
DefiningandDetecting
Synthesis-GeneratedGlitches

Yan Peng Mark R. Greenstreet Ian W. Jones

yanpeng@cs.ubc.ca mrg@cs.ubc.ca ian.w.jones@oracle.com

Motivation

synthesisin N

in S out S

RTL
clk N

clk S

in N

in S
out S

glitch output

netlist
clk N

clk S

Glitch: a transition on a non-synchronous signal can cause the output of
the combinational logic to temporarily change to an unstable value.
Synthesis-generated Glitch: synthesis tools can introduce glitches.
This can happen even though the RTL design is free of such a glitch.

Problem: An example

netlist

S1 = 1

S_N1_VALID = 0

N2 = 1

N1 =

N_OUT

synthesized 1

RTL

 S_OUT = S_N1_VALID ? N1 : S1;
 N_OUT = N2;

Designer’s expectation

M
UX

0

1

S1

N1

N2

S_N1_VALID

S_OUT

N_OUT

D Q

clk1

D Q

clk1

D Q

clk1

D Q

clk2

D Q

clk2

S_QS_OUT

D Q

clk2

• The netlist is boolean-logically equivalent to the RTL and passes
standard logic equivalence checks

• A glitch can propagate through the netlist, while the designer
intended the RTL to block such a glitch

• Synthesis can refactor a mux to shorten a critical path

• Synthesis can add extra gates to satisfy min-hold-time constraints,
especially for designs with high clock frequencies

Formalization
For each combinational logic fan-in tree (DAG) with output q:
Gq,RTL(sq, nq) denotes the value of q according to the RTL, and
Gq,net(sq, nq) denotes the value of q according to the netlist. To detect
glitches, we look for an assignments to sq and nq for which Gq,net

propagates an X to its output, but Gq,RTL does not. More formally,

glitchFree(q) = 8sq 2 B|sq|. 8nq 2 BX|nq|.
(Gq,net(sq, nq) = X)) (Gq,RTL(sq, nq) = X) .

(1)

This says that the netlist produces no “unexplained” X values. Checking
property glitchFree is complete for co-NP. a

A stricter notion of a netlist being glitch-free:

glitchFree2(q) = 8sq 2 B|sq|. 9b 2 B.
(8nq 2 B|nq|.Gq,net(sq, nq) = b)

) Gq,net(sq, X |nq|) = b .
(2)

This says that for every valuation of the synchronous inputs for which
the output does not depend on boolean-valued, non-synchronous inputs,
X values for the non-synchronous inputs do not affect the output either.
Property glitchFree2 does not require an RTL description of the function;
however, checking glitchFree2 is complete for ⇧2.b

aA property is in co-NP if it can be written as 8x. P (x) where x is a boolean vector.
bA problem is in ⇧2 if it can be written as 8x. 9y. P (x, y). ⇧2 is “harder” than NP

or co-NP in that any problem in NP or co-NP is also in ⇧2.

Glitch Hunter
• Sequential Glitch Hunter: ACL2 provides a comprehensive

Verilog front end and a SAT solver interface. Theorems are
automatically generated.

Load Verilog Extract&match
state-bits

For each
state-bit

Construct
theorems

Run
SAT solver

Report any
glitches

Symbolic
simulation

ACL2 Verilog
front-end

SAT solver
interface

yes

no

Has non-sync
inputs?

• Parallel Glitch Hunter: distribute computation over multiple
machines by leveraging the ACL2 certification method and the
Unix Make utility.

Proof
Job 0

Proof
Job 1

Proof
Job 2

Proof
Job 100…

Preprocess

Load
RTL

Load
netlist

RTL netlist

Summary

Job-tldr 0 Job-tldr 1 Job-tldr 2 Job-tldr 100

Summary-tldr

Extract and match
state-bits

Learn clock domain

Calculate fan-in DAG

…

Results
Module #gates #FFs #GH-FFsa T32

b

A 1264 721 221(30.7%) 6
B 10923 4256 2378(55.9%) 17
C 90432 14874 2045(13.7%) 22
D 29018 5092 2293(45.0%) 84
E 238783 177996 53415(30.0%) 446

0 1 2 3 4 5 6

Module Size (#GH_FFs) 104

0

100

200

300

400

500

E
la

p
se

d
 T

im
e

 (
 m

in
s

)

AC

D

B

E

1. For modules with a few thousand gates, the time to dispatch jobs
in the cluster dominates, and 16 or 32 processors seems optimal

2. For modules with hundreds of thousands of gates, the preprocessing
step becomes a sequential bottleneck accounting for about 2% of
the total computation and limiting speed-up to around 50

3. Outlier module D for preprocessing time due to combinational loops
aGH-FFs are state-bits that include non-synchronous inputs in their fan-in trees
b
T32 is the time (in minutes) with 32 parallel jobs

Conclusion & Future Work
We presented a precise, logical definition of synthesis-generated glitches.
We implemented a tool that solves this problem for real modules from
designs in industry. We demonstrated a parallel implementation that runs
on linux server clusters that are standard in industry. We hope commercial
CDC verification tools can benefit from this approach.

