Verifying Global Convergence of a Digital Phase-Locked Loop with Z3

Yan Peng Mark Greenstreet
University of British Columbia, Canada
{yanpeng, mrg}@cs.ubc.ca

I. Problem: Global Convergence of a PLL

Phase-locked loops (PLL) are ubiquitous in analog and mixed-signal designs.

- Showing convergence to this locked behaviour is hard:
 - A large, continuous state space of possible starting conditions.
 - Simulations of convergence are impractical: time-to-lock is very large compared with the time-scales required for accurate circuit simulation.
 - Coverage achieved by the simulations is quite small.

II. A State-of-the-Art Digital PLL (from CICC 2010)

- PLL
 - Always Lock
 - Continuous
 - Global Convergence
 - Dynamical System
 - Analog
 - Digital

III. Lyapunov Function

- Continuous counterpart of a ranking function for discrete progress arguments.

IV. Lyapunov Function for Simple Nonlinear ODE

- Linear ODE: \(\dot{x} = Ax \)
- Let \(P \) be the solution of \(A^T P + PA = -I \). A possible Lyapunov function becomes \(\Psi(x) = X^T P X \).
- If \(P \) is positive definite, then the system \(\dot{x} = Ax \) globally converges to \(x = 0 \).

V. Verifying a Simplified Nonlinear Model using Z3

- Strong candidate for automation using symbolic/programatic differentiation
- Z3 easily proves global convergence.
- Fixed procedure: promising for automation.

VI. Improve the Model 1

Parameters with ranges:
- Inequality ranges for parameters \(\alpha \in 1 \pm 0.2, \beta \in 1 \pm 0.2, \gamma_0 \in 1 \pm 0.2 \) and \(c_0 \in 1 \pm 0.2 \).
- Strategy: Check where the parameters are used, try simplify non-linear part.

Example: Simplifying an element of the Jacobian matrix:

- The approximation is based on the observation that \(\alpha \in 1 \pm 0.2 \).

VII. Improve the Model 2

Adding quantization error:
- Need to show: \(\forall x \in Q_0 - Q_T, \forall \eta \in Err. f(x + \eta)^T P x < 0 \), where \(f \) is nonlinear. This creates nonlinear terms for the components of \(\eta \).
- Strategy: This is equivalent to: \(\forall x \in (Q_0 - Q_T) \oplus Err. \forall \eta \in Err. (x + \eta \in Q_0 - Q_T) \Rightarrow (h(x)^T P (x + \eta) < 0) \)

The Minkowski sum of two sets, \(A \oplus B \), is the set of elements that can be obtained as the sum of an element from \(A \) and an element from \(B \):

\(A \oplus B = \{ z \mid \exists a \in A, \exists b \in B, z = a + b \} \)

VIII. Conclusion & Future Work

- Conclusion:
 - Using a simplified model, we showed convergence where specifications for components are interval bounds using Z3.
 - SMT-based methods can address these problems more effectively than traditional simulation techniques.

- Future work:
 - Provide bounds on lock time.
 - Examine other digital PLL architectures to assess the reusability and automatability of this verification.
 - Component validation: formalize the connection between the models used and those used in other phases of the analog and mixed-signal design process.