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PLL: Thermostat Temperature Control

First order control system
Suppose T stands for current temperature, T0 stands for
desired temperature, then the system can be modelled as

Ṫ = −k(T − T0).

Peng et al., UBC Verifying a Digital PLL 3/30



PLL: Autonomous Cruise Control with Following

Second order control system
Suppose k1 and k2 are both positive, the system can be
modelled as k2S̈ + k1Ṡ + S = S0.
This system has an equilibrium at S = S0, and the two
roots of k2 λ

2 + k1λ+ 1 both have negative real parts
which make the system stable.
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PLL: Block Diagram
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A PLL is a feedback control system that, given an input
reference clock, it outputs a clock at a frequency that’s N
times of the input clock frequency.

PLLs are ubiquitous in analog and mixed-signal designs. E.g.
frequency multiplication for clock-acquisition in high-speed
links, modulators and demodulators for wireless
communication.
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PLL: Global Convergence

PLL
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The most essential function of a PLL is to lock at the right
phase and frequency. The quicker a PLL locks the better.

The global convergence problem asks whether a PLL locks no
matter where its initial state is at.

Peng et al., UBC Verifying a Digital PLL 6/30



PLL: Crossley et al.’s [CNA10]
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DCO has three control inputs:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital edges).
Uses linear and bang-bang PFD.
Integrators are digital.
LPF and decap to improve power-supply rejection.
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PLL: Verified digital PLL
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We omitted the Delta-Sigma modulator, low-pass filter, and
linear regulator for simplicity.
We believe all of these could be included using the same
methods as we’ve used for the rest of the digital PLL.
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Verification Approach
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Dynamics of the Circuit
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Typical operation of the digital PLL
C saturates. C is the “fast-tracking” control.
vctrl moves toward equilibrium value.
C and vctrl move through a sequence of limit cycles to

maintain phase and frequency lock while centering C.
Verification has separate “lemmas” for each of these
phases.
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Global Convergence Proof: Simplified Model

The ODE model:

ċ = g1 · (fref − 1
N

v0+αv
c0+βc ) where c ∈ (cmin, cmax )

v̇ = g2 · (c − ccode)

Note: ċ = 0 when c = cmin or c = cmax

Linear phase path will be handled later, in the recurrence
model analysis.

Quantization error will be included later.
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Global Convergence Proof: Lyapunov Function

Consider invariant region Q0, target region QT with
QT ⊆ Q0. Lyapunov function, Ψ:
I ∀x ∈ Q0 −QT . Ψ(x) > 0
I ∀x ∈ Q0 −QT . d

dt Ψ(x) < 0
For homogeneous linear ODE system ẋ = Ax :
I Let P be the solution of AT P + PA = −I. A possible

Lyapunov function becomes Ψ(x) = X T PX .
I By construction, P is symmetric. If P is positive

definite, then the system ẋ = Ax globally converges to
x = 0

As long as one can find a Lyapunov function for a system,
convergence to the desired equilibrium is ensured, no
matter how the Lyapunov function is found.
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Global Convergence Proof: The Full Proof

Translate the system

Derive the Jacobian 
matrix 

at operating point

Calculate P matrix

Form the 
statement to prove

Z3 checks if the two conditions are satisfied

Z3 solves this linear system readily

Z3 easily proves global convergence when parameters are
assigned fixed values and no quantization error is taken into
consideration.
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Global Convergence Proof: Improve the Model

Z3 easily proves the simple system (just shown)
We added details to the model to make it more realistic
I Parameters with ranges
I Quantization error: we approximate discrete sums in

the real DPLL with integrals
I Both ranges and quantization

In all of these, Z3 would run longer than we had patience
Solution: manually simplify terms in the proposed
Lyapunov function
The approach remains sound because Z3 checks the
Lyapunov conditions, it doesn’t matter how we came up
with the Lyapunov function.
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Global Convergence Proof: Adjust the Proof for Z3

Parameters with ranges. Inequality ranges for parameters α,
β, v0 and c0.

Strategy: Check where the parameters are used, try simplify
non-linear part. e.g. we replace some of the parameters in
the Jacobian matrix with its nominal value.

