
Automate convergence rate proof for gradient descent
on quadratic functions

Yan Peng
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada
yanpeng@cs.ubc.ca

Abstract

Iterative optimization algorithms are widely used in machine learning. Machine
learning researchers derive the convergence rate manually to show better perfor-
mance. The proofs are usually done with repeated proof strategies with minor
changes. Recent proofs are even becoming tedious and hard-to-read. Given these
observations, we believe machine proofs can largely automate the process thus
can improve algorithm study efficiency. Furthermore, machine proofs may help
researchers come up with better proof results. The prelimitary experiment in this
work proposes a framework and shows the possibility of automating the conver-
gence rate proofs using a theorem prover.

1 Introduction

Machine learning, emerging and develping as a power technique, has been successfully applied to a
variety of poblems and applications. For many scenarios, a machine learning problem is modelled
as an optimization problem of minimizing some loss function under certain constraints. This moti-
vates great interest and huge effort into optimization algorithm research. In the simplest case, pure
mathematical deduction can provide the closed-form solution to our problem. Under more complex
cases, we won’t be able to solve the problem exactly, but we can approximately approach the opti-
mal solution by doing proper iterative updates. Gradient descent and etc. are good examples of this
kind of method.

There are two things we generally care about in an iterative optimation algorithm. What kind of
problems the optimization method fit to and how fast the optimization method will converge to the
optimal solution. Based on these two criterion, one can produce a “complexity zoo” for modern
optimization methods. Basically, for deterministic gradient method, we can achieve superlinear
convergence rate when the target function is strongly-smooth and stronly-convex. For strongly-
smooth but only convex problems, sublinear convergence rate can be achieved. Subgradient or
stochastic gradient methods are generally supposed to be slower than deterministic ones. Recently,
Mark Schmidt, Nicolas Le Roux, Francis Bach [2] have proposed a stochastic gradient method called
SAG and proved linear convergence rate under assumption of a strongly-smooth and strongly-convex
problem.

All these convergence rate results discussed above have been manually proven. More will come
up as this area grows and evolves. We observe several properties about these proofs. First, they
are very similar. They are similar in a way that they use common assumptions, they apply similar
mathematical deductions, and they derive similar intermediate results. Second, they vary between
methods. New methods proposed are always different from old ones. In order to prove the new
methods’ convergence rate, researchers have to bring up a new proof that takes into consideration of
the new facts. Third, they scale as the proposed methods become more sophisticated. If one takes

1

a look at [2]’s proof. This is an 18-page convergence proof based on a Lyapunov argument that
involves derivations on a very huge formula. These properties motivates this project on automating
convergence rate proofs. Since computers are extremely good at replicated, polymorphic and tedious
work, why don’t we give the proof job to a machine and simply let it run for it.

Automating the convergence rate proofs brings up many benefits when viewed from different as-
pects. As already discussed, it can potentially relieve researchers from doing tedious and re-
peated work. Second, human beings can feel frustrated reading a time-consuming and intellectual-
challenging proof of tens of pages. Their trust on the proof may fall if they fail to finish reading it.
Providing a machine validated proof, in this way, can largely establish the credability of one’s proof.
Further from that, automating existing proofs may even inspire new algorithms or new convergence
rate results because machine proofs give us the freedom to tweak around and push things to the
limit. This is something that can not be easily achieved when we are doing manual proof, because
we have to reserve enough space for obvious correctness.

In this project, we build the foundation for automating convergence rate proofs on quadratic func-
tions. We prove the linear convergence rate of gradient descent on general quadratic functions. Our
experiment result shows the possibility to form existing convergence proof inside a theorem prover
and the general structure can be easily applied and extended to similar proofs or even more compli-
cated proofs. Not trivially, my work also add more interesting stuff to the theorem proving research
world.

2 Related work

As far as I’m awared of, this is the first attempt applying automatic theorem proving to convergence
rate proofs in machine learning area. But there does exists former work on applying theorem proving
to general machine learning problems. Ruben et al. [5] have done research on the verification of
synthesized Kalman filters using the theorem prover, ACL2[3]. Their work is applied to the NASA’s
spaceship trajectory prediction using syhthesized Kalman filters. They modeled the Kalman filter
as a recursive procedure and verified that the outcome of this algorithm should be the best possible
estimation. The Kalman filter verified in their work can be viewed as a generalization of least squares
techinique. So there are similarities between our work and theirs. But the properties we are trying
to prove are different and the aspects of linear algebra we are using are different.

