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AMS designs are ubiquitous

3 / 21



Motivation

Different design models and methods, thus more 
complex to model.

Time-scales vary widely from sub-picosecond to 
milliseconds or seconds, makes it harder to simulate.

Abstractions on time-scales can hide bugs in the 
implementation.

Simulation? 
Formal 

methods
Analytical 
approach

• Circuits are intended 
to be correct

• Verify the intuitive 
argument
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Motivation - the best of both worlds

� AMS design verification requires huge amounts of
arithmetic reasoning and reasoning about sequences
which requires induction.

� SMT and theorem proving are complimentary to each
other:
I SMT - Excellent performance in linear and non-linear

arithmetic reasoning.
I Theorem proving - Strong support for induction and

systematic model & proof management.

� We are using ACL2 and Z3 as our prototyping tools.
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Contributions

� We demonstrate the value of combining SMT with theorem
proving for cyber-physical system verification with a focus
on utilizing the non-linear arithmetic capabilities.

� The first integration of an SMT solver into the ACL2
theorem prover.

� A software architecture for integrating a SMT solver with a
theorem prover that addresses many technical challenges.

� A reusable recurrence model for a state-of-the art digital
PLL.

� A proof of global convergence for the digital PLL.
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Clause processors in ACL2

clauses returned by clause processor:

clause
processor kc1c

1c kcc2 c

clause from

ACL2

c 2c

� A clause processor takes a goal and decomposes it into a
conjunction of subgoals. Each subgoal is a called a clause.

� ACL2 supports two kinds of clause processors:
verified and trusted.
I verified - the correctness of the clause processor is proven

within ACL2.
I trusted - the results of the clause processor are accepted

without proof.

� We integrate Z3 into ACL2 as a trusted clause processor.
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Architecture of Smtlink

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

(
∧m

i=1 Ai) ; each Ai verified by ACL2
((
∧m

i=1 Ai) ∧G′)⇒ G ; verified by ACL2
GZ3 ⇒ G′ ; we trust translation step 2
GZ3 ; verified by Z3

G
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Architecture of Smtlink
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G′, A1, A2, ..., Am
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¬GZ3
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� All methods of the underlying SMT solver are invoked
through methods of an object called acl2SMT.

� This architecture is generic enough to be combined with
other SMT solvers by extending this class.
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Technical issues: reals vs. rationals

clauses returned by clause processor:

clause
processor kc1cx,y,z. c(x,y.z)∀

clause from ACL2
1c kcc2 c(x,y,z)

2c

� Challenge: ACL2 has rationals and Z3 has reals.
I In ACL2, ¬∃x . x2 = 2 is a theorem.
I In Z3, ∃x . x2 = 2 is a theorem.

� Solution: only use Z3 to prove propositions where all
variables are universally quantified.
I E.g. we don’t support defun-sk, exists, forall, etc.
I This is enforced syntactically in our clause processor.
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Techinical issues: user defined functions

Expanded => Original

clause
processor kc1c

clause from

ACL2

c 2c

about recursive functions.
Validate user’s claims

� Challenge:
I ACL2 supports arbitrary lisp functions.
I Z3 functions are more like macros (no recursion).

� Solution:
I Set up translation for a basic set of functions.
I Expand non-recursive functions.
I Expand recursive functions to bounded depth.
I Deeper calls are declared to return an arbitrary value of the

appropriate type.
I Expansion done on ACL2’s representation: can verify

correctness.
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Other issues:

� Claims can contain non-polynomial terms.
I Replace offensive subexpression with a variable.
I User adds constraints about these variables.
I These constraints are returned as clauses for ACL2 to

prove.
� ACL2 may need hints to discharge clauses returned from

the clause processor.
I Solution: nested hints.
I These hints tell the clause processor what hints to attach to

returned clauses.

