emptyl | Afully ¢) — (emptyl T Afully T) =< (empty1 1 Afully i)

goEmptyql + fullp? < goEmpty;T

Proved!

aaaaaaaahhhhhh My brain hurts!!!

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019

Contributions

@ We propose a framework for modeling timed asynchronous
circuits using timed traces and trace recognizers. It naturally
models nondeterminism.

@ We verified timing properties of three configurations of asP*
pipelines, for each configurations:

e We defined and proved the inductive timing invariants.
e Using the invariants, we are able to prove hazard-freedom.

@ Our model can handle loop structures and allows
parameterized verification.

We verify timed circuits with the generality of ACL2 while achieving

performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 7/26

© Motivation

© Timed Traces

© Modeling asP* Pipelines
@ Verifying the asP* Pipelines

© Conclusions

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

Async 2019

8/26

Traces and Trace Recognizers

a o

0 r 9, a

Every circuit contains a set of signal paths, representing nodes in the
circuit.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 9/26

Traces and Trace Recognizers

@ A state of the circuit is a table mapping from node paths to
their values.

@ A state can contain other signals that are outside of the
component, allowing composability.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 9/26

Traces and Trace Recognizers

ro:F | ag:F | ri:F | ap:F | a1:F | m:F | a:F | a5:F
ro: T | ag:F | n:F | a1:F | a1: T | n:F | ax:F | a5:F
ro:T | ag: T | T | api:F | a1:T | i:F | ax:F | a5:F

A trace of the circuit is a list of states.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

Async 2019 9/26

Traces and Trace Recognizers

Trace recognizers are functions defined for each component. It
specifies that for this component, every two consecutive states in the
trace must make valid transitions:

im c_step(prev,next) =

] out

in, C — prev[out] = next [out]

1 \/(prev [in1] = prev[in2] A prev[out] # prev[in1])

@ For example, for the component C-element,

e Either the output hasn't changed, making no assumption about
the inputs.

e Or the output changes only when the inputs match and the
output doesn't.

@ The trace recognizers are receptive to all possible inputs[Dil88].

@ It defines allowed behaviour on the outputs based on the inputs.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 10 /26

Introducing Time - Traces

0 rp:F,0 ag:F,0 r:F,0 a;:F,0 | a;:F,0
03] rp:T,0.3 | ap:F,0 rn:F,0 a;:F,0 | a;:F,0
4 rp:T1,0.3 | ag:F,0 ri:F,0 a;:F,0 | a;:T,4
10 | rp:T,03 | ag:T,10 | r:T,10 | a4:F,0 | 31:T 4

We extend the traces to include timing information.
@ Add a time for each state.

@ For each node signal in a state, we associate its value with a time
representing the most recent time the signal acquired that value.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 11/26

Introducing Time - Traces

0 ro:F,0 ag:F,0 r:F,0 a;:F,0 | a;:F,0
03] rp:T,0.3 | ap:F,0 rn:F,0 a:F,0 | a;:F,0
4 r:T,0.3 | ag:F,0 r:F,0 a;:F,0 | a;:T,4
10 | rp:T,0.3 | ag:T,10 | r:T,10 | a4:F,0 | 31:T 4

A few notes about time:
@ Time is non-negative and monotonically increasing.
@ Time of each signal must not be larger than the state time.

@ Every trace can be extended so that time progresses without
bound (“non-Zenoness" [AL94]).

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 11/26

Introducing Time - Trace Recognizers

For each component, we use the delay model of a symbolic delay
bound [d)o, dpi) where 0, > 0 and &, < ;.

The trace recognizer now defines valid behaviour of a component in
terms of both logic values and transition time. For example:

A
c_step(prev,next) =

ing .« ..

. C out \/(prev[inl] .v = prev[in2] .v A prev[out].v # prev[ini].v
| Aprev[out] .v # next [out] .v

/\max(prev [in1] .t,prev[in2] .t) + 6, < next.t

Anext[out] .t = next.t
Anext.t < max(prev [in1].t,prev[in2] .t) + 5;,,-)

This says, when the output of the C-element changes, it should
happen between delay bounds.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019

Nondeterminism

states
b 4

>

states .4‘

—

oo # of
:' states ¢

@ Because of continuous time, a state in a trace can have an
infinite number of successors.