Formally modelling a system then doing reasoning on the system by directly looking at the math-
ematics is not a novel approach. Tremendous work have been done this way in different domains.
Among those, verification problems in analog and mixed-signal (AMS) design are similar to our
work. This is because our work and AMS verification involves linear or nonlinear arithmetics, rea-
soning about inequalities and proofs on resursive functions using inductions. Fabian [10] uses a
theorem prover called Isabelle to verify bounds on solutions to simple ODEs from a single initial
condition. Their work on representing affine arithmetic fall into similar category of our work. But
again, the kind of problems and properties are quite different.

A little bit further away from my work are works that applies machine learning techniques to help
automate a theorem prover through learning lemmas from existing theorems. Jonathan et al. [8] use
machine learning techniques to help a theorem prover find about potential useful lemmas for certain
theorems. In this way, they speed up the proof process by narrowing down the search space.

My master’s thesis will be on my recent work of integrating SMT solver[6] and theorem prover for
AMS designs. In that work, I use ACL2 to prove global convergence of a digital phase-locked loop
(PLL) without talking about the convergence rate.

3 Automate the proof

We start with the simplest convergence proof that we can think of. Future constructions and exten-
sions can be done based on the structure implemented for this simplest problem. The proof come
into mind is the linear convergence rate proof for gradient descent on a quadratic function. This
should be a good enough example because it maintains nearly all basic linear algebra theorems need
for similar proofs. Future variations can be built by replacing the quadratic function with another
function or applying another iteration update formula.

2

3.1 The convergence rate proof

Suppose the we have below optimization problem with a general quadratic function:

min
x
f(x) =

1

2
xTAx− bTx+ c (1)

given the assumption that µI � A � LI , x∗ is the unique minimizer and b = Ax∗.

Suppose k is the number of iterations and xk is the x value of kth iteration. x0 is the initialization.
For gradient method, we have the next iteration being xk+1 = xk − αkf ′(xk). Gradient method
works based on the observation that the gradient direction is the steepest descending direction. With
properly defined step size αk, one can ensure the target function to be decreasing on each iteration.
Gradient method has linear convergence rate. To see why this is true,

||xk+1 − x∗|| = ||xk − αkf ′(xk)− x∗||
= ||(xk − x∗)− αk(Axk − b)||
= ||(xk − x∗)− αk(Axk −Ax∗)||
= ||(I − αkA)(xk − x∗)||
≤ ||I − αkA||||xk − x∗||
≤ max{|1− αkL|, |1− αkµ|}||xk − x∗||

(2)

If we choose αk to be αk = 1
L , then we have,

||xk+1 − x∗|| ≤
(

1− µ

L

)
||xk − x∗||

≤
(

1− µ

L

)k+1

||x0 − x∗||
(3)

This results illustrate how the x value on each gradient descent iteration converges to the optimal
point x∗ with a linear rate of (1 − µ

L). The best linear convergence rate can be achieved with
αk = 2

µ+L ,

||xk+1 − x∗|| ≤
(
L− µ
L+ µ

)
||xk − x∗|| (4)

3.2 Problem setup

We choose the theorem prover ACL2 [3] as our machine tool. ACL2 is a theorem prover with about
20 years of history. It has an actively-developing open-source community that develops libraries
for various logic, mathematical and application problems. It is also a theorem prover that has been
successfully applied to a number of industrial, system-level modeling and verification problems. My
recent research work of verifying global convergence of a digital PLL is done using a combination
of ACL2 and a SMT[6] solver.

In order to form the convergence rate proof in ACL2, we identify below problems and give corre-
sponding solutions.

3.2.1 Matrix representation

We choose the basic representation of our proof to be matrices. There are several obvious benefits.
First, matrices are more concise in format comparing to one single formula. Second, programmer
can do less manual work expanding matrices into formulas when programming the proof. Third,
matrices allow arbituary large dimensions. Therefore, it’s more friendly to scaling.

We choose to use the ACL2 book matrix[4] as our basic data structure. In ACL2, a compiled library
of functions and theorems that works as a functional integration is called a book. The matrix book
uses the ACL2 array2p data structure as its foundation and extends from it the support for basic

3

matrix operations and reasonings. array2p is in essence a two dimentional array represented by an
association list (like a dictonary in Python or a map in C++, but with O(n) search time) adding
some meta information describing the matrix(e.g. dimentions). The keys are position indices (i.e.
suppose we have matrix A, where each element is named as ai,j , then the key will be (i, j)) and
the values are ai,j’s. This book provides reasoning on basic matrix operations, e.g. matrix addition,
multiplication, scaler-matrix multiplication, subtraction, inversion and so on.