Example:
Knowing α ≈ 1 and β ≈ 1:

Jac(f, X0) =

 g1 fref β
c0+βccode

− g1α
c0+βccode

g2 0

⇒ Jac(f, X0) =

 g1 fref
c0+βccode

− g1
c0+βccode

g2 0



Z3 happily proved the conditions, again.
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Global Convergence Proof: Adjust the Proof for Z3

Adding quantization error. Quantization error introduces
new variables and inequalities.

Strategy: Noticing symmetry in the formula, transfer
quantization error in the non-linear term to linear term.

Proposition:
Let Err denote quantization error and assume Err is symmetric
around 0: if η ∈ Err then −η ∈ Err as well. We can easily show:

∀x ∈ Q0 − QT .∀η ∈ Err .h(x + η)T Px < 0⇔
∀x ∈ (Q0 − QT )⊕ Err

∀η ∈ Err .(x + η ∈ Q0 − QT )⇒ (h(x)T P(x + η) < 0)

The Minkowski sum of two sets, A⊕ B, is the set of elements that can be
obtained as the sum of an element from A and an element from B:

A⊕ B = {z | ∃a ∈ A. ∃b ∈ B. z = a + b}
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Global Convergence Proof: Adjust the Proof for Z3

Combination. Combining quantization error and parameter
ranges together.

Strategy: Further reduce the complexity of our problem by
simplifying non-linear formulas.

Example:
Given βc + c0 + βccode > 0

(βc + c0 + βccode)φ̇(X ) < 0⇒ φ̇(X ) < 0

Given ccode = 1, c0 ≈ 1, and β ≈ 1,

Jac(f, X0) =

[ g1 fref
c0+βccode

− g1
c0+βccode

g2 0

]
⇒ Jac(f, X0) =

[
g1 fref

2 − g1
2

g2 0

]
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Limit Cycle Verification: the Recurrence Model

A limit cycle is an isolated closed
trajectory, for which its
neighbouring trajectories are
not closed they spiral either
towards or away from the limit
cycle.

The recurrence model:
c(i + 1) = c(i) + g1sign(φ(i))

v(i + 1) = v(i) + g2(c(i)− ccode)

φ(i + 1) = (1− Kt )φ(i) + 2π
(

fdco(i)
Nfref

− 1
)

where fdco(i) = f0
1+αv(i)
1+βc(i)
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Limit Cycle Verification: Simplification with V

Simplified recurrence model:
v changes slowly with respect to c and φ. Thus, we can analyse the
PLL as having a sequence of limit cycles, where each cycle is
described by a recurrence of the form:

c(i + 1) = c(i) + g1sign(φ(i))

φ(i + 1) = (1− Kt )φ(i) + 2π
(

fdco(i)
Nfref

− 1
)
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Limit Cycle Verification: Induction Proof - the Theorem
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Theorem
If for each trajectory going through the upper space, suppose
first point up crossing c-axis is φ(0), and we have
φ(2n − 1) < 0, then the system must be converging towards
some limit cycle.
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Limit Cycle Verification: Induction Proof

Induction Proof
Suppose (c0, φ0) is the first point up crossing c-axis, and we
have:

c0 = m · g1, m ∈ Z ∧ m ≤ −3

0 ≤ φ0 < 2π
(
µ

1 + αv0

1 + β(m + 1)g1
− 1
)

Solve the recurrence:

c(j) = c0 + g1j

φ(j) = γ jφ0 + 2π
j−1∑
i=0

γ(j−1−i)
(
µ

1 + αv0

1 + βc(i)
− 1
)

We want to prove:
∀m ≥ 3, φ(2m − 1) < 0

A symmetric argument applies to lower half of the space.
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Limit Cycle Verification: Lemma 1 (by induction)

We manually rewrote the inequalities and decomposed the
proof into the formula below:

Z3 formula

γ2
( 1+αv0

1+β(m−1)g1
− 1+αv0

1+βmg1

)
+ γ

( 1+αv0
1+βmg1

− 1+αv0
1+β(m+1)g1

)
+
( 1+αv0

1+β(−(n−1)g1+equc )
− 1

µ

)
1
µ
− 1+αv0

1+β((n−1)g1+equc )

