Combining SMT with Theorem Proving for AMS Verification The best of both worlds

Yan Peng & Mark Greenstreet

University of British Columbia Vancouver, BC

March 30, 2015

Outline

AMS verification

- AMS designs are ubiquitous
- Motivation
- Contributions
- The best of both worlds
- Integrating SMT with theorem proving
- Proving global convergence for a digital PLL
- Conclusion

AMS designs are ubiquitous

Radio signal receiver and transmitter

Motivation

Different design models and methods, thus more complex to model.

Time-scales vary widely from sub-picosecond to milliseconds or seconds, makes it harder to simulate.

Abstractions on time-scales can hide bugs in the mplementation.

Contributions

- How to make use of the arithmetic decision procedures of an SMT solver for verifying properties of physical systems.
- The first integration of an SMT solver into the ACL2 theorem prover.
- First use of SMT solver in a theorem prover with emphasis on real-arithmetic.
- An software architecture for integrating a SMT solver with a theorem prover that addresses many technical challenges.
- A reusable recurrence model for a state-of-the art digital PLL.
- A proof of global convergence for the digital PLL.

Outline

Characterize AMS verification problems

- The best of both worlds
 - ► Formally characterize AMS verification problem
 - SMT and theorem proving
 - Simple example: prove sum of geometric series theorem
 - Simple example: prove given polynomial inequalities have no solution
- Integrating SMT with theorem proving
- Proving global convergence for a digital PLL
- Conclusion

Formally characterize AMS verification problem

Digital	Analog	AMS	
s(i+1) = next(s(i), in(i))	$\frac{dx}{dt} = f(x, in, u)$	$\begin{array}{rcl} \frac{dx}{dt} &=& f_q(x)\\ q(i+1) &=& d(q(i), th(x)) \end{array}$	

Two features in formal model of AMS designs:

- Large non-linear arithmetic formulas
- Properties for sequences of states

SMT&Theorem proving

	SMT	Theorem proving
What	Satisfiability Modulo Theory	Computer aided theorem proving
Strength	Powerful (non)linear arith- metic solver and others	 Systematic proof management Induction proofs
Weakness	 Lack of induction Lemmas don't connect 	Manual and tedious proofs
ΤοοΙ	Z3[DMB08]	ACL2[KM97]

Geometric series theorem

Theorem (Geometric Sum)

Suppose $r \in \mathbb{R}$, $n \in \mathbb{N}$, r > 0 and $r \neq 1$. Then,

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}$$

Setup	LOC	# of theorems	runtime(s)	code time
raw Z3(can't)	-	-	-	-
raw ACL2(proved)	169	19	0.14	2 days
arithmetic-5(proved)	29	1	0.15	10 min
ACL2 & Z3(proved)	72	2	0.06	20 min

Polynomial inequalities

Theorem (Polynomial inequality)

Suppose $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then

$$1.125x^2 + y^2 \le 1$$

$$x^2 - y^2 \le 1$$

$$3(x - 2.125)^2 - 3 \le y$$

does not have a solution.

Polynomial inequalities

Theorem (Polynomial inequality)

Suppose $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then

$$1.125x^2 + y^2 \le 1$$
$$x^2 - y^2 \le 1$$
$$3(x - 2.125)^2 - 3 \le y$$

does not have a solution.

Setup	LOC	# of theorems	runtime(s)	code time
raw Z3(proved)	27	1	0.0004	10 min
raw ACL2(failed)	40	-	-	10 min
arithmetic-5(failed)	41	-	-	10 min
ACL2 & Z3(proved)	59	1	0.02	10 min

Best of both worlds - Summary

- AMS design verification requires huge amount of arithmetic reasoning and reasoning about sequences which requires induction.
- SMT and theorem proving are complimentary to each other:
 - SMT Excellent performance in linear and non-linear arithmetic reasoning.
 - Theorem proving Strong support for induction and systematical model & proof management.
- Small experiments show how one can benefit from combing them.

Outline

Characterize AMS verification problems
 The best of both worlds
 Integrating SMT with theorem proving
 Architecture

- Architecture
 Technical issues
- What's trusted?

Proving global convergence for a digital PLL
 Conclusion

Starting from a clause processor

- A clause processor takes a goal and decomposes it into a conjunction of subgoals. Each subgoal is a called a clause.
- ACL2 supports two kinds of clause processors: verified and trusted.
 - verified the correctness of the clause processor is proven within ACL2.
 - trusted the results of the clause processor are accepted without proof.
- We integrate Z3 into ACL2 as a trusted clause processor.

Architecture

Architecture

Technical issues

What's trusted?

	translation	others	expansion & simplification
LOC(fraction)	656(39%)	453(27%)	584(34%)

Translation and connection code are straight forward and easy to check.