3.2.2 Linear algebra theorems

Existing reasoning ability of the matrix book is relatively weak comparing to the complexity of the
kind of problem we want to prove. Thus, a very large portion of the basic linear algebra theorems
should be developed in order to support our proof. This could be a very large amount of work and it
can easily take days and weeks to code. To make efficient use of my project time, we use a technique
called skip-proofs supported by ACL2 to solve this problem.

skip-proofs gives the programmer a way of postponing part of the proof in the middle of develop-
ment. This is especially useful when some theorems which are believed to be true seems to take too
much effort to prove. Adding a skip-proofs into the system of theorems basically makes the assump-
tion that such theorem is true. Continued from that, the programmer can add new proofs assuming
such theorem is proved. In this way, the programmer can focus more on the structure of the proof
rather than struggling with a particular hard theorem.

However, using skip-proofs is introducing unsoundness into the system. To see why this is dan-
gerous, think about a situation when we “skip-proved” a false argument. Following the principle
of explosion, we know that any theorems inferred by that false argument will be proved regardless
of their real truthness, because FALSE can imply anything. Thus in the long run, one still want to
remove all the skip-proofs.

ACL2 is executable. Except for its reasoning ability, another great use of it is for modelling your
system. In order to make sure that our skip-proofs are not trivially false arguments, we add tests
for the skip-proofs we introduce. This way, we largely eliminated the possibility that we are stating
something that’s very wrong.

3.2.3 Matrix norms, eigenvalues and singular values

The approach to represent matrix norms, eigenvalues and singular values in ACL2 is not obvious.
Here, we are talking about 2-norms when we talk about vector norms and spectural norms when we
talk about matrix norms.

For the easy case of vector norms, basically, we can define it as ||x||2 = xTx. Matrix norms are
much harder since it doesn’t have a closed-form representation (if we don’t have the definition for
eigenvalues or singular values). So we must define it using the set of properties that uniquely define
what a matrix norm should be. We use the following definition:

||A|| = sup

{
||Ax||
||x||

: x ∈ Kn, x 6= 0

}
(5)

where K is the field of real and complex numbers. This can be further expanded into,

∀x, ||A|| · ||x|| ≤ ||Ax||
∃x′ 6= 0, ||A|| · ||x′|| = ||Ax′||

(6)

These two theorems constitute what the norm of a matrix A should be. Notice here we require
ACL2 to have the ability of logic reasoning with quantifiers. The technique we are using is a method
supported by ACL2 called skolemization.

Skolemization uses a Skolem function to remove existential quantifiers from a predicate. The
Skolem function is a magical function that can produce one of such instance, given relavent vari-
ables that are universally quantified. Below is an example illustrating a Skolem function, suppose
we have the predicate: “Every philosopher writes at least one book”[7],

∀x[Philo(x)→ ∃y[Book(y) ∧Write(x, y)]]

∀x[¬Philo(x) ∨ ∃y[Book(y) ∧Write(x, y)]] (Eliminate implication)
(7)

4

Now suppose we have a function f that takes x as input and magically return a y. This function is
defined that if this is a true statement, then for each philosopher x, f(x) returns one of the books y
(which can also be called a witness) that the philosopher writes. Thus the statement becomes,

∀x[¬Philo(x) ∨ [Book(f(x)) ∧Write(x, f(x))]] (8)

The syntax of ACL2 is quantifier free and every formula is assumed to be universally quantified over
all free variables in the formula. But it can support first-order quantification through skolemization to
remove all existential quantifiers. When introducing a skolem function into ACL2. ACL2 basically
adds two theorems. One says if there exists a witness to the theorem, then the theorem is true.
The other one says if the theorem is true, there must exist a witness to the theorem. Applying this
technique, we are able to axiomize our matrix norm definition as stated above.

We apply similar approaches to eigenvalues and singular values. The definition for eigenvalues
comes from the eigenvalue decomposition theorem,

M = QΛQ−1 (9)

where M is a square matrix. Λ is a diagonal matrix whose diagonals are the eigenvalues. Q is a
square matrix whose columns are the corresponding eigenvectors.

