
Combining SMT with Theorem Proving
for AMS Verification
The best of both worlds

Yan Peng & Mark Greenstreet

University of British Columbia
Vancouver, BC

NASA Formal Methods Symposium, April 29, 2015

1 / 21



Outline

� AMS verification
I AMS designs are ubiquitous
I Motivation
I Contributions

� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL
� Conclusion

2 / 21



AMS designs are ubiquitous

3 / 21



Motivation

Different design models and methods, thus more 
complex to model.

Time-scales vary widely from sub-picosecond to 
milliseconds or seconds, makes it harder to simulate.

Abstractions on time-scales can hide bugs in the 
implementation.

Simulation? 
Formal 

methods
Analytical 
approach

• Circuits are intended 
to be correct

• Verify the intuitive 
argument

4 / 21



Motivation - the best of both worlds

� AMS design verification requires huge amounts of
arithmetic reasoning and reasoning about sequences
which requires induction.

� SMT and theorem proving are complimentary to each
other:
I SMT - Excellent performance in linear and non-linear

arithmetic reasoning.
I Theorem proving - Strong support for induction and

systematic model & proof management.

� We are using ACL2 and Z3 as our prototyping tools.

5 / 21



Contributions

� We demonstrate the value of combining SMT with theorem
proving for cyber-physical system verification with a focus
on utilizing the non-linear arithmetic capabilities.

� The first integration of an SMT solver into the ACL2
theorem prover.

� A software architecture for integrating a SMT solver with a
theorem prover that addresses many technical challenges.

� A reusable recurrence model for a state-of-the art digital
PLL.

� A proof of global convergence for the digital PLL.

6 / 21



Outline

� Characterize AMS verification problems
� Integrating SMT with theorem proving

I Architecture
I Technical issues
I What’s trusted?

� Proving global convergence for a digital PLL
� Conclusion

7 / 21



Clause processors in ACL2

clauses returned by clause processor:

clause
processor kc1c

1c kcc2 c

clause from

ACL2

c 2c

� A clause processor takes a goal and decomposes it into a
conjunction of subgoals. Each subgoal is a called a clause.

� ACL2 supports two kinds of clause processors:
verified and trusted.
I verified - the correctness of the clause processor is proven

within ACL2.
I trusted - the results of the clause processor are accepted

without proof.

� We integrate Z3 into ACL2 as a trusted clause processor.

8 / 21



Architecture of Smtlink

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

(
∧m

i=1 Ai) ; each Ai verified by ACL2
((
∧m

i=1 Ai) ∧G′)⇒ G ; verified by ACL2
GZ3 ⇒ G′ ; we trust translation step 2
GZ3 ; verified by Z3

G

9 / 21



Architecture of Smtlink

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

� All methods of the underlying SMT solver are invoked
through methods of an object called acl2SMT.

� This architecture is generic enough to be combined with
other SMT solvers by extending this class.

9 / 21



Technical issues: reals vs. rationals

clauses returned by clause processor:

clause
processor kc1cx,y,z. c(x,y.z)∀

clause from ACL2
1c kcc2 c(x,y,z)

2c

� Challenge: ACL2 has rationals and Z3 has reals.
I In ACL2, ¬∃x . x2 = 2 is a theorem.
I In Z3, ∃x . x2 = 2 is a theorem.

� Solution: only use Z3 to prove propositions where all
variables are universally quantified.
I E.g. we don’t support defun-sk, exists, forall, etc.
I This is enforced syntactically in our clause processor.

10 / 21



Techinical issues: user defined functions

Expanded => Original

clause
processor kc1c

clause from

ACL2

c 2c

about recursive functions.
Validate user’s claims

� Challenge:
I ACL2 supports arbitrary lisp functions.
I Z3 functions are more like macros (no recursion).

� Solution:
I Set up translation for a basic set of functions.
I Expand non-recursive functions.
I Expand recursive functions to bounded depth.
I Deeper calls are declared to return an arbitrary value of the

appropriate type.
I Expansion done on ACL2’s representation: can verify

correctness.

11 / 21



Other issues:

� Claims can contain non-polynomial terms.
I Replace offensive subexpression with a variable.
I User adds constraints about these variables.
I These constraints are returned as clauses for ACL2 to

prove.
� ACL2 may need hints to discharge clauses returned from

the clause processor.
I Solution: nested hints.
I These hints tell the clause processor what hints to attach to

returned clauses.

� These features provides a very flexible back-and-forth
between induction proofs in ACL2 and handling the details
of the algebra with Z3.

