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Abstract

We present a technique to decompose digital images using generalizations of the
Discrete Fourier Transform (DFT). This method arises from the representation the-
ory of iterated wreath product groups, which describe symmetries of the quad tree
decomposition of an image. In addition, we describe applications to compression,
edge detection, and de-noising, as well as experimental results to evaluate the per-
formance of these operations.
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Chapter 1

Introduction

Image processing refers to the various operations performed on pictures that are
digitally stored as an aggregate of pixels. There are many problems in image pro-
cessing, including enhancing or degrading the quality of the image, artistically
transforming the image, and finding and recognizing objects in an image.

Our approach traces back to Cooley and Tukey’s seminal paper on the Fast
Fourier Transform (FFT) algorithni[4]. Subsequent efforts to formulate the dis-
crete Fourier transform (DFT) in terms of the representation theory of finite cyclic
groups provides the basis of our approach. In two recent papers, Foote et. al. and
Mirchandani et. al. {[8],.[18]) link the spectral analysis approach for data on finite
groups with the world of wavelets. Their framework realizes the DFT and the Haar
wavelet transform as special cases of a more general construction. In particular,
the use of iterated wreath products as automorphism groups of spherically homo-
geneous rooted trees (SHRTS) provides the vital link between wavelets, spectral
analysis, and image processing.

Following in the same direction, this paper explores the spectral decomposition
algorithm from [8]. The main contribution of this paper is the application of iter-
ated wreath products of different symmetry groups, which is previously unexplored
in the field. We derive individual decompositions based on choices of symmetry
groups, noting the differences of the Haar, Fourier, dihedral, alternating, and sym-
metric decompositions. In addition, we investigate the applicability of classical
image processing techniques to our image spectra by demonstrating compression,
edge detection, and de-noising techniques.

Our approach in the following chapters is as follows. First, we give the neces-
sary background tools from representation theory, and we explain how to general-
ize the Discrete Fourier Transform (DFT) using these tools. Second, we introduce
wreath products and describe their structure. Third, we derive a wreath product
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invariant decomposition with respect to several iterated wreath product groups.
Lastly, we describe approaches for compression, edge detection, and de-noising as
a proof-of-concept that our spectral analysis is applicable to standard image pro-
cessing problems.



Chapter 2

Representation Theory

In this chapter, we briefly cover the basic tools of representation theory. We as-

sume basic knowledge of groups, rings, and modules. A more complete treatment
of representation theory can be found in the later chaptels of [6]. As a concrete
application of representation theory, we derive the classical DFT. This material is

found (concisely presented) inl [8], [17], and [21].

2.1 Representations of Finite Groups

Let G be a finite group, leF be a field and le¥ be a vector space over.
Definition 2.1. Letne Z*.

(1) A linear representatiof G is any homomorphisnp from G to GL(V).

(2) A matrix representationf G is any homomorphisnp from G to GL,(F).

A representation for a group is simply a map from group elements to
linear transformations iGL(V). WhenV is a finite dimensional vector space, we
can fix a basis fov and obtain an isomorphism fro@L(V) to GL,(F). Since this
paper only concerns finite dimensional vector spaces, we will use linear and matrix
representations interchangeably.

Although we can think of representations as maps, we can also think of them
as modules over group rings. Recall the definitions of group rings and modules:

Definition 2.2. The group ringof G overF, denoted~G, is the set of all formal
sums of the form
0G0, ogeF
2

where addition and multiplication are performed in the usual distributive fashion.
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Definition 2.3. Let R be a ring (not necessarily commutative nor with 1).left
R-moduleor aleft module over Rs a setM together with

(1) a binary operatior- on M under whichM is an abelian group, and

(2) an action olRonM (that is, a mafRr x M — M) denoted bym such that for
allr,se Rand forallm,ne M

(@ (r+sym=rm+sm

(b) (r)m=r(sm),

() r(m+n)=rm+rn,

(d) iftheringRhas a 1, thenth=m.

Now, suppose : G — GL(V) is a representation @. Amazingly enough, we
can consider the vector spa¢goverF) as a module over the ringG, where the
action ofFG onV is defined by

o9 | -v=Y ogo(g)(v) forall 09 € FG,ve V.

Conversely, given aR G-moduleV, we can obtain a representatiopn G — GL(V)
using the action oFG onV:

o(g)(v)=g-v foralveV,

whereg- v is the action of the group elemenmbn the element of V. Therefore, a
representatiorp : G — GL(V) is equivalent to specifying aRG-moduleV. Here,
we say thaV affordsthe representation.

This correspondence between representations and modules is very useful be-
cause now we can apply module theory to explore properties of representations.
In particular, we are interested in the basic building blocks of representations by
consideringsubmoduleswvhich correspond to "sub”-representations. Furthermore,
we can define the notion ofsimpleor irreducible representation analogously to
how a simple module is defined. To refresh the reader's memory, let us recall the
definitions of a submodule and a simple module:

Definition 2.4. Let M be a nonzer&®-module for a ringR.

(1) An R-submodulef M is a subgroupN of M which is closed under the action
of ring elements, i.ern e Nforallr e R ne N.

(2) M is said to berreducible or simpleif its only submodules are 0 ard;
otherwiseM is calledreducible
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One of the most important problems in group theory iskidgder Program,
which attempts to classify all finite simple groups and to find all ways of putting
simple groups together to form other groups. In module theory, an analogous prob-
lem is theextension problemin which we study exact sequences of modules, direct
sums of modules, and tensor products of modules. In the representation theory of
finite groupsWedderburn’s theorerfTheorenj 2.p) tells us how to break represen-
tations up into smaller irreducible representations. This astounding result forms the
foundation for our approach in decomposing signals and images. For the remainder
of this section, we will focus on Wedderburn’s theorem and other important objects
and tools in representation theory that allow us to use Wedderburn’s theorem.