This isn’t quite true because not all matrices are diagonalizable. But ACL2 is still sound by gen-
erating axioms that says “If there is a choice of values for the existentially quantified variables that
satisfies the constrains on the exists argument, then the Skolem function returns an example”. If
there’s no such value, then the function can return anything. So, in order to use the skolemization,
one needs to prove that the eigenvalues exist. A skip-proofs is introduced to solve the problem. This
shouldn’t hurt the soundness of ACL2 itself. However, in the long run, we still want to provide an
exact definition for eigenvalues. Future work will discuss this issue.

Seemingly more complex than eigenvalues, singular values are actually more well-defined under all
possible matrices. We take the singular value decomposition theorem,

M = UΣV ∗ (10)

whereM is am-by-nmatrix whose entries are real numebrs or complex numbers. U and V satisfies
U∗U = I and V ∗V = I , where ∗ stands for conjugate transpose. Σ is a m-by-n diagonal matrix
with non-negative real numbers on the diagonal. The non-negative real numbers are called singular
values.

3.3 Detailed implementation

As discussed in last subsection, the implementation is composed of three parts. One book of the-
orems for basic linear algebra function definitions and theorems. This book is mostly skip-proofs.
Future work will talk about proving all them. One file is for testing skip-proofs in the basic linear
algebra theorem book so that we don’t have trivially wrong theorems. The third book of theorems
are the main lemmas and theorems that form the linear convergence rate proof from Section 3.1.
We’ll discuss each of them.

3.3.1 Linear algebra book

The basic linear algebra book consists a list of function definitions and theorems about linear algebra.
Table 1 and Table 2 show what they are. (Note: no need to read the table if not interested to see what
functions or theorems there are)

3.3.2 Test file

The tests are done in this manner. Suppose we have a theorem statement p(x, y, z) → q(x, y, z)
called “simple-thm” as illustrated in Program 1. We decompose this theorem statement into a corre-
sponding function and a theorem defined using this function as in Program 2.

This code is using LISP’s prefix syntax. defun defines a function that takes a name and a list of
arguments. defthm defines a theorem that ACL2 has to prove. By dividing the theorem into a
executable function and a theorem statement, we are able to do tests on the functions in another

5

Table 1: basic linear algebra functions

FUNCTIONS DEFINITION

m-is-real check if a matrix is real
m-is-nneg-real check if a matrix is non-negative real matrix
m-is-square check if a matrix is square
m-is-symmetric check if a matrix is symmetric
m-is-orthogonal check if a matrix is orthogonal
m-is-vector check if a matrix is a vector
m-is-diag check if a matrix is diagonal
m-diag given a matrix, return it’s diagonal vector
m-can-be-added check if two matrices can be added
m-can-be-multiplied check if two matrices can be multiplied
m-rs check if a matrix is real symmetric
m-pd define a matrix to be positive definite
m-rspd define a matrix to be real symmetric and positive definite
m-psd define a matrix to be positive semi-definite
m-rspsd define a matrix to be real symmetric and positive semi-definite
m-prec define ≺ relation
m-preceq define � relation
m-eig define eigenvalue of a matrix
m-singular define singular value of a matrix
v-2norm define 2-norm of a vector
m-normp define a matrix norm
multi-max return the maximum value of a matrix

Listing 1: Simple theorem

(def thm simple− thm
(i m p l i e s (p x y z)

(q x y z)))

test file. A typicle test looks like Program 3, The code basically assigns X = [4, 3], Y = [1, 2]
and Z = [5, 10] and tests “simple-thm” with these assignment. “(:HEADER ...)” are the meta
information about the matrix. Due to project time limitation, we didn’t have time to test every
skip-proofs. But this task should be easy to do.

3.3.3 Convergence rate proof

The convergence rate proof is composed of two parts. First, we define 4 functions for this problem:
the target function f , its gradient function f-p, its Hessian function f-pp and the iterative update func-
tion inc-x. Notice we choose to use the gradient function and the Hessian function defined as axioms
without proving them. A more strict approach would be to prove that the defined functions are the
gradient and Hessian of the quadratic function using the definition of a gradient and a Hessian.

Then the main body of the proof is composed of two main parts. One part does rewriting proofs to
prove

||xk+1 − x∗|| = ||xk − αkf ′(xk)− x∗|| = ||(I − αkA)(xk − x∗)|| (11)

For a given theorem, rewriting replace a current subterm with a new term by applying a rewrite or
definition rule. This is based on a fundamental logic concept called substitution. E.g. p(x, y, z) ∧
q(x, y, z) is a substitution instance of S ∧ T by replacing S with p(x, y, z) and T with q(x, y, z).
Rewriting rules are existing equivalence relations in the proof system. Doing substitutions with
these rewriting rules let us simplify our theorems. A typical theorem prover will get lost in a large
set of rewriting rules, so user provided hints are needed once in a while. Hints are written by the
programmer, specifying which set of rewriting rules are really needed by this theorem.

