
Verifying Global Convergence of a Digital
Phase-Locked Loop with Z3

Yan Peng

University of British Columbia

September 27, 2013

Joint work with Jijie Wei, Grace Yu, and Mark Greenstreet

This work is funded by the Intel Corporation.

Peng et al., UBC Verifying a Digital PLL 1/30

Outline

Phase-Locked Loop (PLL) Introduction
Verifying an All-Digital PLL with Z3[DMB08]
I General approach for circuit verification with SMT

solver
I Global convergence verification for a simplified model

with Lyapunov function
I Limit cycle verification for a discrete recurrence model

Ideas and Discussions
I Comparison
I Observations
I Reachability Approach: SpaceEx
I Conclusions

Peng et al., UBC Verifying a Digital PLL 2/30

PLL: Thermostat Temperature Control

First order control system
Suppose T stands for current temperature, T0 stands for
desired temperature, then the system can be modelled as

Ṫ = −k(T − T0).

Peng et al., UBC Verifying a Digital PLL 3/30

PLL: Autonomous Cruise Control with Following

Second order control system
Suppose k1 and k2 are both positive, the system can be
modelled as k2S̈ + k1Ṡ + S = S0.
This system has an equilibrium at S = S0, and the two
roots of k2 λ

2 + k1λ+ 1 both have negative real parts
which make the system stable.

Peng et al., UBC Verifying a Digital PLL 4/30

PLL: Block Diagram

Phase
Detector

Loop
Filter

Voltage
Controlled
Oscillator

Divide by
N Counter

Reference
Clock

Output
Clock

A PLL is a feedback control system that, given an input
reference clock, it outputs a clock at a frequency that’s N
times of the input clock frequency.

PLLs are ubiquitous in analog and mixed-signal designs. E.g.
frequency multiplication for clock-acquisition in high-speed
links, modulators and demodulators for wireless
communication.

Peng et al., UBC Verifying a Digital PLL 5/30

PLL: Global Convergence

PLL

Dynamical
System

Analog

Always Lock

Digital

Continuous
Model

Global
Convergence

Recurrence
Model

The most essential function of a PLL is to lock at the right
phase and frequency. The quicker a PLL locks the better.

The global convergence problem asks whether a PLL locks no
matter where its initial state is at.

Peng et al., UBC Verifying a Digital PLL 6/30

PLL: Crossley et al.’s [CNA10]

DCO

BBPFD

0:23

0:14

15:23
LPF

DCO

+

− dn
up

∆θ

c
vPFD

Fref

Fref

Σ
0:7

0:3

4:7

∆Σ

FDCO

Fref

Σ DAC −
+

Cdecap

F

−
(

Center
code

)

÷N

DCO has three control inputs:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital edges).
Uses linear and bang-bang PFD.
Integrators are digital.
LPF and decap to improve power-supply rejection.

Peng et al., UBC Verifying a Digital PLL 7/30

PLL: Verified digital PLL

∆Σ

0:7

DCO

4:7
BBPFD

0:23

0:14

15:23
LPF

DCO

+

− dn
up

∆θ

c
vPFD

Fref

Fref

Σ
0:7

0:3

FDCO

Fref

Σ DAC −
+

Cdecap

F

−
(

Center
code

)

÷N

We omitted the Delta-Sigma modulator, low-pass filter, and
linear regulator for simplicity.
We believe all of these could be included using the same
methods as we’ve used for the rest of the digital PLL.

Peng et al., UBC Verifying a Digital PLL 8/30

Outline

◦ Phase-Locked Loop (PLL) Overview
P Verifying an All-Digital PLL with Z3

I General approach for circuit verification with SMT
solver
I Global convergence verification for a simplified model

with Lyapunov function
I Limit cycle verification for a discrete recurrence model

◦ Ideas and Discussions
B Comparison
B Observations
B Reachability Approach: SpaceEx
B Conclusions

Peng et al., UBC Verifying a Digital PLL 9/30

Verification Approach

Circuit and its
Function

Circuit Knowledge and
Simulation Tests(MATLAB/SPICE)

Property /
Specification

Decompose
Some

lemmas

Adjustment

Mathematical
Model Theorem

SMT
Solver

Proposition
and lemmas

Observation
Math & Logic

Final
Proof

Peng et al., UBC Verifying a Digital PLL 10/30

Dynamics of the Circuit

v

c

v
=

v m
in

v
=

v m
ax

c = cmax

c = cmin

Typical operation of the digital PLL
C saturates. C is the “fast-tracking” control.
vctrl moves toward equilibrium value.
C and vctrl move through a sequence of limit cycles to

maintain phase and frequency lock while centering C.
Verification has separate “lemmas” for each of these
phases.