The first important theorem we will discuss is Maschke’s theorem. Intuitively,
this theorem states that for any submodule oF& module, you can always find
a complementary submodule. This enables us to split the original module into a
direct sum of two submodules.

Definition 2.5. Let 1 be the multiplicative identity of the fielli. Thecharacter-
istic of a field F is the smallest positive integgrsuch thatp- 1 = 0 if such ap
exists, and 0 otherwise.

Theorem 2.1. (Maschke’s Theoremllet G be a finite group and let F be a field
whose characteristic does not dividg|. If V is any FG-module and U is any
submodule of V, then V has a submodule W such tratV/oW .

In terms of representation theory, if we are given a representation a sub-
space ol which is closed the action a#, then we can find aomplemenwhich
is also closed undep. In addition, for complex representations, you can find a
orthogonal complemerib the original subspace with respect to some inner prod-
uct. Maschke’s theorem will be important in proving Theoifenj 4.2. In addition,
this theorem is useful in proving Wedderburn’s theorem. But first we state a quick
corollary from Maschke’s theorem:

Corollary. If G is a finite group and F is a field whose characteristic does not
divide |G|, then every finitely generated F G-module Manpletely reduciblg.e.
M is isomorphic to a direct sum of irreducible submodules.

This is a direct consequence of Maschke’s theorem: given any non-trivial sub-
module of anFG-moduleM, we can recursively apply Maschke’s theorem to the
submodule and its complement until we cannot break them down any further (i.e.
until we obtain irreducible submodules). In addition, note that for any finite group
G andF = C, everyCG-module over a finite dimensional vector sp&Cis finitely
generated, because we can always choose a finite basis which/spEmarefore,
all finite dimensionalCG-modules are completely reducible.
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Now we are ready to state Wedderburn’'s theorem. We will conveniently apply
this theorem tCG-modules, since they are guaranteed to be completely reducible.

Theorem 2.2. (Wedderburn’s Theorenbet R be a nonzero ring with. If every
R-module is completely reducible, then the ring R considered as a left R-module is
a direct sum:

R=Li®lo®---Plp,

where each Lis a simple module withjl= Re, for g € R which satisfy
(1) e?=g foralli (the g areidempotenty
(2) ee; =0ifi #] (the idempotents arerthogonal,
(3) andy! ;e =1

This theorem guarantees us a decomposition of@@ymoduleM as a direct sum
of irreducible submodules:

M=M1OM@---DM.

Note that theM; are not necessarily distinct; in fact, there may be many irreducible
submodules that are isomorphic. Thus, this decomposition is not unique. However,
we can group the isomorphic components to forisadypic decompositioaf M:

M=Za N @ayNa & - - - B aNi,

where eacly; is a nonnegative integer indicating the multiplicity of the irreducible
submoduleN;, i.e.
a times

——
aNi=N&---dN;.

Note thatN; = M; for somej, and each\; is distinct. We refer to the submodules
aN; asisotypic subspaces

Now, recall in Wedderburn’s theorem that we obtained the irreducible modules
L; by projection using the idempotergs If there were a simple way of obtaining
these idempotents, then applying Wedderburn’s theorem would be easy. It turns
out that we can use the theorydfaractergo find these idempotents.

Definition 2.6. If ¢ is a matrix representation & afforded by thé=G-moduleV,
thecharacterof ¢ is the function

x:G—F definedby yx(g)=tro(g),

where trp(g) is the trace ofp(g).
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Recall that tAB = trB A for two n x n matricesA andB. For an invertible
matrix P, we see that the trace is invariant under conjugatioR:by

trPAP=trP.

Thus, the character of a representation is invariant under any change of basis. In
other words, characters atkass functionsi.e. constant on the conjugacy classes
of G:

x(97%g) =tr (¢(g7xg)) =tr (¢(g He(X)9(g)) =tro(x) = x(X).

We now apply Wedderburn’s theorem to characters. Suppose we have a character
for the complex representation complkexwhich is afforded by som&G-module

V. Then, we can decompose the matrix¢gfas a block diagonal matrix, where
each block corresponds to an irreducible representatignasfan irreducible sub-
module ofV. Then, y is actually the sum of the characters of these irreducible
representations:

y=axy1t+ax2+ - +a i,

where eacly; is the character of the representation corresponding td'ttiee-
ducible submodule of .

We can do even more with complex characters; in fact, we can put a inner
product structure on the space of complex class functions as follows (recall that
characters are just particular class functions):

Definition 2.7. For class function® andy, define their inner product to be
. 1 -
0.9 =(v.6) =g > 6(0V(9).
Gl £

where the bar denotes complex conjugation.

To simplify the calculation of this inner product, we can take advantage of the fact
that class functions are constant over conjugacy classes. So suppose tHere are
conjugacy classes with representatigesy,, ..., 9. Then, the inner product af
andy can be expressed as

| .

< 2(9)vw(g)
0¥ =2 “Ieolan]

where|Cg(gi)| is the order of the centralizer gfin G. With respect to this formula,
we have an important orthogonality relation between the irreducible characters:
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Theorem 2.3. (The First Orthogonality Relation for Group Charactdrsj G be
a finite group and lef, ..., x be the irreducible characters of G ovér. Then,
with respect to the inner produ¢t ) above we have

(X xi) = &j

and the irreducible characters are an orthonormal basis for the space of class
functions. In particular, if6 is any class function then

6="> (0,x) % (2.1)
2
In addition, we can define a notion oharmof a class function:
Definition 2.8. For 6 any class function o the normof 6 is <9,6>1/2 and is

denoted by|6]|.