6

Table 2: basic linear algebra theorems

THEOREMS MEANING

m-scale-rs real symmetric matrix multiplied by a real scaler is still a
real symmetric matrix

m-add-rs real symmetric matrix add a real symmetric matrix is still a
real symmetric matrix

m-preceq-scale preceq is preserved when multiplied by a positive real
2norm-congruence if two vectors are equal, their 2-norms will be equal
v-norm->=-0 vector norms are non-negative
all-matrix-has-m-norm all matrices have matrix norm
m-norm->=-0 matrix norms are non-negative
m-norm-is-max-sv matrix norm using a 2-norm is the maximum sigular value
m-rs-sv-=-|eig| If a matrix is real symmetric, then its singular values are the

absolate values of its eigenvalues
M-Norm-unique Matrix norm is unique
challenging-proof An important theorem for the inequality in the proof
m-=-transitivity matrix equal is transitive
left-s-*-distributive scaler multiplication is distributive
+-associative-4elem-1 trivial matrix linear algebra
+-associative-4elem-2 trivial matrix linear algebra
extract-common-vector trivial matrix linear algebra
s-*-associative scaler multiplication is associative
subtraction-congruence If two sets of matrices are equal, then their corresponding

difference is also the same
m-*-distributive-over-m-− matrix multiplication can be distributed over matrix subtrac-

tion
alist2p-m-+-alist2p the difference of two matrices is also a matrix
<=-square if 0 ≤ m ≤ n, then m2 ≤ n2
<=-* if k ≥ 0 and m ≤ n, then mk ≤ nk

Listing 2: Decompose simple theorem

(defun f−simple− thm (x y z)
(i m p l i e s (p x y z)

(q x y z)))
(def thm simple− thm

(f−simple− thm x y z))

The other half of the proof focuses on proving the inequality,

||(I − αkA)(xk − x∗)|| ≤ ||I − αkA||||xk − x∗||
≤ max{|1− αkL|, |1− αkµ|}||xk − x∗||

(12)

This part is much harder because of the more complicated reasoning with matrix norms, eigenvalues
and singular values. Because of time limitation of this project, we skip-proof ed one key lemma
needed for this part of proof. This let us work on the rest of the proof to fullfil the project. Future
work should be done to resolve the skip-proofs.

4 Results and analysis

4.1 Some statistics

Table 3 shows some statistics about this proof.

7

Listing 3: A test

(l e t ((X ’ (((0 . 0) . 4)
((0 . 1) . 3)

(: HEADER : DIMENSIONS (1 2)
:MAXIMUM−LENGTH 10
:DEFAULT 0
:NAME X)))

(Y ’ (((0 . 0) . 1)
((0 . 1) . 2)
(: HEADER : DIMENSIONS (1 2)

:MAXIMUM−LENGTH 10
:DEFAULT 0
:NAME Y)))

(Z ’ (((0 . 0) . 5)
((0 . 1) . 10)
(: HEADER : DIMENSIONS (1 2)

:MAXIMUM−LENGTH 10
:DEFAULT 0
:NAME Z))))

(fmx ”m−=− t r a n s i t i v i t y i s t e s t e d t o be ˜ x0 ”
(equal (f−simple− thm X Y Z) t)))

Table 3: Statistics of this proof

feature number

manual proof length 21
of funcs 43
of thms 64
of skip-proofs 21
LOC 1403
runtime ≈ 20min

We can get several conclusions from above numbers. First, the machine proof is 50 times longer
than the manual proof. The common sense is that usually the machine proof will be 10-20 times
longer than the manual proof. This is due to the reason that human reasoning are always making
assumptions that they believed to be true. Humans also jump in deductions because they can think
many steps between each line of proof. Machine needs more guidance to form the proof. Our proof
seems a little bit longer due to the reason that we have to implement a book of basic linear algebra
theorems. This portion of code is reusable for future proofs. Another observation is that the number
of skip-proofs comparing to the total number of theorems is still low. This is a good news for us.
The number of functions is relatively high, which might not be a good sign because some of them
are introducing axioms into the system. Runtime is reasonable, but still larger proofs are needed to
see how the runtime scales.