Peng et al., UBC Verifying a Digital PLL 11/30

Global Convergence Proof: Simplified Model

The ODE model:

ċ = g1 · (fref − 1
N

v0+αv
c0+βc) where c ∈ (cmin, cmax)

v̇ = g2 · (c − ccode)

Note: ċ = 0 when c = cmin or c = cmax

Linear phase path will be handled later, in the recurrence
model analysis.

Quantization error will be included later.

Peng et al., UBC Verifying a Digital PLL 12/30

Global Convergence Proof: Lyapunov Function

Consider invariant region Q0, target region QT with
QT ⊆ Q0. Lyapunov function, Ψ:
I ∀x ∈ Q0 −QT . Ψ(x) > 0
I ∀x ∈ Q0 −QT . d

dt Ψ(x) < 0
For homogeneous linear ODE system ẋ = Ax :
I Let P be the solution of AT P + PA = −I. A possible

Lyapunov function becomes Ψ(x) = X T PX .
I By construction, P is symmetric. If P is positive

definite, then the system ẋ = Ax globally converges to
x = 0

As long as one can find a Lyapunov function for a system,
convergence to the desired equilibrium is ensured, no
matter how the Lyapunov function is found.

Peng et al., UBC Verifying a Digital PLL 13/30

Global Convergence Proof: The Full Proof

Translate the system

Derive the Jacobian
matrix

at operating point

Calculate P matrix

Form the
statement to prove

Z3 checks if the two conditions are satisfied

Z3 solves this linear system readily

Z3 easily proves global convergence when parameters are
assigned fixed values and no quantization error is taken into
consideration.

Peng et al., UBC Verifying a Digital PLL 14/30

Global Convergence Proof: Improve the Model

Z3 easily proves the simple system (just shown)
We added details to the model to make it more realistic
I Parameters with ranges
I Quantization error: we approximate discrete sums in

the real DPLL with integrals
I Both ranges and quantization

In all of these, Z3 would run longer than we had patience
Solution: manually simplify terms in the proposed
Lyapunov function
The approach remains sound because Z3 checks the
Lyapunov conditions, it doesn’t matter how we came up
with the Lyapunov function.

Peng et al., UBC Verifying a Digital PLL 15/30

Global Convergence Proof: Adjust the Proof for Z3

Parameters with ranges. Inequality ranges for parameters α,
β, v0 and c0.

Strategy: Check where the parameters are used, try simplify
non-linear part. e.g. we replace some of the parameters in
the Jacobian matrix with its nominal value.

Example:
Knowing α ≈ 1 and β ≈ 1:

Jac(f, X0) =

 g1 fref β
c0+βccode

− g1α
c0+βccode

g2 0

⇒ Jac(f, X0) =

 g1 fref
c0+βccode

− g1
c0+βccode

g2 0



Z3 happily proved the conditions, again.

Peng et al., UBC Verifying a Digital PLL 16/30

Global Convergence Proof: Adjust the Proof for Z3

Adding quantization error. Quantization error introduces
new variables and inequalities.

Strategy: Noticing symmetry in the formula, transfer
quantization error in the non-linear term to linear term.

Proposition:
Let Err denote quantization error and assume Err is symmetric
around 0: if η ∈ Err then −η ∈ Err as well. We can easily show:

∀x ∈ Q0 − QT .∀η ∈ Err .h(x + η)T Px < 0⇔
∀x ∈ (Q0 − QT)⊕ Err

∀η ∈ Err .(x + η ∈ Q0 − QT)⇒ (h(x)T P(x + η) < 0)

The Minkowski sum of two sets, A⊕ B, is the set of elements that can be
obtained as the sum of an element from A and an element from B:

A⊕ B = {z | ∃a ∈ A. ∃b ∈ B. z = a + b}

Peng et al., UBC Verifying a Digital PLL 16/30

Global Convergence Proof: Adjust the Proof for Z3

Combination. Combining quantization error and parameter
ranges together.

Strategy: Further reduce the complexity of our problem by
simplifying non-linear formulas.