Applying Theoreni 2]3, we see that when the class funcfias expressed
using irreducible characterg,= 2!:1 aixi, then the norm is simply

o] = (i_lzaa2> "

Thus it follows that a character has norm 1 if and only if it is irreducible.

Now, we arrive at the long awaited formula for obtaining idempotents. Al-
though we have briefly stated definitions for idempotents in Wedderburn’s theorem,
let us formally define idempotents and some of their properties.

Definition 2.9. Let Rbe aring, and lIeZ(R) be the center oR. Then,

(1) An elemente € Ris called aridempotenif € = e.
(2) ldempotent®; ande, are orthogonal ie1e; = e;e; = 0.

(3) An idempotente is called aprimitive central idempoterif e € Z(R) ande
cannot be written as a sum of two other orthogonal idempotents in the ring
Z(R).

And finally, the formula for calculating idempotents:

Theorem 2.4. Let M be aCG-module, and let IMbe the irreducible submodules
of the Wedderburn decomposition of M. Let.e.,g be the orthogonal primitive
central idempotents i€G such that erestricted to the irreducible Ms the identity
map. Furthermore, ley; be the character afforded by;MThen

_%i(l) |
6= G g;x.(g )g. (2.2)
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Figure 2.1: A Function Sampled atPoints.

2.2 Applying Representation Theory: A Derivation of the
DFT

In this section, we will apply the tools from the previous section to derive the
classical DFT. In order to do this, we will need a representation of some @oup

a correspondingG-module, and the use of Wedderburn’s theorem to decompose
this module.

Suppose we have a complex-valued functigk) that is sampled at (or defined
on)npoints; i.e.k € {0,...,n—1}, e.g., Figur¢ 2]1. Then the classical DFT of this
function is given by

N 1 n—1
i) =2
K=0

Similarly, the inverse of this transform, the IDFT, is given by

f (K)e~2mika, (2.3)

n—1 )
f(k)=S f(j)e?ms.
(k) J;()

Now, denote the cyclic group amelements aZ,, and letG = Z,. Suppose that
the generator foZ, is the elemenk € Z,. Amazingly, for our functionf, we can
identify then points on the domain of with group elements df,,. Therefore each
f simply becomes an element@f:

n-1
f=5S ogg=S oiX, whereo; = f(i).
ggG ’ i; I I

Therefore the space of all functions defined on this domain can be represented
as aCG-module over itselfCG. Let us proceed to decompose this space using
Wedderburn’s theorem.
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Let {¢} be the irreducible representations¢f For a finite abelian group, all
of its irreducible complex representatiopsare 1-dimensional, since the matrices
¢i(g) for all g € G need be commutative as well. Also, all 1-dimensional complex
representations of a finite cyclic group maps the group elements td"theots
of unity in C. Thus, for a primitiven® root of unityw = e o , the irreducible
characters of, are

2ex)) = ok,

To show that these characters are indeed irreducible, we calculate the nggm of

(X x6) = xx(9 Xk
= 2

~n <Zlk(xj)lk(xj)>
j=
1/n=1 .
= (%w‘kw‘1k> =1
j=

From this information, we can derive the orthogonal primitive central idempotents
using Theorerp 2]4:

_ ()

x(9 1)y
6 &
1n71 .
==Y (X!
P
1n? e
=25 o .
P

Then, the individual idempotents look like

(L x+X2+x3 4 X

(1+ o X+ o33+ + w’(”*l)xnfl)

,@ .9 8’
D\HD\HD\I—‘

(l+ O X+ 0 R+ o O+ + w‘z(”‘l)x”‘1>

o = % (1+ oDy 20132 L -3m-13 w—(n—l)zxn—l) ‘
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Now, let us projectCG into its irreducible submodules according to Wedder-
burn’s theorem. For any functioh= 3 ~5 X € CG, where eacto € C, we can
project f onto thei irreducible submodule by calculatirgy: f. As an example,
consider the projection df to the second irreducible submodudg; f:

1
(S f= ﬁ (l—|— (L)_1X+ (O_ZXZ—|— s w_m_l)xn_l) . f

= % [1‘ f4+ (0 X) - f+ (0 2) f+- 4 (0 V1) £

For sake of notational simplicity, let us use vectors to denote elemefis iy

(0%]
n-1 !
f = Z)akxk: o2
k= :
_(xn_l_
Then, we can write; - f as
o 0o 0/}
1 (04] (04} (04]
g-f= - 1. 2 [+ (0 )| @ |+ + (w*(nfl)xnfl) oo
| On—1 | On—1 | | On—1
o Onh-1 On-2 (04]
1 o (04] On-1 o
— ﬁ o | + (1)71 o1 | 4+ 0)72 0o | +...4+ a)f(n—l) O3
| On—1 | On—2] | -3 | 0o |

Using matrices, we can simplify the notation even further:

~(-1)  -(-2)

1 w o~ 0] 0o
1 0)71 1 w*(nfl) ()072 oy
o-f=-| 07 w1 1 o3| o

(1) w—('n—Z) w3 ... 1 OCn'fl
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Multiplying by " = 1, we get

M1 0 2 o" 1 [ ap ]
o™l 1 o - "2 | oy
el.f:} o2 1 1 o" 3 | o
n .
| o ©® o - 1 | |ona]
. o
wn—l oy
1 "2 2 n—1 o
== 1 o o "1 2
L w i _an_]__
S
wnfl

1n71
== ij"ak [
n&

Notice that the vector above only has one degree of freedom. Thus, we are
projecting onto a one-dimensional space, and we only need to store one coefficient.
We pick the coefficient of @, and thus we finally obtain

1 n—1
g-f== Z]akwk.
ns
This looks exactly like the 2nd Fourier coefficient from the formula we saw earlier

in Equatior] 2.B.