� These features provides a very flexible back-and-forth
between induction proofs in ACL2 and handling the details
of the algebra with Z3.
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What’s trusted?

simplify
expand &

step 2
translation

lisp (ACL2)

(proven)

yes

step 1
translation

original expanded
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expanded
original)

false
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unknownor?unsatno

return

python (Z3)

to smt−py
translate

generate
return
clause

generate
return
clause

Z3

original
clause

ACL2 (lisp)

expanded
clause

ACL2 (lisp)

SMT clause

(SMT language)
clause

Not(clause)
satisfiable?

acl2SMT

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3
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translation others expansion & simplification
LOC(fraction) 656(39%) 453(27%) 584(34%)

� Translation code is straight forward and easy to check.
� Others are mostly boilerplate code for integrating general

clause processors.
13 / 21



Outline

� Characterize AMS verification problems
� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL

I The digital phase-locked loop
I Modeling the digital PLL
I Prove global convergence

� Conclusion
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A state-of-the-art Digital PLL [CNA10]
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� A PLL outputs a signal with a frequency that’s N times of
the input signal. The output should also aligns the input in
phase.

� Three state variables:
I capacitance setting (digital)
I supply voltage (linear),
I phase correction (time-difference of digital transitions).
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Modeling the digital PLL
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� From Spectre simulation, fdco(c, v) ≈ 1+αv
1+βc f0.

� We use recurrence function to model the circuit behaviour:
[c(i + 1), v(i + 1), φ(i + 1)] = next(c(i), v(i), φ(i)).
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The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi

� Initial to wall, Z3
� Climb the wall, Z3
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The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi � Initial to wall, Z3
� Climb the wall, Z3
� Leave the wall, bounded

model checking, Z3
I Unwind the recurrence

for bounded depth. Z3
shows that all points
have left the wall.
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The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi
� Initial to wall, Z3
� Climb the wall, Z3
� Leave the wall, unbounded

model checking, Z3
� Spirals along the fdco = fref

line to the middle yellow
region, the most technical
theorem, ACL2
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The proof - the main theorem

points
extrapolated

These two distances are the same.

0
ceqc1

c2

c
c′1

φ

this point and conclude
Show that φ < 0 at

c2 is closer to ceq
than c1.

� When we encounter heavy non-linear arithmetic reasoning,
we use Smtlink.

� Smtlink solves the the key polynomial inequality that sets
the foundation for further inequalities to hold.
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Some statistics

� 13 page long hand-written proof.
� 75 lemmas, 10 of which were discharged using the SMT

solver.
� Of those ten, one was the key, polynomial inequality from

the manual proof.
� ACL2 completes the proof in a few minutes running on a

laptop computer.
� We found one error in the process of transcribing the

hand-written proof to ACL2.
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Conclusion

� We built a sound and extensible integration of an SMT
solver into a theorem prover.

� We demonstrated the effectiveness of the approach by
proving global convergence for a state-of-the-art AMS
design.

� Benefits we can get from analytical approach:
I Ranges for initial states, parameters and etc.
I Proofs are easy to extend. (E.g. insert uncertainty into the

model, or minor revision on the model)
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Conclusion

Future work:
� Extend our integration and contribute to the ACL2

community.
I Integrate all code into ACL2.
I Fully exploit Smtlink to shorten my proof.
I Automatically generated hints.
I Checked counterexample reports.

� Automate AMS proofs.
� Example problems from other physical domains: medical

control systems, machine learning problems and etc.
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Formally characterize AMS verification problem

Q

Q0

Q

Q0

∀s(0) ∈ Q0∀i ≥ 0. s(i) ∈ Q ∀x(0) ∈ Q0∀t ≥ 0. x(t) ∈ Q

Digital Analog AMS

s(i + 1) = next(s(i), in(i)) dx
dt = f (x , in,u)

dx
dt = fq(x)

q(i + 1) = d(q(i), th(x))

Two features in formal model of AMS designs:
� Large non-linear arithmetic formulas
� Properties for sequences of states
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SMT&Theorem proving

SMT Theorem proving

What Satisfiability Modulo
Theory

Computer aided theorem
proving

Strength Powerful (non)linear arith-
metic solver and others

1. Systematic proof
management

2. Induction proofs

Weakness 1. Lack of induction
2. Lemmas don’t connect

Manual and tedious proofs

Tool Z3[DMB08] ACL2[KM97]
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Geometric series theorem