Example:
Given βc + c0 + βccode > 0

(βc + c0 + βccode)φ̇(X) < 0⇒ φ̇(X) < 0

Given ccode = 1, c0 ≈ 1, and β ≈ 1,

Jac(f, X0) =

[g1 fref
c0+βccode

− g1
c0+βccode

g2 0

]
⇒ Jac(f, X0) =

[
g1 fref

2 − g1
2

g2 0

]

Peng et al., UBC Verifying a Digital PLL 16/30

Limit Cycle Verification: the Recurrence Model

A limit cycle is an isolated closed
trajectory, for which its
neighbouring trajectories are
not closed they spiral either
towards or away from the limit
cycle.

The recurrence model:
c(i + 1) = c(i) + g1sign(φ(i))

v(i + 1) = v(i) + g2(c(i)− ccode)

φ(i + 1) = (1− Kt)φ(i) + 2π
(

fdco(i)
Nfref

− 1
)

where fdco(i) = f0
1+αv(i)
1+βc(i)

Peng et al., UBC Verifying a Digital PLL 17/30

Limit Cycle Verification: Simplification with V

Simplified recurrence model:
v changes slowly with respect to c and φ. Thus, we can analyse the
PLL as having a sequence of limit cycles, where each cycle is
described by a recurrence of the form:

c(i + 1) = c(i) + g1sign(φ(i))

φ(i + 1) = (1− Kt)φ(i) + 2π
(

fdco(i)
Nfref

− 1
)

Peng et al., UBC Verifying a Digital PLL 18/30

Limit Cycle Verification: Induction Proof - the Theorem

5 0 5 100.015

0.01

0.005

0

0.005

0.01

c1 c2 (2n 1)

c (quantized)

 (c
on

tin
uo

us
)

Theorem
If for each trajectory going through the upper space, suppose
first point up crossing c-axis is φ(0), and we have
φ(2n − 1) < 0, then the system must be converging towards
some limit cycle.

Peng et al., UBC Verifying a Digital PLL 19/30

Limit Cycle Verification: Induction Proof

Induction Proof
Suppose (c0, φ0) is the first point up crossing c-axis, and we
have:

c0 = m · g1, m ∈ Z ∧ m ≤ −3

0 ≤ φ0 < 2π
(
µ

1 + αv0

1 + β(m + 1)g1
− 1
)

Solve the recurrence:

c(j) = c0 + g1j

φ(j) = γ jφ0 + 2π
j−1∑
i=0

γ(j−1−i)
(
µ

1 + αv0

1 + βc(i)
− 1
)

We want to prove:
∀m ≥ 3, φ(2m − 1) < 0

A symmetric argument applies to lower half of the space.

Peng et al., UBC Verifying a Digital PLL 20/30

Limit Cycle Verification: Lemma 1 (by induction)

We manually rewrote the inequalities and decomposed the
proof into the formula below:

Z3 formula

γ2
(1+αv0

1+β(m−1)g1
− 1+αv0

1+βmg1

)
+ γ

(1+αv0
1+βmg1

− 1+αv0
1+β(m+1)g1

)
+
(1+αv0

1+β(−(n−1)g1+equc)
− 1

µ

)
1
µ
− 1+αv0

1+β((n−1)g1+equc)

< γ
2−2n

Decompose this formula into two:

new Z3 formula

γ2
(1+αv0

1+β(m−1)g1
− 1+αv0

1+βmg1

)
+ γ

(1+αv0
1+βmg1

− 1+αv0
1+β(m+1)g1

)
+
(1+αv0

1+β(−(n−1)g1+equc)
− 1

µ

)
1
µ

1− 1+αv0
1+β((n−1)g1+equc)

< 2n

and
2n < γ

2−2n

Peng et al., UBC Verifying a Digital PLL 21/30

Limit Cycle Verification: Lemma 2 (by induction)

An additional induction proof is provided for proving
2n < γ2−2n(where 0 < γ < 0.5):

Additional Induction Proof

When k = 4, 8 < γ−6

Suppose when k = n, 2n < γ2−2n stands, then we have
when k = n + 1, 2(n + 1) < γ2−2(n+1).
I Here is an simple illustration showing how Z3 helps

discharge formula to be proved:
∵ 2n < γ2−2n

∴ 2nγ−2 < γ−2n

∵ 2n + 2 ≤ 2nγ−2 ⇒ This is the formula for Z3!
∴ 2n + 2 < γ−2n

Peng et al., UBC Verifying a Digital PLL 22/30

Limit Cycle Verification: Finding One Limit Cycle

We find one limit cycle by stating what properties should a
cycle have:

Property of a limit cycle with 6 vertices
The 6 points should satisfy the recurrence
The next point for the 6th point should be the 1st point
To make it easier, we specify small target ranges for the
point positions
We find in some limit cycles, there must be one point at
which c = 0(suppose the system is translated to the origin)

Peng et al., UBC Verifying a Digital PLL 23/30

Outline

◦ Phase-Locked Loop (PLL) Overview
◦ Verifying an All-Digital Phase-Locked Loop with Z3

I General approach for circuit verification with SMT
solver
I Global convergence verification for a simplified model

with Lyapunov function
I Limit cycle verification for a discrete recurrence model

P Ideas and Discussions
IComparison
IObservations
IReachability Approach: SpaceEx
IConclusions

Peng et al., UBC Verifying a Digital PLL 24/30

Comparison

Lyapunov function method:
Fixed procedure, easy
for automation
Take less human effort,
much is done in Z3
More suitable for
continuous system
without large non-linear
part.

Induction proof method:
More flexibility in procedure,
not easy for automation
Take lots of pencil and paper
work to decompose the proof
and takes the human mind to
combine the proofs.
Suitable for more
sophisticated system,
difficulty lies in how to find a
theorem to prove the
property.

Peng et al., UBC Verifying a Digital PLL 25/30

Observations

The part of Z3 we
frequently used in our
proof:
I Real arithmetic
I Linear and polynomial

arithmetic
I Propositional logic:

prove, Implies
I Very large

propositional
statement with
polynomials and some
inequalities

Things that’ll probably
help with our work:
I Real and Integer

combined arithmetic
I Non-linear arithmetic,

E.g. exponentials,
rational functions

I Induction proof
I Combining lemmas,

like a theorem prover

Peng et al., UBC Verifying a Digital PLL 26/30

Reachability Approach: SpaceEx

SpaceEx[FLGD+11] is a hybrid-automaton based tool on
reachability analysis for safety verification.
Build hybrid-automata models for each component:
I DCO: 7 modes – linearize for overlapping intervals of

vctrl .
I PFD: 1 mode, with self-loops.
I C-accumulator: 4 modes – up, down, saturated low,

saturated high.
I V-accumulator: 3 modes – normal, saturated low,

saturated high.
Product machine has 84 modes.
Dynamics of the system lead to transitions between
modes.
SpaceEx confirms convergence to lock from any initial
state.

Peng et al., UBC Verifying a Digital PLL 27/30

Reachability Approach: SpaceEx - Comparison

The hybrid-automaton
approach very closely
followed the structure of
the digital PLL.
I Seems likely to be

more intuitive for
real-world designers
and verifiers.

I Verified the digital PLL
for a specific choice of
model parameters.

I ”Feels” like
model-checking.

I Manual decomposition
into lemmas required.

The SMT approach is
more general:
I Handles some of the

non-linearities directly.
I Verified the digital PLL

with model
parameters in interval
ranges.

I ”Feels” like theorem
proving.

Peng et al., UBC Verifying a Digital PLL 28/30

Conclusion

SMT solvers such as Z3 can be extensively adopted in the
field of mixed signal circuit verification and continuous
dynamic system verification.
SMT approaches are promising for verifying properties of
mixed signal designs, such as proving global convergence
and identifying limit cycle behaviours. These properties are
impossible to verify with traditional simulation.
We would like to further automate the verification,
especially tracking proof obligations for induction
arguments and showing that SMT-discharged lemmas
prove the main result.
We would like to better understand the workings of the
SMT solver to use it more effectively and possibly extend it
to handle wider ranges of problems.

Questions and suggestions are welcome!

Peng et al., UBC Verifying a Digital PLL 29/30

References

J. Crossley, E. Naviasky, and E. Alon, An energy-efficient
ring-oscillator digital pll, Custom Integrated Circuits
Conference (CICC), 2010 IEEE, 2010, pp. 1–4.

Leonardo De Moura and Nikolaj Bjørner, Z3: an efficient
smt solver, Proceedings of the Theory and practice of
software, 14th international conference on Tools and
algorithms for the construction and analysis of systems
(Berlin, Heidelberg), TACAS’08/ETAPS’08, Springer-Verlag,
2008, pp. 337–340.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott
Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,
Antoine Girard, Thao Dang, and Oded Maler, Spaceex:
scalable verification of hybrid systems, Proceedings of the
23rd international conference on Computer aided
verification (Berlin, Heidelberg), CAV’11, Springer-Verlag,
2011, pp. 379–395.

Peng et al., UBC Verifying a Digital PLL 30/30