In general, for any projectioq - f, we obtain (after much calculation)
1 n—1 )
a-f:—Zaka)'k for 0<i<n-1
=

This is precisely Equatidn 2.3. Furthermore, we can express all of the projections
g - f succinctly in matrix form, denoted as DET

e f ] L1 1 .1 o
e -f 1 0] w? o™l o
DFT, = | €-f :% 1 o ot o MV | (24
(en1-f] 1 o™t @D . D] |an 1]




Chapter 3

Wreath Products

We can use wreath product groups to describe permutations of special types of trees
called “spherically homogeneous rooted trees,” or SHRTSs for short. The inspiration
to use SHRTs comes from|[8], and we will draw on its definitions and insights
for this chapter. To clarify some basic terminologyoatedtree is a tree with a
designatedertex(or nodg called theroot. These rooted trees are typically drawn
like an upside-down plant with the root at the very top, as in Figure 3.1. In these
trees, the vertices are arranged according to their distance from the root, which is
referred to as théevel of a vertex. Achild of a specified vertex is a vertex that

is connected te and one node further from the root thanTheleavesof the tree

are the vertices that are of maximal distance from the root, i.e., vertices that have
no children. For the sake of convenience, let the maximum level of any vertex in a
tree be called thbeightof the tree.

A SHRT is a rooted tree such that all vertices at a given level have the same
number of children. We denote SHRTs with latuple (my,my,...,my_1) where
h is the height of the tree and, denotes the number of children at each vertex of
leveli. Note here that all of the leaves in this tree are of the same distance to the
root, at the maximum levdi.

Figure 3.1 is an example of a SHRT described by the 3-t(Bh 2). This type
of tree, where every vertex (except the leaves) has exactly two children, is called
abinary tree.Similarly, aquad treerefers to a SHRT where every non-leaf vertex
has exactly four children. In general, these trees are cadigalarly branching
r-ary trees,wherer specifies the number of children at each vertex.

In an image processing setting, we would like to structure our data so that it
is convenient to define a notion of a group acting on our image. In other words,
we would like to apply symmetry groups to our image in order to find symmetries
within the image. Furthermore, we would like to find decompositions of the image
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D E F G
/1 /v I\ N

1 2 3 4 5 6 7 8
Figure 3.1: A Graph of a Binary Tree of 3 Levels.

data with respect to these symmetries. In fact, it is particularly useful to identify
the pixels in the image with the leaves of a SHRT, because it allows for wreath
product groups to act on the image by permuting the corresponding SHRT.

Now, how would one describe permutations of trees? Intuitively, we would
like some way to describe a reordering of vertices in the SHRT. Since we want to
preserve the adjacency of the vertices of the tree (otherwise, we would be creating
a completely different tree), we would like to permute closely connected vertices
amongst themselves. We can do this by only permuting children (of a particular
vertex) amongst themselves, for all vertices in the tree.

This is equivalent to picking an element from the symmetric group for each
vertex in the tree, where the element describes how the vertex permutes its children
while keeping the subtrees below the children intact. But recall that for SHRTSs, the
number of children is exactly the same for vertices at a given level. S8'i¢he
tree, we can pick an element of the same gr&ypfor each vertex of that level.

This is precisely the algebraic structure offered by wreath products of symmetric
groups. Note that for regularly branchingary trees, the number of vertices gets
exponentially large as the height of the tree increases, so we would expect these
wreath product groups to become very large very fast.

Now, another way to interpret these permutations is to see how they pertain to
permutations of just the leaves. In fact, the wreath products descsatracured
permutatiorof the leaves. This aspect proves to be especially useful when defining
the wreath product group action on an image.

In addition to this interpretation of wreath products, there has been much theo-
retical work with other uses of wreath products. For further reading, Kerber ([12],
[13]) talks about the representation theory of wreath products in more detail. Rock-
more ([20]) gives a FFT for wreath products. Furthermore, Eldredge ([7]) describes
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an approach to finding isotypic decompositions of data in the binary tree case by
using separating sets. In addition, wreath products are used in a variety of differ-
ent settings. Straubing ([23]) applies wreath products in finite automata theory,
deriving a “wreath product principle” for formal languages. Finally, Schoolfield
analyzes random walks on wreath products of group's [22].

3.1 Wreath Products

Definition 3.1. Let G be a finite group, antl a permutation group on elements
(H<S). LetG"=GxGx---x G (ntimes) be the set of orderadtuples of
elements of5. Letg,h e G", 0,7 € H, and leth; denote tha™ coordinate in the
n-tupleh. Then thewreath producbf G with H, denoteds : H, is the seG" x H
with multiplication defined as

(9.0)(h,7) = (g(c'h),on)
where
(c‘lh)i = N1y (3.1)
We illustrate the wreath product with a simple example, using the tree in Figure
[3.2. The group that describes all adjacency preserving permutations of this tree is
$1Ss. Let(g,0),(h,m) € 1S3 be the permutationé(l,(12),1),(132)) and

(((12), 1 1) , (12)), respectively. Then, the composition of these two permutations
(by multiplication in$; ! S3) is

(g.0)(hm) = ((1,(12),1),(132) (((12),1,1),(12))
= ((1.(12,1) [(1327%((22,1,2)],(132(12))
([( (12),1)(1,1,(12)],(23))
~((1.(12,(12),(23)).