12 / 21



What’s trusted?

simplify
expand &

step 2
translation

lisp (ACL2)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

return

python (Z3)

to smt−py
translate

generate
return
clause

generate
return
clause

Z3

original
clause

ACL2 (lisp)

expanded
clause

ACL2 (lisp)

SMT clause

(SMT language)
clause

Not(clause)
satisfiable?

acl2SMT

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

translation others expansion & simplification
LOC(fraction) 656(39%) 453(27%) 584(34%)

� Translation code is straight forward and easy to check.
� Others are mostly boilerplate code for integrating general

clause processors.
13 / 21



Outline

� Characterize AMS verification problems
� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL

I The digital phase-locked loop
I Modeling the digital PLL
I Prove global convergence

� Conclusion

14 / 21



A state-of-the-art Digital PLL [CNA10]

DCO

BBPFD

0:23

0:14

15:23
LPF

DCO

+

− dn
up

∆θ

c
vPFD

Fref

Fref

Σ
0:7

0:3

4:7

∆Σ

FDCO

Fref

Σ DAC −
+

Cdecap

F

−
(

Center
code

)

÷N

� A PLL outputs a signal with a frequency that’s N times of
the input signal. The output should also aligns the input in
phase.

� Three state variables:
I capacitance setting (digital)
I supply voltage (linear),
I phase correction (time-difference of digital transitions).

15 / 21



Modeling the digital PLL

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

load capacitance, c (pF)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit for 1/fDCO

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

operating voltage, v (volts)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

 

 

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit

� From Spectre simulation, fdco(c, v) ≈ 1+αv
1+βc f0.

� We use recurrence function to model the circuit behaviour:
[c(i + 1), v(i + 1), φ(i + 1)] = next(c(i), v(i), φ(i)).

16 / 21



The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi

� Initial to wall, Z3
� Climb the wall, Z3

17 / 21



The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi � Initial to wall, Z3
� Climb the wall, Z3
� Leave the wall, bounded

model checking, Z3
I Unwind the recurrence

for bounded depth. Z3
shows that all points
have left the wall.

17 / 21



The proof - the high level description

c
ccenter cmaxcmin

vmin

vmax

V

fdco
= f ref

vlo

vhi
� Initial to wall, Z3
� Climb the wall, Z3
� Leave the wall, unbounded

model checking, Z3
� Spirals along the fdco = fref

line to the middle yellow
region, the most technical
theorem, ACL2

17 / 21



The proof - the main theorem

points
extrapolated

These two distances are the same.

0
ceqc1

c2

c
c′1

φ

this point and conclude
Show that φ < 0 at

c2 is closer to ceq
than c1.

� When we encounter heavy non-linear arithmetic reasoning,
we use Smtlink.

� Smtlink solves the the key polynomial inequality that sets
the foundation for further inequalities to hold.

18 / 21



Some statistics

� 13 page long hand-written proof.
� 75 lemmas, 10 of which were discharged using the SMT

solver.
� Of those ten, one was the key, polynomial inequality from

the manual proof.
� ACL2 completes the proof in a few minutes running on a

laptop computer.
� We found one error in the process of transcribing the

hand-written proof to ACL2.

19 / 21



Conclusion

� We built a sound and extensible integration of an SMT
solver into a theorem prover.

� We demonstrated the effectiveness of the approach by
proving global convergence for a state-of-the-art AMS
design.

� Benefits we can get from analytical approach:
I Ranges for initial states, parameters and etc.
I Proofs are easy to extend. (E.g. insert uncertainty into the

model, or minor revision on the model)

20 / 21



Conclusion

Future work:
� Extend our integration and contribute to the ACL2

community.
I Integrate all code into ACL2.
I Fully exploit Smtlink to shorten my proof.
I Automatically generated hints.
I Checked counterexample reports.

� Automate AMS proofs.
� Example problems from other physical domains: medical

control systems, machine learning problems and etc.

21 / 21



References

Ghiath Al-Sammane, Mohamed H Zaki, and Sofiène Tahar, A symbolic
methodology for the verification of analog and mixed signal designs,
Proceedings of the conference on Design, automation and test in
Europe, EDA Consortium, 2007, pp. 249–254.

J. Crossley, E. Naviasky, and E. Alon, An energy-efficient ring-oscillator
digital pll, Custom Integrated Circuits Conference (CICC), 2010 IEEE,
2010, pp. 1–4.

Leonardo De Moura and Nikolaj Bjørner, Z3: an efficient smt solver,
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of
systems (Berlin, Heidelberg), TACAS’08/ETAPS’08, Springer-Verlag,
2008, pp. 337–340.

Matt Kaufmann and J. S. Moore, An industrial strength theorem prover
for a logic based on common lisp, IEEE Trans. Softw. Eng. 23 (1997),
no. 4, 203–213.