< γ
2−2n

Decompose this formula into two:

new Z3 formula

γ2
( 1+αv0

1+β(m−1)g1
− 1+αv0

1+βmg1

)
+ γ

( 1+αv0
1+βmg1

− 1+αv0
1+β(m+1)g1

)
+
( 1+αv0

1+β(−(n−1)g1+equc )
− 1

µ

)
1
µ

1− 1+αv0
1+β((n−1)g1+equc )

< 2n

and
2n < γ

2−2n
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Limit Cycle Verification: Lemma 2 (by induction)

An additional induction proof is provided for proving
2n < γ2−2n( where 0 < γ < 0.5 ):

Additional Induction Proof

When k = 4, 8 < γ−6

Suppose when k = n, 2n < γ2−2n stands, then we have
when k = n + 1, 2(n + 1) < γ2−2(n+1).
I Here is an simple illustration showing how Z3 helps

discharge formula to be proved:
∵ 2n < γ2−2n

∴ 2nγ−2 < γ−2n

∵ 2n + 2 ≤ 2nγ−2 ⇒ This is the formula for Z3!
∴ 2n + 2 < γ−2n
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Limit Cycle Verification: Finding One Limit Cycle

We find one limit cycle by stating what properties should a
cycle have:

Property of a limit cycle with 6 vertices
The 6 points should satisfy the recurrence
The next point for the 6th point should be the 1st point
To make it easier, we specify small target ranges for the
point positions
We find in some limit cycles, there must be one point at
which c = 0(suppose the system is translated to the origin)
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Comparison

Lyapunov function method:
Fixed procedure, easy
for automation
Take less human effort,
much is done in Z3
More suitable for
continuous system
without large non-linear
part.

Induction proof method:
More flexibility in procedure,
not easy for automation
Take lots of pencil and paper
work to decompose the proof
and takes the human mind to
combine the proofs.
Suitable for more
sophisticated system,
difficulty lies in how to find a
theorem to prove the
property.
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Observations

The part of Z3 we
frequently used in our
proof:
I Real arithmetic
I Linear and polynomial

arithmetic
I Propositional logic:

prove, Implies
I Very large

propositional
statement with
polynomials and some
inequalities

Things that’ll probably
help with our work:
I Real and Integer

combined arithmetic
I Non-linear arithmetic,

E.g. exponentials,
rational functions

I Induction proof
I Combining lemmas,

like a theorem prover
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Reachability Approach: SpaceEx

SpaceEx[FLGD+11] is a hybrid-automaton based tool on
reachability analysis for safety verification.
Build hybrid-automata models for each component:
I DCO: 7 modes – linearize for overlapping intervals of

vctrl .
I PFD: 1 mode, with self-loops.
I C-accumulator: 4 modes – up, down, saturated low,

saturated high.
I V-accumulator: 3 modes – normal, saturated low,

saturated high.
Product machine has 84 modes.
Dynamics of the system lead to transitions between
modes.
SpaceEx confirms convergence to lock from any initial
state.
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Reachability Approach: SpaceEx - Comparison

The hybrid-automaton
approach very closely
followed the structure of
the digital PLL.
I Seems likely to be

more intuitive for
real-world designers
and verifiers.

I Verified the digital PLL
for a specific choice of
model parameters.

I ”Feels” like
model-checking.

I Manual decomposition
into lemmas required.

The SMT approach is
more general:
I Handles some of the

non-linearities directly.
I Verified the digital PLL

with model
parameters in interval
ranges.

I ”Feels” like theorem
proving.
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Conclusion

SMT solvers such as Z3 can be extensively adopted in the
field of mixed signal circuit verification and continuous
dynamic system verification.
SMT approaches are promising for verifying properties of
mixed signal designs, such as proving global convergence
and identifying limit cycle behaviours. These properties are
impossible to verify with traditional simulation.
We would like to further automate the verification,
especially tracking proof obligations for induction
arguments and showing that SMT-discharged lemmas
prove the main result.
We would like to better understand the workings of the
SMT solver to use it more effectively and possibly extend it
to handle wider ranges of problems.

Questions and suggestions are welcome!
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