Theorem (Geometric Sum)

Suppose r ∈ R, n ∈ N, r > 0 and r 6= 1. Then,

n∑
i=0

r i =
1− rn+1

1− r

Setup LOC # of theorems runtime(s) code time
raw Z3(can’t) - - - -

raw ACL2(proved) 169 19 0.14 2 days
arithmetic-5(proved) 29 1 0.15 10 min
ACL2 & Z3(proved) 72 2 0.06 20 min
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Polynomial inequalities
Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.
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Polynomial inequalities

Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.

Setup LOC # of theorems runtime(s) code time
raw Z3(proved) 27 1 0.0004 10 min

raw ACL2(failed) 40 - - 10 min
arithmetic-5(failed) 41 - - 10 min
ACL2 & Z3(proved) 59 1 0.02 10 min
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Technical issues: typed vs. untyped
� This is not a theorem in ACL2:

1 (defthm not-really-a-theorem
2 (iff (equal x y) (zerop (- x y))) )

� Here is a counter-example:

Expression Value
(- ’dog (list "hello", 2, ’world)) 0
(zerop (- ’dog (list "hello", 2, ’world))) t
(equal ’dog (list "hello", 2, ’world)) nil
(iff (equal ’dog (list "hello", 2, ’world)) nil

(zerop (- ’dog (list "hello", 2, ’world))))

� But this is a theorem:

1 (defthm this-is-a-theorem
2 (implies (and (rationalp x) (rationalp y))
3 (iff (equal x y) (zerop (- x y))) ))
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Technical issues: typed vs. untyped

c(x,y,z)

clause
processor kc1c

1c kc

2c

clauses returned by clause processor:

clause from ACL2

(implies (and (rationalp x)
(rationalp y)
(rationalp z))

(c x y z))

c2

� Solution: user adds type assertions to antecedent.
I These are almost always needed anyways.
I This requirement is not a significant burden for the user.
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Technical issues: principle for ensuring soundness

� Tis are the type predicates; hjs are the “other” hypothesis;
C is the conclusion of the theorem. The ACL2 theorem is
defined as:

∀x1, x2, ..., xm ∈ U.

 m∧
i=1

Ti(xi) ∧
n∧

j=1

hj(x)

⇒ C(x) (1)

� S1, S2, ..., Sm are the SMT sorts corresponding to the type
recognizers T1, T2, ..., Tm; h̃j(x) is the translation of h(x);
and C̃(x) is the translation of C(x). The corresponding
SMT theorem is defined as:

∀x1 ∈ S1, x2 ∈ S2, ..., xm ∈ Sm.

 n∧
j=1

h̃j(x)

⇒ C̃(x) (2)
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Technical issues: principle for ensuring soundness

Soundness is ensured if:
� ∀xi ∈ U. Ti(xi)⇒ xi ∈ Si

� ∀x1, x2, ..., xm ∈ U. (
∧m

i=1 Ti(xi))⇒ (hj(x)⇒ h̃j(x))

� ∀x1, x2, ..., xm ∈ U. (
∧m

i=1 Ti(xi))⇒ (C̃(x)⇒ C(x))
For Smtlink construction, that means:
� Types as translated by Smtlink must be no stronger than

those of the ACL2 theorem.
� Hypotheses must be no stronger than those of the ACL2

theorem.
� The conclusion must be at least as strong.
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Modeling the digital PLL

c(i + 1) = saturate(c(i) + gc sgn(φ), cmin, cmax)
v(i + 1) = saturate(v(i) + gv (ccenter − c(i)), vmin, vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref )− gφφ(i))

fdco(c, v) = 1+αv
1+βc f0

saturate(x , lo,hi) = min(max(x , lo),hi)
wrap(φ) = wrap(φ+ 1), if φ ≤ −1

= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

� By simulation we get the model for fDCO.
� This approach is similar to the one proposed in [ASZT07].
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