22 / 21



Formally characterize AMS verification problem

Q

Q0

Q

Q0

∀s(0) ∈ Q0∀i ≥ 0. s(i) ∈ Q ∀x(0) ∈ Q0∀t ≥ 0. x(t) ∈ Q

Digital Analog AMS

s(i + 1) = next(s(i), in(i)) dx
dt = f (x , in,u)

dx
dt = fq(x)

q(i + 1) = d(q(i), th(x))

Two features in formal model of AMS designs:
� Large non-linear arithmetic formulas
� Properties for sequences of states

23 / 21



SMT&Theorem proving

SMT Theorem proving

What Satisfiability Modulo
Theory

Computer aided theorem
proving

Strength Powerful (non)linear arith-
metic solver and others

1. Systematic proof
management

2. Induction proofs

Weakness 1. Lack of induction
2. Lemmas don’t connect

Manual and tedious proofs

Tool Z3[DMB08] ACL2[KM97]

24 / 21



Geometric series theorem

Theorem (Geometric Sum)

Suppose r ∈ R, n ∈ N, r > 0 and r 6= 1. Then,

n∑
i=0

r i =
1− rn+1

1− r

Setup LOC # of theorems runtime(s) code time
raw Z3(can’t) - - - -

raw ACL2(proved) 169 19 0.14 2 days
arithmetic-5(proved) 29 1 0.15 10 min
ACL2 & Z3(proved) 72 2 0.06 20 min

25 / 21



Polynomial inequalities
Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.

−3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

X

y

1 1.05 1.1 1.15

0

0.1

0.2

0.3

0.4

0.5

0.6

X

y

26 / 21



Polynomial inequalities

Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.

Setup LOC # of theorems runtime(s) code time
raw Z3(proved) 27 1 0.0004 10 min

raw ACL2(failed) 40 - - 10 min
arithmetic-5(failed) 41 - - 10 min
ACL2 & Z3(proved) 59 1 0.02 10 min

26 / 21



Technical issues: typed vs. untyped
� This is not a theorem in ACL2:

1 (defthm not-really-a-theorem
2 (iff (equal x y) (zerop (- x y))) )

� Here is a counter-example:

Expression Value
(- ’dog (list "hello", 2, ’world)) 0
(zerop (- ’dog (list "hello", 2, ’world))) t
(equal ’dog (list "hello", 2, ’world)) nil
(iff (equal ’dog (list "hello", 2, ’world)) nil

(zerop (- ’dog (list "hello", 2, ’world))))

� But this is a theorem:

1 (defthm this-is-a-theorem
2 (implies (and (rationalp x) (rationalp y))
3 (iff (equal x y) (zerop (- x y))) ))

27 / 21



Technical issues: typed vs. untyped

c(x,y,z)

clause
processor kc1c

1c kc

2c

clauses returned by clause processor:

clause from ACL2

(implies (and (rationalp x)
(rationalp y)
(rationalp z))

(c x y z))

c2

� Solution: user adds type assertions to antecedent.
I These are almost always needed anyways.
I This requirement is not a significant burden for the user.

27 / 21



Technical issues: principle for ensuring soundness

� Tis are the type predicates; hjs are the “other” hypothesis;
C is the conclusion of the theorem. The ACL2 theorem is
defined as:

∀x1, x2, ..., xm ∈ U.

 m∧
i=1

Ti(xi) ∧
n∧

j=1

hj(x)

⇒ C(x) (1)

� S1, S2, ..., Sm are the SMT sorts corresponding to the type
recognizers T1, T2, ..., Tm; h̃j(x) is the translation of h(x);
and C̃(x) is the translation of C(x). The corresponding
SMT theorem is defined as:

∀x1 ∈ S1, x2 ∈ S2, ..., xm ∈ Sm.

 n∧
j=1

h̃j(x)

⇒ C̃(x) (2)

28 / 21



Technical issues: principle for ensuring soundness

Soundness is ensured if:
� ∀xi ∈ U. Ti(xi)⇒ xi ∈ Si

� ∀x1, x2, ..., xm ∈ U. (
∧m

i=1 Ti(xi))⇒ (hj(x)⇒ h̃j(x))

� ∀x1, x2, ..., xm ∈ U. (
∧m

i=1 Ti(xi))⇒ (C̃(x)⇒ C(x))
For Smtlink construction, that means:
� Types as translated by Smtlink must be no stronger than

those of the ACL2 theorem.
� Hypotheses must be no stronger than those of the ACL2

theorem.
� The conclusion must be at least as strong.

28 / 21



Modeling the digital PLL

c(i + 1) = saturate(c(i) + gc sgn(φ), cmin, cmax)
v(i + 1) = saturate(v(i) + gv (ccenter − c(i)), vmin, vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref )− gφφ(i))

fdco(c, v) = 1+αv
1+βc f0

saturate(x , lo,hi) = min(max(x , lo),hi)
wrap(φ) = wrap(φ+ 1), if φ ≤ −1

= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

� By simulation we get the model for fDCO.
� This approach is similar to the one proposed in [ASZT07].

29 / 21


	Appendix