@ Our timed trace model naturally captures nondeterminism.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019

© Motivation

© Timed Traces

© Modeling asP* Pipelines
@ Verifying the asP* Pipelines

© Conclusions

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

Async 2019

14 /26

The asP* Pipelines

We recall the asP* pipeline is:

full, empty; full; empty;

goFull, goEmpty; goFull, goEmpty;

We want to find a way to break the pipeline into stages.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 15 /26

The asP* Pipelines

Apply a few logical equivalences to get:

empty, full, empty,,; full;yg
full; ; Q Q l l Q Q empty;,,
i~1 oFull;
goEmpty S R—1 I S R goFull;,,
goFull, goEmpty; goFull, goEmpty; ¢

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 15 /26

The asP* Pipelines

The obvious way is to split the AND gate into two halves:

3 empty; full, 3 empty; ; full;yq 3
full; i 5 Q l i 6 Q i empty;, ,
goEmpty; ; S R S R goFull;,,
goFull, goEmpty; goFull, goEmpty, |

1

But we don't want to model half of an AND gate.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 15 /26

The asP* Pipelines

Instead we duplicate the AND gates:

3 empty; full, 3 empty;,; full;yq 3
full, ; : 5 Q 4@7 6 Q : empty;, ,
goEmpty; ; 3 S R 1 | 1 S R 3 goFull;,,

goFull, goEmpty; 3 goFull, goEmpty, |

This transformation includes all possible behaviours of the pipeline and
additional behaviours due to the duplicated AND gates.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 15 /26

A Single Stage

So a single stage becomes:

asP* stage
eOut = _ |, o 0 o |, fOut =
empty; full;
S R
fIn = | < €In =
full; 4 empty;,

@ eOut stands for current stage being empty, and fIn stands for
previous stage being full. In this case, the current stage can set

e fQOut stands for current stage being full, and eln stands for next
stage being empty. In this case, the current stage can reset

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 16 / 26

We Care About the Environment

lenv renv
fOut—»fIn fOut|+fIn fOut{>eee ~fIn fOut|—»fln
1i ri
eInf~—elut eInp{elut elInj— eee< elut eInf—elut

@ To verify a pipeline, we need to consider actions of the
environment.
@ A 1Env is a “left-environment”
o It acts like an asP* stage,
o But it doesn't have a left-neighbour.
e An empty 1Env can spontaneously go full any time after a
minimum delay after going empty.
e An internal signal 1i allows the environment to have a pending
output event.

@ A rEnv is similar — it can spontaneously go empty.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 17 /26

rEnv + 1lEnv = Stage

A stage can be built with a right and a left environment with the

constraint that ri == Ii:
asP* stage renv lenv
—fIn fOutf—» —fIn fOut
< leOut elInl~- = leOut elnje—
@ Signal ri == Ii represents the internal state of a stage when it

has acquired the value but hasn't set/reset Q or Q yet.

This gives us the final model for the asP* pipeline:

lenv renv
fOut|—|fIn fOut|—> eee —»fIn fOut fIn
elnl<~—|elut eln («— eee «——{e0ut eln |« eOQut

Peng & Greenstreet (UBC)

Verifying Timed Asynchronous Circuits

Async 2019

18/26

© Motivation

© Timed Traces

© Modeling asP* Pipelines
@ Verifying the asP* Pipelines

© Conclusions

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

Async 2019

19/26

Three configurations

e Configuration 1: a lenv with a renv, 0 stage

lenv

renv

fout
1i
eln

—

f—|

fIn

eOut

ri

e Configuration 2: a lenv, an arbitrary number of stages, and a

renv
lenv renv
fOutt——|fIn fOut—» eee —»flIn fOut——fIn
Li (i1i Tisli 5 ri
elnje—|e0ut eln [«— eee «——e0ut eln «— elut

e Configuration 3: a ring with an arbitrary number of stages

-

N

fIn

eOu

fout
PJ—stages

Peng & Greenstreet (UBC)

lenv

renv

- (Com

f—

(N-1)—-stages

= fIn
ri
e— eOut

Verifying Timed Asynchronous Circuits

Async 2019

Formalizing the Timing Invariant

We define the timing invariant for an empty pipeline, and the

invariant for the other two configurations can be defined recursively.
The timing invariant is composed of two parts:

@ Timing constraints within each individual component: lenv and
renv — Obvious, based on the trace recognizers.