Outline

Characterize AMS verification problems

- The best of both worlds
- Integrating SMT with theorem proving
- Proving global convergence for a digital PLL
 - The digital phase-locked loop
 - Modeling the digital PLL
 - Prove global convergence

Conclusion

A state-of-the-art Digital PLL (from CICC 2010) [CNA10]

- A PLL outputs a signal with a frequency that's N times of the input signal. The output should also aligns the input in phase.
 - Three state variables: capacitance setting (digital), supply voltage (linear), phase correction (time-difference of digital transitions).
 - This is a typical AMS design.

The proof

Some statistics

- **13** page long hand-written proof.
- 75 lemmas, 10 of which were discharged using the SMT solver.
- Of those ten, one was the key, polynomial inequality from the manual proof.
- ACL2 completes the proof in a few minutes running on a laptop computer.
- We found one error in the process of transcribing the hand-written proof to ACL2.

Conclusion

- We build a sound and extensible integration of an SMT solver into a theorem prover.
- We demonstrates the effectiveness of the approach by proving global convergence for a state-of-the-art AMS design.
- Benefits we can get from analytical approach:
 - Ranges for initial states, parameters and etc.
 - Proofs are easy to extend. (C rational values, V with some uncertainty)

References

- Ghiath Al-Sammane, Mohamed H Zaki, and Sofiène Tahar, *A symbolic methodology for the verification of analog and mixed signal designs*, Proceedings of the conference on Design, automation and test in Europe, EDA Consortium, 2007, pp. 249–254.
- J. Crossley, E. Naviasky, and E. Alon, An energy-efficient ring-oscillator digital pll, Custom Integrated Circuits Conference (CICC), 2010 IEEE, 2010, pp. 1–4.
- Leonardo De Moura and Nikolaj Bjørner, Z3: an efficient smt solver, Proceedings of the Theory and practice of software, 14th international conference on Tools and algorithms for the construction and analysis of systems (Berlin, Heidelberg), TACAS'08/ETAPS'08, Springer-Verlag, 2008, pp. 337–340.
- Matt Kaufmann and J. S. Moore, An industrial strength theorem prover for a logic based on common lisp, IEEE Trans. Softw. Eng. 23 (1997), no. 4, 203–213.

Technical issues: reals vs. rationals

Challenge: ACL2 has rationals and Z3 has reals.

▶ In ACL2, $\neg \exists x. x^2 = 2$ is a theorem.

▶ In Z3,
$$\exists x. x^2 = 2$$
 is a theorem.

Solution: only use Z3 to prove propositions where all variables are universally quantified.

Technical issues: typed vs. untyped

- Challenge: ACL2 is untyped but Z3 is typed.
- Solution: user adds type assertions to antecedent.
 - These are almost always needed anyways.
 - This requirement is not a significant burden.

Techinical issues: user defined functions

Challenge:

- ACL2 supports arbitrary lisp functions.
- Z3 functions are more like macros (no recursion).

Solution:

- Set up translation for a basic set of functions.
- Expand non-recursive functions.
- Expand recursive functions to bounded depth.
- Expansion done on ACL2's representation: can verify correctness.

Other issues:

Claims can contain non-polynomial terms.

- ▶ Replace offensive subexpression with a variable.
- User adds constraints about the variable.
- These constraints are returned as clauses for ACL2 to prove.
- ACL2 may need hints to discharge clauses returned from the clause processor.
 - Solution: nested hints.
 - These hints tell the clause processor what hints to attach to returned clauses.

These features provides a very flexible back-and-forth between induction proofs in ACL2 and handling the details of the algebra with Z3.

Modeling the digital PLL

$$\begin{array}{lll} c(i+1) &=& \min(\max(c(i) + g_c \operatorname{sgn}(\phi), c_{\min}), c_{\max}) \\ v(i+1) &=& \min(\max(v(i) + g_v(c_{center} - c(i)), v_{\min}), v_{\max}) \\ \phi(i+1) &=& \operatorname{wrap}(\phi(i) + (f_{dco}(c(i), v(i)) - f_{ref}) - g_{\phi}\phi(i)) \\ f_{dco}(c, v) &=& \frac{1+\alpha v}{1+\beta c} f_0 \\ \operatorname{wrap}(\phi) &=& \operatorname{wrap}(\phi+1), & \text{if } \phi \leq -1 \\ &=& \phi, & \text{if } -1 < \phi < 1 \\ &=& \operatorname{wrap}(\phi-1), & \text{if } 1 \leq \phi \end{array}$$

- By simulation we get the model for *fdco*.
- Eliminate differential equation.
- This approach is proposed in [ASZT07].

Simulation results for approximating dco

Basic structure of proof

Future work

Extend our integration and contribute to the ACL2 community.

- Automatic function expansion.
- Automatically generated hints.
- Checked counterexample reports.
- Automate AMS proofs.
- Example problems from other physical domains: medical, machine learning and etc.