The resulting permutation should be equivalent to applying the permutations
(h, ) and then(g, o) in that order. To check, we can apgly, ) and then(g, o)
as shown in Figure 3,3. Here, we applied the permutations in a top-down fashion,
first applyingz (or o) by swapping the whole subtrees with robtg, d and then
applyingh (or g) to the leaves, where th& coordinate ofh applies to the chil-
dren of thei!" subtree. We see in this example that the final permutation does in
fact correspond to the one obtained by the multiplication formula for the wreath
product.
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b/c\d
AN

e f i

Figure 3.2: Graph of a (3,2) SHRT.
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Figure 3.3: Subsequent Permutations of Figurg 3.2.
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An intuitive way to see why this works is to observe that the permutations
of vertices higher up the tree will affect the permutations below. Therefore, in
composing permutations of trees, the permutations below have to be “untwisted”
in order to be applied correctly. This reveals the semidirect product structure of
the wreath product, where the actiontbfon G" is to permute the ordering of the
n-tuples. More preciselyG ! H is a semidirect product dfit andG" with respect
to the permutation representation frdtninto Aut(G") defined by Equatio.l,
where AutG") denotes the full automorphism group@®f.

In addition, we can also create a correspondence between the permutations
of the leaves and permutations of the tree. However, not all permutations of the
leaves can be constructed using permutations of the tree. For example, in Figure
[3.2, since the adjacency of the vertices needs to be preserved, we would not be able
to permute the leavesand f so that they have different parents, since they are con-
nected to a common parent. But there exists a unique wreath product permutation
for each permutation of the leaves that is realizable using permutations from the
wreath product group.

Proposition 3.1. Let (my,my,...,my_1) be a SHRT of height h. Latbe a permu-
tation of theﬂ{‘;ol m; leaves of this tree, which is realizable by adjacency preserving
permutations of the tree. Then there exists a unique elemegf, inSy, , 1+

Sn, that gives rise tor.

Proof. We prove this by induction on the height of the tree. FirstHer 1, there
aremy leaves connected directly to the root of the tree, and clearly there exists
a unique permutation iy, that permutes the leaves of this tree. Now, suppose
that our proposition is true for some heightConsider the SHRT of heiglht+ 1.
Since the permutations of the leaves is adjacency-preserving, we can partition this
set of leaves intan,_; sets ofmy, vertices of distance 2 from each other. For
each of these sets, there exists a unique elemes, ithat describes the permu-
tation of its vertices. Thus, there exists a unique elememt 1Sy, X --- X Sy,

(my_1 times) that describes each permutation of vertices imglh sets. By the
induction hypothesis, there exists a unique element@Sy, , 1Sy, , 1+ 1 Sny

that describes the ordering of thg_1 groups. Thus, we have a unique element
(0,7) € Sy, 1Sn, 4 U+ L Sy that corresponds to this permutation of the leaves. By
the principle of induction, the proposition follows. O

This proposition tells us that there exists a bijective correspondence between
realizable permutations of the leaves and wreath product permutations of the tree.
In this manner, the wreath product gives rise tstaictured permutatiorf the
leaves. In the next chapter, we will see that this structure will allow us to identify
pixels in the image with a uniqgue SHRT. In addition, we will be able to use the
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wreath product to permute the pixels in the image in a very organized manner. Fur-
thermore, we can investigate whether there exists a transformation that is invariant
under the wreath product group action, which will in turn lead to a decomposition.



Chapter 4

Image Decomposition using
Wreath Product Groups

The idea of applying wreath products to image processing was first introduced in
[10]. Further developing this idea, Foote et. al. and Mirchandani et. lal. ([8],
[18]) describe the quad tree decomposition of an image, which involves a scanning
method to identify pixels with quad trees. In this chapter, we will look in greater
detail at the algorithm given by|[8], and we will introduce a decomposition of the
image data which is invariant under the wreath product group action.

4.1 Quad Tree Decompositions of Images

How can automorphisms of trees help us with image processing? We can construct
a tree-like structure from a digital image by recursively breaking the image into
pieces, creating a hierarchy within the image. This structure allows us to permute
pixels in animage just like how we would permute the leaves of a tree using iterated
wreath product groups.

Procedure 4.1. Suppose we are given a image with dimensichs 2".
(1) Break the image up into four quadrants, each of dimensiofh 2 2"1.
(2) Order the four quadrants clockwise, starting from the top left quadrant.

(3) Continue the process recursively, breaking quadrants into sub-quadrants (of
dimension 22 x 2"-2) and sub-quadrants into sub-sub-quadrants (of di-
mension 23 x 2"-3) and so on.
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(4) Stop at thenth recursive step, when quadrants cannot be broken up further
since they are made of individual pixels.

Example 4.1. Suppose we have and4 image, represented by the matrix

a b c
e f g nh
M_ijkl
m n o p

We first break the image into four quadrants:

And, for each of the four sub-quadrants, we can break them down again into sub-
sub-quadrants:

At this point, we must stop the recursive process since we cannot subdivide the
matrix any further. Now, using the ordering scheme, we can order the vertices as

follows:
1 2|5 6
4 3|8 7
13 14| 9 10
16 15| 12 11

This gives rise to the quad-tree in Fig{re|4.1.

We note that this scanning method can be generalized to other trees as well,
however, the size of the image must be adjusted to match the number of leaves in
the desired tree. There are also variations within quad trees. For angtrebere
m is ann-tuple (4%, 4%, ..., 4%), we obtain different quad trees for different choices
of k andn. We can then generalize our scanning procedure as well. For example,
in the 4x 4 matrix given above, we could have scanned 16 vertices at once, giving
the ordering

1 2 3

12 13 14 5
11 16 15 6|
10 9 8 7
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\
/ n

Figure 4.1: A Graph of the Quad Tree Decomposition.

Although we can generalize in this fashion, we will consider the case of scanning
only 4 vertices at once, i.e., the case of a quad tree.

