
Combining SMT with Theorem Proving
for AMS Verification
The best of both worlds

Yan Peng & Mark Greenstreet

University of British Columbia
Vancouver, BC

March 30, 2015

1 / 21



Outline

� AMS verification
I AMS designs are ubiquitous
I Motivation
I Contributions

� The best of both worlds
� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL
� Conclusion

2 / 21



AMS designs are ubiquitous

3 / 21



Motivation

Different design models and methods, thus more 
complex to model.

Time-scales vary widely from sub-picosecond to 
milliseconds or seconds, makes it harder to simulate.

Abstractions on time-scales can hide bugs in the 
implementation.

Simulation? 
Formal 

methods
Analytical 
approach

• Circuits are intended 
to be correct

• Verify the intuitive 
argument

4 / 21



Contributions

� How to make use of the arithmetic decision procedures of
an SMT solver for verifying properties of physical systems.

� The first integration of an SMT solver into the ACL2
theorem prover.

� First use of SMT solver in a theorem prover with emphasis
on real-arithmetic.

� An software architecture for integrating a SMT solver with a
theorem prover that addresses many technical challenges.

� A reusable recurrence model for a state-of-the art digital
PLL.

� A proof of global convergence for the digital PLL.

5 / 21



Outline

� Characterize AMS verification problems
� The best of both worlds

I Formally characterize AMS verification problem
I SMT and theorem proving
I Simple example: prove sum of geometric series

theorem
I Simple example: prove given polynomial

inequalities have no solution

� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL
� Conclusion

6 / 21



Formally characterize AMS verification problem

Q

Q0

Q

Q0

∀s(0) ∈ Q0∀i ≥ 0. s(i) ∈ Q ∀x(0) ∈ Q0∀t ≥ 0. x(t) ∈ Q

Digital Analog AMS

s(i + 1) = next(s(i), in(i)) dx
dt = f (x , in,u)

dx
dt = fq(x)

q(i + 1) = d(q(i), th(x))

Two features in formal model of AMS designs:
� Large non-linear arithmetic formulas
� Properties for sequences of states

7 / 21



SMT&Theorem proving

SMT Theorem proving

What Satisfiability Modulo
Theory

Computer aided theorem
proving

Strength Powerful (non)linear arith-
metic solver and others

1. Systematic proof
management

2. Induction proofs

Weakness 1. Lack of induction
2. Lemmas don’t connect

Manual and tedious proofs

Tool Z3[DMB08] ACL2[KM97]

8 / 21



Geometric series theorem

Theorem (Geometric Sum)

Suppose r ∈ R, n ∈ N, r > 0 and r 6= 1. Then,

n∑
i=0

r i =
1− rn+1

1− r

Setup LOC # of theorems runtime(s) code time
raw Z3(can’t) - - - -

raw ACL2(proved) 169 19 0.14 2 days
arithmetic-5(proved) 29 1 0.15 10 min
ACL2 & Z3(proved) 72 2 0.06 20 min

9 / 21



Polynomial inequalities
Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.

−3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

X

y

1 1.05 1.1 1.15

0

0.1

0.2

0.3

0.4

0.5

0.6

X

y

10 / 21



Polynomial inequalities

Theorem (Polynomial inequality)

Suppose x ∈ R and y ∈ R, then

1.125x2 + y2 ≤ 1
x2 − y2 ≤ 1

3(x − 2.125)2 − 3 ≤ y

does not have a solution.

Setup LOC # of theorems runtime(s) code time
raw Z3(proved) 27 1 0.0004 10 min

raw ACL2(failed) 40 - - 10 min
arithmetic-5(failed) 41 - - 10 min
ACL2 & Z3(proved) 59 1 0.02 10 min

10 / 21



Best of both worlds - Summary

� AMS design verification requires huge amount of
arithmetic reasoning and reasoning about sequences
which requires induction.