@ Timing constraints on the interactions between components —
The interesting part.

We prove the inductive invariant by proving the theorem:

invariant_env(sl) A valid_step(sl,s2) (1)
= invariant_env(s2)

Peng & Greenstreet (UBC)

Verifying Timed Asynchronous Circuits

Async 2019 21/26

Interaction invariants

f and e will hold long enough 3
for both ri and li to change

f and e will both go low
before either goes high again

1 = lenv internal state

r = right internal state

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

ready to transfer

internal states reset

fOut and eOut reset

spontaneous action in lenv and renv

next enabling of fOut and eOut

f =lenv.fOut = renv.fIn
e = lenv.eln = renv.eOut

Async 2019 22/26

Proving Hazard-freedom

Definition 1 (Hazard)

Between two consecutive states, if some component output, vy, is
excited to change in the first state, but has neither changed nor is
excited to make that change in the second state, we call this a
hazard.

For example, the hazard-free step condition for signal 1i of lenv
from state s1 to state s2 is:

si[lenv.eIn].v Asl[lenv.f0Out].vA
sillenv.1il.v (2)
= s2[lenv.eIn].v As2[lenv.f0Out].v

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 23/26

Proving Hazard-freedom

Definition 1 (Hazard)

Between two consecutive states, if some component output, y, is
excited to change in the first state, but has neither changed nor is
excited to make that change in the second state, we call this a
hazard.

To show that a module’s invariant ensures hazard freedom, we prove
the theorem:

invariant mod(s1) A valid_step mod(sl,s2) 2)
= hazard freemod(sl, s2)

Inductively, we prove that every step of a valid trace satisfies the
hazard-free property.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 23/26

The Proof Tree

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

invariant (0.02s)
,,,,,,,,,,,,,,,,,, @ This graph represents
asp-pipeline-
all theorems proved.

invariant-step (0.07s)

asp-ring-invariant-
step (0.01s
asp-ring-invariant-
trace (0.14s)

asp-pipeline-
invariant-trace (0.04s)

@ The proof is greatly
automated by using
the Smtlink package.

asp-pipeline-hazard-
free-lemma (24.79s)

env-hazard-free-
step (5.05s)

env-hazard-free- | | |
trace (0.06s

@ Counter-example
driven manual
learning of invariant.

asp-pipeline-hazard-
free-step (0.55s)

azard-

asp-ring-h
free-st

asp-ring-hazard-
free-trace (0.16s)

v
asp-pipeline-hazard-
free-trace (0.12s)

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 24 /26

Conclusion and Future Work

@ ACL2 is a general purpose theorem prover that can be used to
verify correctness of timed, asynchronous circuits.
@ Using Smtlink, proofs are nearly automatic:
o Prove each invariant is maintained by a single step (Smtlink).
e Prove the invariant holds for a valid trace (ACL2 excels at
induction).
@ The performance is comparable to dedicated tools:
e Most proofs complete within a second, the longest was less than
30 seconds.
e The verification problem is formulated in the ACL2 logic rather
than writing special-purpose timing analysis algorithms.
@ We can verify parameterized designs:
e An arbitrary number of pipeline or ring stages.
e Symbolic constraints on timing delays.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 25/26

Integrate with existing ACL2 Verilog front-end (SV and VL).

Use model checking algorithms to automatically generate
invariants.

Explore more sophisticated timing models including metastability.

Combine with verification of functionality:

e Prove that timed designs implement untimed abstractions.

o Reason about functionality in untimed model (e.g. [CCS19]).
Continue to extend Smtlink and make proofs even more
automatic.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 26 /26

We verify timed circuits with the generality of ACL2 while achieving
performance comparable to dedicated tools by using Smtlink, a SMT
solver interface

@ Integrate with existing ACL2 Verilog front-end (SV and VL).

@ Use model checking algorithms to automatically generate
invariants.

@ Explore more sophisticated timing models including metastability.