4.2 Spectral Decomposition

Given the scanning algorithm that constructs a function on the leaves of a quad
tree, the wreath product group can act on the tree, resulting in permutations of
the original image. In this section, we describe a wreath product group invariant
decomposition fron1 [8]. In addition, we describe an iterative algorithm that speeds
up the decomposition.

4.2.1 Multiresolution Decomposition

Consider any treer;, given by then-tuplem = (mg, my, My, ..., my_1). Let the set
of leaves of7;, be denote, and letL (X) denote the space of all complex valued
functions onX. Let G be any wreath product group acting on this tree. Recall that
thei level denotes the set of all vertices in the tree that are of distainom the
root.

First, we can filteil.(X) into an ascending chain of subsets.¢K). The fol-
lowing is stated as Theorem 4.4 [ [8] without proof, so we provide a proof of this
theorem.
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Vl VZ

Figure 4.2: A Filtration of the3, 2)-tree from Figuré 3]2.

Theorem 4.1.Let Vf € L(X) be the space of all functions that are constant on each
subset of leaves;Ahat descend from a common node at level i. Thea\W.(X),
and the subspaces ¥rm a filtration of L(X):

0CVoCViC - CVh=L(X).
Moreover, each Ms G-invariant, i.e., for any permutation in G, g€ V,.

Proof. First, we show/,, = L(X). By definition,V,, denotes all the functions that
are constant on the leaves descending from each vertex that is distaney
from the root. Since the vertices that are distanesvay are exactly the leaves of
the tree, and since each leaf can take on only one value, any functigiXinis
constant on each leaf, i.&,; = L(X).

Note that\y is the set of functions that are constant on all leaves of the tree,
and as the index increases, we allow for functions of progressively further detail.
In fact, for eachV;, we can partitiorX intok = nij;% m; subsets\ (withm_; = 1),
where each subset corresponds to the leaves that descend from onkeditiiees
at leveli. Then,V; describes all of the functions that are constant within each of
those subsets. For example, we can filter(i&)-tree from the previous chapter

as shown in Figure 4.2.
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From this, it's clear tha¥; C Vi1 sinceVi,; consists of the functions that are
constant on a smaller sets of leaves, comparad. td hus theV; form a filtration
simply because they form a chain of subsets.

Finally, to show that eack; is G-invariant, recall thaG provides adjacency
preserving transformations of the tree. As a result, no matter how we permute the
tree, each; will contain the same elements (up to a reordering of4f's), because
they descend from a common vertex in the tree. Therefore, each set will still have
the same constant value; thus the permuted function will remain in O

This filtration is called a multiresolution filtration[ ([8]), because of the way
that eachV; subsequent allows for further detail. If we considl€¢K) as aCG-
module, where elements BG permute and scale functions defined on the leaves
of a tree (such a correspondence is possible because of Proppsition 3.1}, each
is a submodule of (X) because it i$&s-invariant and thus closed under permuting
and scaling by elements &fG. Furthermorey is a submodule o¥; for all j > i.
Applying Maschke’s theorem (Theordm P.1), we can decompose\gaato two
submodules/_; and its orthogonal complement. This results in the following
theorem:

Theorem 4.2. For eachCG-module Y, Vi_1 is a submodule of\Mvith orthogonal
complement Wsuch that
Vi=Vi_1®&W.

Now, we need a method to filter constant values for éaah order to con-
struct aG-invariant transformation in a multiresolution fashion. Foote et. al. ([8])
constructs such a transform based onRiaglon transformThis takes the average
function value on each subset of leavgs(descending from a common node at
level i), decomposing th¥; into two components: the average value component
and its complement.

Definition 4.2. Let the Radon transforw; : L(X) — V; be defined by
1
“ AN 2

whereA; (x) is the subset of leaves that contakend descends from some common
node at level.

i (F)(x)

f(Xn), (4.1)

Since the Radon transform gives rise to function; jrwe can apply Theorem
to obtain a transformation that filtdr§X) (starting fromV,, down toVp). This
is the general multiresolution decompositiorLdK) for any wreath product group
G.
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4.2.2 Recursive Algorithm

Theorenj 4. gives us a decompositiorL¢X), but in a recursive manner. In other
words, we decompodgX) =V, by starting withV,, and working down t&/:

L(X) =Vh = Vo 16Wh
= (Vn—2 @Wn—l) @Wn
=Vh-3BWh_2 DWh-1 W,

n
=Vo&® <@V\/|> .
i=1
Thus, we can apply the Radon transform recursively at each level fir¢anO,
successively averaging pixel values and finding the complement to those values.
Now, let us construct decompositions for a specific group. Consider the case
four elements, i.e.,

GC=2Z1Zs2-- U La

The invariant transform foZ, is the classical Discrete Fourier Transform (DFT)

on four points. Note that Theorejn 4.2 only gave a constant-value filtration of
the image, and the DFT actually gives rise to three more coefficients. In other
words, Theorerp 4]2 enables us to br&aklown into a one-dimensional constant-
value subspace and a three-dimensional space describing variance from the average
value. By using the DFT, we have made a specific choice to decompose the three-
dimensional space in a certain way. In fact, the DFT bré4kiato four one-
dimensional spaces, where one of the projections is a average-value filtration and
the rest describe differences of the data from this average with respect to the group
action. Thud.(X) becomes

n
L(X) =Vo® (@WI@WZ@\NB) ;
i=1

where each subspace is one-dimensional and invariant under the ad8ohlefe,
Wi corresponds to thg" DFT coefficient performed on the seis Thus we have
a recursive algorithm:

Algorithm 4.3. (1) Divide the image into quadrants.

(2) Recursively divide quadrants into sub-quadrants, until we cannot divide the
image any further into quadrants that contain more than one element.
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(3) Perform the DFT on all % 2 blocks of pixel values by placing them in a
4 x 1 vector, where the values are ordered according to our ordering scheme.