4.2 Scalability analysis

Scalability is one of the main issues we keep in mind when implementing this framework. There are
several good points about this project that ensures scalability.

First, matrix representation gives us the space to scale our method into arbituarily large problems.
Second, seperating basic linear algebra theorems from the main convergence rate proof give us
the freedom to build new proofs based on existing linear algebra books. Third, the theorems are
implemented in a way that if the new proof maintains similar structure to this problem but with new
constraints, one can easily add the new constraints to build a new proof.

8

5 Conclusion and future work

In this paper, we summarized our project work on automating the convergence rate proof. We
build the initial foudation and have proved a very simple example of gradient descent on quadratic
functions. This work shows the possibility of automating convergence rate proofs of general iterative
optimization algorithms. However, this work is still prelimitary. Lots of future work awaits to be
done in order to achieve reasonable automation.

First, we need to remove skip-proofs from our linear algebra book. This can be a huge amount of
work. For the definition of matrix norms, eigenvalues and singular values using skolemization. We
either need to prove the existence of such norms, eigenvalues and singular values by actually provid-
ing them; or we have to circumvent directly providing them through other mathematical techniques.
E.g. using secant method to prove the existence of a root for the characteristic polynomial.

Second, we still need to try proving a much larger proof to see what new problems might come up.
It can be that the larger proof already becomes too tedius that we have to combine a more efficient
solver, e.g. a SMT solver, to achieve the proof.

Third, all work done here are following below procodure. We first figure out a proof that’s detailed
enough for the machine based on the machine learning researcher’s manual proof. Then the pro-
grammer code each theorem into the prover and see if the prover agrees. This process is still far
from full automation. Future work should emphasize more on automation, e.g. how to let the ma-
chine generate theorems that are needed. This is possible given there’s only a limited set of proof
techniques and the proof structure is quite similar between different proofs.

Fourth, although it’s our belief that machine proofs can give us lots of benefits, the simple example
shown here hasn’t quite give us those benefits. Future work need to be done to see how machine
proofs can save time, effort and improve the human reasoning results.

Acknowledgments

Thank professor Mark Schimidt for holding a wonderful course this term. Thank the ACL2 commu-
nity for immediate reply and help. Thank my supervisor, professor Mark Greenstreet, for insightful
guidance and endless patience.

References

[1] Nicolas Le Roux, Mark Schmidt, Francis Bach. A Stochastic Gradient Method with an Exponential Con-
vergence Rate for Finite Training Sets. NIPS’12 - 26 th Annual Conference on Neural Information Processing
Systems (2012), Dec 2011, Lake Tahoe, United States. <hal- 00674995v4>

[2] Mark Schmidt, Nicolas Le Roux, Francis Bach. Minimizing Finite Sums with the Stochastic Average
Gradient. 2013. <hal-00860051>

[3] Matt Kaufmann, J Moore. An Industrial Strength Theorem Prover for a Logic Based on Common Lisp.
IEEE Transactions on Software Engineering 23, no. 4, April 1997, 203–213.

[4] Ruben Gamboa, John Cowles, Jeff Van Baalen. Using ACL2 Arrays to Formalize Matrix Algebra. ACL2
workshop 2003, July 2003, Boulder Colorado, USA.

[5] Ruben Gamboa, John Cowles, Jeff Van Baalen. On the Verification of Synthesized Kalman Filters. ACL2
workshop 2003, July 2003, Boulder Colorado, USA

[6] Leonardo de Moura and Nikolaj Bjrner. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337-340. Springer, 2008.

[7] Torsten Hahmann. Skolemization, Most General Unifiers, First-Order Resolution. CSC384, University of
Toronto. http://www.cs.toronto.edu/ sheila/384/w11/Lectures/csc384w11-KR-tutorial.pdf, 2011.

[8] Jonathan Heras, Ekaterina Komendantskaya. ACL2(ml): Machine-Learning for ACL2. ACL2 workshop
2014, as an ITP-affiliated workshop of FLOC(part of Vienna Summer of Logic), July 2014, Vienna, Austria.

9

	Introduction
	Related work
	Automate the proof
	The convergence rate proof
	Problem setup
	Matrix representation
	Linear algebra theorems
	Matrix norms, eigenvalues and singular values

	Detailed implementation
	Linear algebra book
	Test file
	Convergence rate proof

	Results and analysis
	Some statistics
	Scalability analysis

	Conclusion and future work