@ Combine with verification of functionality:

e Prove that timed designs implement untimed abstractions.
o Reason about functionality in untimed model (e.g. [CCS19]).

@ Continue to extend Smtlink and make proofs even more
automatic.

Thank You!

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 26 /26

References |

ﬁ Martin Abadi and Leslie Lamport.
An old-fashioned recipe for real time.

ACM Transactions on Programming Languages and Systems,
16(5):1543-1571, September 1994.

ﬁ Matt Kaufmann Marly Roncken Cuong Chau, Warren Hunt and lvan
Sutherland.

A hierarchical approach to self-timed circuit verification.
May 2019.

[@ David L. Dill.

Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits.

PhD thesis, School of Computer Science, Carnegie Mellon University, 1988.

Published in book form as part of the ACM Doctoral Dissertation Award
Series by the MIT Press, Cambridge, MA, 1989.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 27 /26

References ||

ﬁ Charles E. Molnar, lan W. Jones, et al.
A FIFO ring oscillator performance experiment.

In Proceedings of the Third International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 279-289. IEEE Computer
Society Press, April 1997.

ﬁ Ivan Sutherland and Scott Fairbanks.
GasP: A minimal FIFO control.
In Proceedings of the Seventh International Symposium on Asynchronous
Circuits and Systems, pages 46-53, April 2001.
[§ M. Singh and S. M. Nowick.
Mousetrap: High-speed transition-signaling asynchronous pipelines.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
15(6):684—698, June 2007.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019

References |1

@ Ivan E. Sutherland.
Micropipelines.
Communications of the ACM, 32(6):720-738, June 1989.

Turing Award lecture.

Async 2019 29/26

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits

Proving Deadlock-freedom

Definition 2 (Deadlock-freedom)

For all valid states, there always exist a valid next state that's
different from the current state.

We prove deadlock-freedom by defining a witness function that
provides a valid next state.

To show that a module’s invariant ensures deadlock-freedom, we
prove the theorem:

invariant mod(sl) = witness mod(sl) # nil
Avalid mod(sl, witnessmod(s1)) (3)
Achanged(s1, witness mod(s1))

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 30/26

Traces and Trace Recognizers

For example, this is an invalid trace:
ro:F | ap:F | ri:F | ai:F | a1:F | »:F | ax:F | a5:F
ro: T | ag:F | ri:F | a1:F | a1:F | n:F | ax:F | a5:F
ro:T | ao:T | ri:F | a1:F | a1:F | »:F | as:F | a5:F

ap as the output of the first C-element makes an unexplained
transition, violating the trace recognizer for the first C-element:
c_step(prev, next) £
next [out] = prev[out] (4)
V prev[inl] = prev[in2] A prev[inl] # prev[out]

Peng & Greenstreet (UBC)

Verifying Timed Asynchronous Circuits

Async 2019

In ACL2, we use algebraic datatypes for modeling traces:!

Trace list of TimedState
TimedState | product of Time and StateMap
StateMap map from Path to TimedValue
Path list of PathElement

PathElement | product of Name and Index
TimedValue | product of Time and Value

Using this timed trace model, when proving properties of a circuit,
usually we will prove a theorem in the shape:

Circuit(circuit) A Trace(tr)
Avalid circuit(circuit, tr) (5)
— property(circuit, tr)

!Basic types: Time - rationalp; Value - booleanp; Name - Symbolp; Index
- integerp

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 32/26

Related Work

Timed automaton based approaches, relative timing, theorem
proving, other parameterized methods.

@ Comparing to timed automaton based approaches, our method
allows symbolic delays on gates and allows parameterized
verification.

@ Comparing to relative timing, our approach models full timing
information that allows verification of a larger set of circuits.

@ Comparing to theorem proving based methods, our use of an
SMT solver at the backend greatly reduced human effort.

@ Existing parameterized methods suffers from loss of precision, we
can achieve precision by using induction proofs.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 33/26

Cool Animation

@ This is an awesome animation.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 34 /26

Cool Animation

@ This is an awesome animation.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 34 /26

Cool Animation

m =4arctanl

@ This is an awesome animation.

Peng & Greenstreet (UBC) Verifying Timed Asynchronous Circuits Async 2019 34 /26