� SMT and theorem proving are complimentary to each
other:
I SMT - Excellent performance in linear and non-linear

arithmetic reasoning.
I Theorem proving - Strong support for induction and

systematical model & proof management.

� Small experiments show how one can benefit from
combing them.

11 / 21



Outline

� Characterize AMS verification problems
� The best of both worlds
� Integrating SMT with theorem proving

I Architecture
I Technical issues
I What’s trusted?

� Proving global convergence for a digital PLL
� Conclusion

12 / 21



Starting from a clause processor

clauses returned by clause processor:

clause
processor kc1c

1c kcc2 c

clause from

ACL2

c 2c

� A clause processor takes a goal and decomposes it into a
conjunction of subgoals. Each subgoal is a called a clause.

� ACL2 supports two kinds of clause processors:
verified and trusted.
I verified - the correctness of the clause processor is proven

within ACL2.
I trusted - the results of the clause processor are accepted

without proof.

� We integrate Z3 into ACL2 as a trusted clause processor.

13 / 21



Architecture

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

14 / 21



Architecture

Not(clause)
satisfiable?

generate
return
clause

simplify
expand &

generate
return
clause

step 2
translation

lisp (ACL2)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

SMT language

clause
ACL2 (lisp)

original expanded
clause

ACL2 (lisp)

translate
to smt

SMT clause

(SMT language)
clause

SMT

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GSMT

GSMT

14 / 21



Technical issues

� typed vs. untyped

c(x,y,z)

clause
processor kc1c

1c kc

2c

clauses returned by clause processor:

clause from ACL2

(implies (and (rationalp x)
(rationalp y)
(rationalp z))

(c x y z))

c2

� reals vs. rationals

clauses returned by clause processor:

clause
processor kc1cx,y,z. c(x,y.z)∀

clause from ACL2
1c kcc2 c(x,y,z)

2c

� user defined functions

Expanded => Original

clause
processor kc1c

clause from

ACL2

c 2c

about recursive functions.
Validate user’s claims

15 / 21



What’s trusted?

simplify
expand &

step 2
translation

lisp (ACL2)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

return

python (Z3)

to smt−py
translate

generate
return
clause

generate
return
clause

Z3

original
clause

ACL2 (lisp)

expanded
clause

ACL2 (lisp)

SMT clause

(SMT language)
clause

Not(clause)
satisfiable?

acl2SMT

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

GZ3

� translation others expansion & simplification
LOC(fraction) 656(39%) 453(27%) 584(34%)

� Translation and connection code are straight forward and
easy to check.

16 / 21



Outline

� Characterize AMS verification problems
� The best of both worlds
� Integrating SMT with theorem proving
� Proving global convergence for a digital PLL

I The digital phase-locked loop
I Modeling the digital PLL
I Prove global convergence

� Conclusion

17 / 21



A state-of-the-art Digital PLL (from CICC 2010)
[CNA10]

DCO

BBPFD

0:23

0:14

15:23
LPF

DCO

+

− dn
up

∆θ

c
vPFD

Fref

Fref

Σ
0:7

0:3

4:7

∆Σ

FDCO

Fref

Σ DAC −
+

Cdecap

F

−
(

Center
code

)

÷N

� A PLL outputs a signal with a frequency that’s N times of
the input signal. The output should also aligns the input in
phase.

� Three state variables:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital transitions).

� This is a typical AMS design.
18 / 21



The proof

V

fdco
= f ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

19 / 21



Some statistics

� 13 page long hand-written proof.
� 75 lemmas, 10 of which were discharged using the SMT

solver.
� Of those ten, one was the key, polynomial inequality from

the manual proof.
� ACL2 completes the proof in a few minutes running on a

laptop computer.
� We found one error in the process of transcribing the

hand-written proof to ACL2.

20 / 21



Conclusion

� We build a sound and extensible integration of an SMT
solver into a theorem prover.

� We demonstrates the effectiveness of the approach by
proving global convergence for a state-of-the-art AMS
design.

