Yan Peng

Research Interest

Formal verification, SAT/SMT solvers, Theorem Proving, Model Checking

EDUCATION

University of British Columbia	Vancouver, Canada
Ph.D. Candidate in Computer Science, GPA: 92.5%	2015–Now
 Supervisor: Mark R. Greenstreet Thesis Title: Reflection-based Integration of SMT Solvers into Theorem Provers 	
University of British Columbia	Vancouver, Canada
M.Sc. in Computer Science, GPA: 92.5%	2012–2015
 Supervisor: Mark R. Greenstreet Thesis Title: Combining SMT with theorem proving for AMS verification : analytically convergence of a digital PLL 	y verifying global
Zhejiang University	Hangzhou, China
B.Eng. in Computer Science and Technology, GPA: 3.87/4.00	2008–2012
 Advisor: Jian Shao Thesis: Research on Technology of Large-Scale Web Video Topic Discovery 	
Chu Kochen Honors College	Hangzhou, China
English Minor in Foreign Languages and Engineering Platform	2008–2012

EXPERIENCE

University of British Columbia Research Assistant at Formal Methods Lab	Vancouver, Canada 2012–now
- Smtlink : an Integration of SMT Solvers into the Theorem Prover ACL2	
 * The integration contains verified β-reduction and type inference * It supports rich datatypes including algebraic datatypes and abstract type 	
- Verifying Safety Properties of an Asynchronous Pipeline Using Smtlink	
 * Used timed traces to model timed asynchronous circuits with nondeterminism * Verified hazard-freedom and deadlock-freedom of an asynchronous pipeline 	n
– Verifying Global Convergence (a Liveness Property) of a Phase-Locked Loop Using Sn	ntlink
* Built a recurrence relation model and proved convergence using progress argum	nents and induction
– Machine Learning Related: Proved the Cauchy-Schwarz Inequality using Smtlink	
Oracle	Redwood Shores, US
Student Intern at Oracle Labs	Multiple times since 2014
- Detecting Synthesis-generated Glitches Using SAT Solving and Theorem Proving	
 Formally defined synthesis-generated glitch using three-valued logic Built Glitch Hunter using theorem prover ACL2 and SAT solver Glucose that a glitch errors in clock domain crossing logic Built a Parallel Glitch Hunter to solve large industrial designs, and successfull industrial designs 	-

PUBLICATIONS

- 1. Type Inference Using Meta-extract for Smtlink and Beyond, Yan Peng and Mark R. Greenstreet, the Sixteenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2020), 2020.
- 2. Cauchy-Schwarz in ACL2(r) Abstract Vector Spaces, Carl Kwan, Yan Peng and Mark R. Greenstreet, the Sixteenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2020), 2020.
- 3. Verifying Timed, Asynchronous Circuits Using ACL2, Yan Peng and Mark R. Greenstreet, 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC-2019), 2019.
- 4. Smtlink 2.0, Yan Peng and Mark R. Greenstreet, the Fifteenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2018), 2018.
- 5. Defining and Detecting Synthesis-generated Glitches, Yan Peng, Mark R. Greenstreet, Ian W. Jones, the 56th Design Automation Conference (DAC-2018), 2018. (poster)
- 6. Finding Glitches Using Formal Methods, Yan Peng, Ian W. Jones, and Mark R. Greenstreet, 2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC-2016), 2016.
- 7. Extending ACL2 with SMT Solvers, Yan Peng and Mark R. Greenstreet, the Thirteenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2015), 2015.
- 8. Integrating SMT with Theorem Proving for Analog/Mixed-Signal Circuit Verification, Yan Peng and Mark R. Greenstreet, the Seventh NASA Formal Methods Symposium (NFM-2015), 2015.
- 9. Verifying Global Convergence for a Digital Phase-Locked Loop, Jijie Wei, Yan Peng, Grace Yu and Mark R. Greenstreet, 2013 Formal Methods in Computer-Aided Design (FMCAD-2013), 2013.
- 10. Verifying Global Convergence of a Digital Phase-Locked Loop with Z3, Yan Peng and Mark R. Greenstreet, the International Workshop on Design Automation for Analog and Mixed-Signal Circuits, 2013. (poster)

TALKS

- Hardware Verification Using Theorem Proving and SMT/SAT Solving, IBM, Austin, US, 2018.
- Verifying Global Convergence of a Digital Phase-Locked Loop with Z3, Microsoft, Redmond, US, 2013.

ACADEMIC ACTIVITIES

- Reviewer for International Conference on Computer-Aided Verification (CAV-2018)
- Program Committee for 24th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2020)

TEACHING

• Teaching Assistant at University of British Columbia:	
CPSC418 Parallel Computing	$2018 \ W1$
CPSC311 Definition of Programming Languages	$2015 \ \mathrm{W1}$
CPSC312 Functional and Logic Programming	$2013~\mathrm{W1}$
APSC160 Introduction to Computation and Engineering Design	$2012~\mathrm{W1}$

SKILLS

- Formal Methods: Z3, ACL2
- Programming: Python, Matlab, Haskell, Erlang, C/C++, Java, Racket, SQL, Bash, CUDA, Prolog, Verilog
- Tools: Emacs, LATEX, Git