(4) Recursively perform DFTs on the first coefficients of these blocks (the aver-
age values) until we cannot gather coefficients any longer.

Example 4.2. To visually illustrate this algorithm, consider thex4 matrix earlier
from Sectiori 4.1l that was divided into four blocks:

a b c

e f g h

i j ok 1]’
m n o p

(Y () ol oY)

We cannot divide the matrix up any further. Now we can perform the DFT sepa-
rately on each of these blocks:

a (041 C Bl
_ bl [ _ d| | B
DFT4(A)—DFT4 t1= | s DFT4(B)—DFT4 hl = B,
e (073 g ﬁ4
k n i 61
| %2 j (o7

DFT4(C) = DFT, = DFT4(D) = DFT, =
) e e +(D) “I'n 3
0 Ya m O

Now, we store the DFT coefficients in a new matrix, storing all of the first coeffi-
cients in the first quadrant, the second coefficients in the second quadrant, etc.:

o P o B

We recursively perform the DFT on the first coefficients of the four DFTSs; i.e., we
perform the DFT on the first quadrant of this matrix:

(04} &1
pFT, | P | = [ 2
n &

51 &,
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Now we store this result in place of the first coefficients, so our decomposition

matrix becomes: :
&g & p1 P

& €  Pa P

oo & n P
0 03 YV Vs

There is only one average value coefficient [eff), and thus we are done.

4.2.3 lIterative Algorithm

Although we can perform the recursive algorithm, we can speed up the perfor-
mance of the decomposition by using an iterative method. This method relies on
a quick way of calculating the ordering of the pixels in the image. Recall from
Sectior] 4.]L that an ordering of the pixel values is

1 2 5 6

4 3 8 7
13 14 9 10]°
16 15 12 1

Simply “marching” through the pixel values and performing DFTs along the way
is faster than the recursive method. This is because the recursive method allocates
memory for each recursive call and has to divide the image to find the relevant
subsetq A} at each level.

A quick march is obtained as follows. Suppose we would like to scan<e22
image. We start on the upper-left-most pixel and attach ordering numbers to the
pixel, starting from 1. In addition to this counter, denoted boye have three more
variables: the row and column position of the piket), and the current levélof
the pixel (we begin at the'level).

Procedure 4.4.Initializei = 0, (r,c) = (1,1), andl = 0. At each pixel, perform a
test on the pixel number

(1) Find the largest non-negative intedesuch that 4 dividesi.

(2) If k=1, we havecompletedh level and must move on to the next level. Thus,
reset(r,c) = (1,2' + 1), and increment by 1. However, ifk = n, then we
have reached all pixels in the image and we are done.

(3) If k#1, computem = (i/4") mod 4. Herek represents #ocal level and
m represents the relative position within that local level. First, we reset our
row and column positions back to the first pixel in our local level; this can
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be accomplished by decrementingy 2 — 1 and leaving fixed. Now, we
change the row and column positions based on the valus, @fhich has
three possible values:

(@) If m=1, then increment by 2¢.
(b) If m=2, then increment by 2.
(c) If m= 3, then decrementby 2.

Notice that the case wheme= 4 cannot occur, sindewas defined to be the
largestinteger such thatkdividesi.

This procedure gives the row and column position in the image given the index
in the quad tree scan, and makes it possible to march through the image quickly.
Then, to recursively break down the first coefficients of the computed DFTs, the
algorithm runs again on the first coefficients of the spectrum above. We repeat this
process until we are left with one number: the average value of the entire image.

4.3 Decompositions with Other Iterated Wreath Products

For the cyclic case, our spectral decomposition involved the recursive use of the
DFT. However, the DFT can also be thought of as a change of basis particular to
cyclic groups, as in Equatidn 2.4. Carrying this idea further, we can investigate
whether other choices of bases give rise to different decompositions.

Instead of wreath products 8§, consider wreath products of the gragipx Z,.
The invariant decomposition in this case corresponds exactly with the Haar wavelet
transform. From the DFT matrix obtained in Sectjon] 2.2, we can find the DFT

matrix for Zo:
1/1 1
DFT, = = )

To find the DFT-like transformation fdf, x Z, we may simply take the Kronecker
product of the DFT matrices from each direct summand. Thus, we arrive at the
Haar transform:

11 1 1

OFT,., [(1 1)@(1 1)]:1 1 -1 1 -1
41\1 —1 1 -1 41 1 -1 -1

1 -1 -1 1
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To apply this transformation, instead of the DFT matrix QFve can substitute
DFT242. Unlike DFTy, the Haar transform does not yield complex coefficients, so
the decomposition itself is very different.

We can also derive a DFT-like matrix for other iterated wreath product groups
as well. We use the term “DFT-like matrix” to refer to the group invariant trans-
formations in this section, because we obtain them considering the permutation
representations of the groups. For the remainder of this section, we will derive the
DFT-like transformation for all subgroups 8f that act transitively on four points:
the dihedral groug, the alternating groupy, and finally the symmetric group

S

4.3.1 The Dihedral Group

Using the method outlined in Sectipn .2, we can use a similar approach to derive
the DFT-like matrix forDg. First, we need to define holdg acts on a block of four
data points. RecalDg has eight elements, wheagrepresents a cyclic shift aria
represents a flip:

Dg = {1,a,a% &%, b,ab,a’b,a’b}.