� Benefits we can get from analytical approach:
I Ranges for initial states, parameters and etc.
I Proofs are easy to extend. (C rational values, V with some

uncertainty)

21 / 21



References

Ghiath Al-Sammane, Mohamed H Zaki, and Sofiène Tahar, A symbolic
methodology for the verification of analog and mixed signal designs,
Proceedings of the conference on Design, automation and test in
Europe, EDA Consortium, 2007, pp. 249–254.

J. Crossley, E. Naviasky, and E. Alon, An energy-efficient ring-oscillator
digital pll, Custom Integrated Circuits Conference (CICC), 2010 IEEE,
2010, pp. 1–4.

Leonardo De Moura and Nikolaj Bjørner, Z3: an efficient smt solver,
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of
systems (Berlin, Heidelberg), TACAS’08/ETAPS’08, Springer-Verlag,
2008, pp. 337–340.

Matt Kaufmann and J. S. Moore, An industrial strength theorem prover
for a logic based on common lisp, IEEE Trans. Softw. Eng. 23 (1997),
no. 4, 203–213.

22 / 21



Technical issues: reals vs. rationals

clauses returned by clause processor:

clause
processor kc1cx,y,z. c(x,y.z)∀

clause from ACL2
1c kcc2 c(x,y,z)

2c

� Challenge: ACL2 has rationals and Z3 has reals.
I In ACL2, ¬∃x . x2 = 2 is a theorem.
I In Z3, ∃x . x2 = 2 is a theorem.

� Solution: only use Z3 to prove propositions where all
variables are universally quantified.

23 / 21



Technical issues: typed vs. untyped

c(x,y,z)

clause
processor kc1c

1c kc

2c

clauses returned by clause processor:

clause from ACL2

(implies (and (rationalp x)
(rationalp y)
(rationalp z))

(c x y z))

c2

� Challenge: ACL2 is untyped but Z3 is typed.
� Solution: user adds type assertions to antecedent.

I These are almost always needed anyways.
I This requirement is not a significant burden.

24 / 21



Techinical issues: user defined functions

Expanded => Original

clause
processor kc1c

clause from

ACL2

c 2c

about recursive functions.
Validate user’s claims

� Challenge:
I ACL2 supports arbitrary lisp functions.
I Z3 functions are more like macros (no recursion).

� Solution:
I Set up translation for a basic set of functions.
I Expand non-recursive functions.
I Expand recursive functions to bounded depth.
I Expansion done on ACL2’s representation: can verify

correctness.

25 / 21



Other issues:

� Claims can contain non-polynomial terms.
I Replace offensive subexpression with a variable.
I User adds constraints about the variable.
I These constraints are returned as clauses for ACL2 to

prove.
� ACL2 may need hints to discharge clauses returned from

the clause processor.
I Solution: nested hints.
I These hints tell the clause processor what hints to attach to

returned clauses.

� These features provides a very flexible back-and-forth
between induction proofs in ACL2 and handling the details
of the algebra with Z3.

26 / 21



Modeling the digital PLL

c(i + 1) = min(max(c(i) + gc sgn(φ), cmin), cmax)
v(i + 1) = min(max(v(i) + gv (ccenter − c(i)), vmin), vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref )− gφφ(i))

fdco(c, v) = 1+αv
1+βc f0

wrap(φ) = wrap(φ+ 1), if φ ≤ −1
= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

� By simulation we get the model for fdco.
� Eliminate differential equation.
� This approach is proposed in [ASZT07].

27 / 21



Simulation results for approximating dco

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

load capacitance, c (pF)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit for 1/fDCO

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

operating voltage, v (volts)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

 

 

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit

28 / 21



Basic structure of proof

V

fdco
= f ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

29 / 21



Future work

� Extend our integration and contribute to the ACL2
community.
I Automatic function expansion.
I Automatically generated hints.
I Checked counterexample reports.

� Automate AMS proofs.
� Example problems from other physical domains: medical,

machine learning and etc.

30 / 21


	Appendix

