
Type Inference Using Meta-Extract for Smtlink and
Beyond

Yan Peng and Mark R. Greenstreet

CpSc 418 – May 28, 2020

Unless otherwise noted or cited, these slides are copyright 2020 by Yan Peng & Mark R. Greenstreet
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 1 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


Types: ACL2 vs. Z3

(equal

Z3
?

ACL2

(implies
(and (posp a)(posp b)

(posp c)(posp n)(< 2 n))
(not (equal (+ (expt a n)

(expt b n))
(expt c n))))

a,b,c,n = Ints(’a b c n’)
S = Solver()
s.add(And(0 < a, 0 < b,

if(s.check() == unsat):

0 < c, 2 < n,

== expt(c, n))
expt(a, n) + expt(b,n)

else: print(’cex: ’ + str(s.model()))
print(’qed’)

(rev x))
(rev (rev (rev x)))

ACL2 is based on untyped, first-order logic with induction
SMT solvers (e.g. Z3) are based on many-sorted, first-order logic
without induction
How do we bridge the two?

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 2 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


Types in Smtlink
Use type recognizers

I ACL2 has type recognizers: booleanp, integerp, rationalp, symbolp etc.
I Users can define their own recognizers: integer-list-p, cow-p,

cow-pig-alist-p, etc.
I If all free-variables in a theorem statement have hypotheses that assert their

types
F A verified clause processor can show that the claim holds trivially for any model

where the value of a variable does not satisfy the type recognizer.
F A SMT solver can show that there are no models where all variables satisfy

their type recognizers.
F QED

Need to handle “polymorphic” functions:
I cons, car, cdr, . . . , and possibly user-defined functions.
I Smtlink 2.0 requires the user to annotate terms with fixing functions

F e.g. (integer-list-fix nil)
F while it’s straightforward, it is annoying “clutter”.

Contributions of current work:
I automated type-inference
I cleaner soundness arguments for user-defined types

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 3 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


A running example
(implies (and (rational-list-p x) . . .)

(. . . (equal (list 1 2 3 4 5)
x) . . .))

What is the type of (list 1 2 3 4 5)?
In ACL we get:

(and (true-listp (list 1 2 3 4 5))
(integer-listp (list 1 2 3 4 5))
(rational-listp (list 1 2 3 4 5)))

Z3 supports user-defined datatypes, e.g.
IntegerList = Datatype(’IntegerList’)
IntegerList.declare(’cons’, (’car’, IntSort()),

(’cdr’, IntegerList))
IntegerList.declare(’nil’)
IntegerList = IntegerList.create()

I But, IntegerList is not a subtype of RealList
I If i list is an IntegerList, r list is a RealList, and x is a Real,
I i list == r list is an illegal operation.
I And more issues with cons, nil, . . .

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 4 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


The clause processors

Top−Down
Annotate the clause and all

type recognizer that they
satisfy.

of its subterms with each

goal: pseudo−termp

annotated−goal: typed−term−p

Select a Z3 sort or type for

annotated goal.

each subterm of the

z3−goal: typed−term−p

Bottom−up

Depth-first traversal of clause, maintaining the path-condition
during traversal.
Label each subterm with a conjunction of all type-recognizers that
it satisfies
A function can have one or more “returns” theorems, use these
(see meta-extract) to infer type recognizers satisfied by return
result.
When done, we have an annotated term, where we know all type
recognizers satisfied by each subterm.

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 5 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


type-term’s

(defprod typed-term
((term pseudo-termp) ;; the term
(path psesudo-termp) ;; the path condition for this term
(judge psesudo-termp))) ;; type judgements for this term

;; and its subterms

Accessor functions let code traverse a typed-term analogously to
traversing a pseudo-term, but now we have type-info.
Correctness conditions:

I (implies (typed-term->path tt)
(typed-term->judge tt))

I A (recursive) structural property that the shape of the judgements
matches the shape of the term.

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 6 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


The top-down clause processor

Top−Down
Annotate the clause and all

type recognizer that they
satisfy.

of its subterms with each

goal: pseudo−termp

annotated−goal: typed−term−p

Select a Z3 sort or type for

annotated goal.

each subterm of the

z3−goal: typed−term−p

Bottom−up

For each subterm, choose a SMT-compatible type, or report an
error in no such type exists.

I For any choice of a type assignment of a term, there is a consistent
assignment of types for the subterms.

Selecting a type is just discarding conjuncts from
(typed-term->judge tt).
Therefore,

(implies (typed-term->path tt)
(typed-term->judge tt))

is preserved.

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 7 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


The Back-End

Now that Smtlink has Z3 types for each subterm of the clause:
Replace polymorphic ACL2 functions such as car with
typed-equivalents, e.g. integer-list-car.

I Note that in Z3 IntegerList.car(x) is an integer for any x.
I Thus, the ACL2 counterpart, integer-list-car must “fix” nil

to an integer value.
I If Smtlink’s clause processor can establish that x is non-nil, this

replacement is sound.
I Otherwise, the clause processor produces a subgoal for ACL2 to

show that modified goal implies the original.
Transliterate the resulting ACL2 term to Z3.py, and trust Z3.

I This final transliteration and the execution of Z3.py are the only
trusted parts of Smtlink.

I All other transformations are performed by verified clause
processors.

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 8 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


Is this sound?
We have a sketch of a proof that a model of the logic of ACL2 that
has a counter example implies that there is a model of the
translated, negated goal in Z3.
We would love to find a formal description of the logic of Z3?

>>> n = Int(’n’)
>>> x = Real(’x’)
>>> prove(Implies(n > 1, 1/n == 0))
proved # here / denotes integer division
>>> prove(Implies(n > 1, 1.0/n == 0))
proved # Z3 casts 1.0 to an integer. (Thanks, Andrew Walter ,)
>>> prove(Implies(And(n > 1, x == 1.0), x/n == 0))
counterexample # Z3 promotes n to RealSort()
[n = 2, x = 1]
>>> prove(Implies(n == 1, n == 1.5))
proved # !!!
>>> prove(Implies(And(n == 1, x == 1.5), n == x))
counterexample
[x = 3/2, n = 1]

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 9 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


Summary

We are developing a type-inference engine for Smtlink.
This should relieve the user of most of the type-annotation work
needed when using Smtlink.
Current status:

I The bottom-up and top-down clause processors have been written
and tested.

I Proofs of the property that the syntactic shape of the typed-terms
produced corresponds to the shape of the clause are in progress.

I The final translation steps are in progress: converting ACL2
alists to Z3 arrays has presented some fun puzzles.

The clause processors should be useful for automating other
type-like reasoning.

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 10 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020


Summary

We are developing a type-inference engine for Smtlink.
This should relieve the user of most of the type-annotation work
needed when using Smtlink.
Current status:

I The bottom-up and top-down clause processors have been written
and tested.

I Proofs of the property that the syntactic shape of the typed-terms
produced corresponds to the shape of the clause are in progress.

I The final translation steps are in progress: converting ACL2
alists to Z3 arrays has presented some fun puzzles.

The clause processors should be useful for automating other
type-like reasoning.

Thank You!

Peng & Greenstreet Type Inference & Smtlink CpSc 418 – May. 28, 2020 10 / 10

https://www.cs.ubc.ca/~yanpeng
https://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/May_28
https://en.wikipedia.org/wiki/2020