Consider the representationD§ acting on a 2 2 matrix by way of permutation,

where
1 2 4 1 1 2 4 3
a- = , b- = .
GG 20

Then, we can realize each elemenDgfas a permutation matrix; for example

0 001 0 001

1 000 0010
a= y b:

0100 0100

0010 1 000

Denote this permutation representationdayWe need to first find the irreducible
representations withip. This can be accomplished by finding the characters for
each conjugacy class g and computing the inner product of this character with
the irreducible characters @fg. This way we are able to determine which irre-
ducible representations are containegin

Recall from Sectiofi 2|1 that the character is simply the trace of a matrix. A
permutation matrix has a 1 in the diagonal if an element is fixed, and O otherwise.
Therefore, we can calculate the character table of our representation by counting
the number of elements fixed as a result of applying the permutation. Thus, we
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gl (aa® a® (b,a’b) (aba’b)
Co(gi)| |8 4 8 4 4
x1|1 1 1 1 1
wll 1 1 1
sl 1 -1 1 1
wll 1 -1 1
tsl2 —2 o0 o 0

Table 4.1: Irreducible Characters fDg

obtain the following character table:

Conjugacy Classes 1(a,a®) a® (b,a’b) (aba®b)
ol4 0 o o0 2

Now, we compute the inner product pfandy;, according to Equatidn 2.1 and
referring to Tabl¢ 4]1 obtained from [11]:

< 2(@)v(g)
0¥ =2 "ieelan]

41 21
(X2,p) = 8 4 =0,
(x3,p) =0,

(xa,0) =1,
(xs,p) =

Thus x1, x4, x5 are the irreducible representationspgneach with multiplicity 1.
Now we find the projection matrices for these irreducible representations by com-
puting their corresponding idempotents, using the formula from Sectipn 2.1:

_Xi(l) 1
6= G g;x.(g )9,
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1111
1 1111 11
el_8<g;39’>_4 111 1|
1111
1
m=8< m@%%
ge
1
:é(un—1@»+u¥y—u§y—nm+1@m—1m%y+u§m)
1 -1 1 -1
111 -1 01
411 -1 1 ]
-1 1 -1 1
1 0 -1 0
1fo 1 0 -1
7201 0 1 o0

From this, we can pick out the firgf(1) rows from each idempotent (since the
dimension of the projection gf; is xi(1)), and we obtain the DFT-like matrix for

Dg:
1 1 1 1
111 -1 1 -1
412 0 -2 0
0 2 0 -2

4.3.2 The Alternating and Symmetric Groups

We follow exactly the same procedure . A4 is the group of even transpositions
and has exactly 12 elements:

Ay ={1,(12)(34),(13)(24),(14)(23),
(123),(124),(134),(234),
(132),(142),(143),(243)}.
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gl 1 (1234 (123 (132
ICa(gi) | 12 4 3 3
|1 1 1 1
2|1 1 ) g
23| 1 1 2 ®
wl3 -1 0 0

Table 4.2: Irreducible Characters fAj

The action here is more explicit than the casddgrfor bothA; andS, we directly
apply the permutation to the four data points. For example,

o (0 w3

Again, we can realize each elementfafas a permutation matrix, for instance

0100 0010
1000 1000
(12)(34) = . (123 = .
0001 0100
0010 0001

Now we calculate the character table of the permutation representatién of
by finding the number of elements fixed:

g1 (12)(34) (123 (132
pl4 0 1 1

Computing inner products using Ta4.2 (wherés a primitive 3¢ root of
unity), we find thaty; andy4 are inp, and thugp projects the four data points into
a l-dimensional subspace and a 3-dimensional subspace, where the idempotents



32 Image Decomposition using Wreath Product Groups

g1l (12 (123 (12)(34) (1234
Co(gi)[ |24 4 3 8 4
x|l 1 1 1 1
w1 -1 1 1 -1
nl2 0 -1 2 0
xl3 1 0 -1 -1
x| 3 -1 0 -1 1

Table 4.3: Irreducible Characters 8¢

are:

e
e

P
I
Nl
R
gl
@«
N———
|
Nl
N

1
1
1
1
3 -1 -1 1
1{-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3

Therefore, a DFT-like matrix is:

1 1 1 1
1{-1 3 -1 -1

4({-1 -1 3 -1
-1 -1 -1 3
The case for the symmetric gros is similar. We exhibit the character ta-

bles, the idempotents, and the resulting DFT matrix. The character table for the
permutation representation is:

g1 (12 (123 (12(34) (1234
pla 2 1 0 0

We see from Tablg 4.3 that= x1 + x4. The idempotents for the irreducible
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representationg; andy, are:

1111
1 11111 1
& 24<g€§g>_41111’
1111

3 -1 -1 -1

x4(1)< 1) 1]-1 3 -1 -1

€= X9 )9 ) =+
24 g; 41 -1 3 1
1 -1 -1 3

And the resulting DFT-like matrix is exactly the same as the alternating group:

1 1 1 1
1]-1 3 -1 -1

41-1 -1 3 -1
-1 -1 -1 3

4.4 Examples

In Figure[4.3, we ran the decomposition algorithm on a black and white photo. In
addition to the decomposition, we constructed an inverse decomposition algorithm
in order to recover the original information from the spectrum. The maximum error
(of a point-by-point pixel value difference) in this case was the negligible quantity
6.6613x 10718, The colors of the spectrum amplitude and phase were inverted for
clarity (white means low magnitude, darker means higher magnitude).

Notice that in the spectrum, the image seems to be repeated four times, and
the first quadrant appears to be subdivided more and more. This is due to our
method of storing the spectrum. We store the spectrum by storing all the first
coefficients resulting from the DFT in the first quadrant, the second coefficients in
the second quadrant, and so forth. Since we recursively compute decompositions
of the first coefficients, the first quadrant is subdivided into subsequent recursive
decompositions.

We illustrate the idea of progressive inverse decomposition in Fjgufe 4.4 with
a color photo. In this figure, we only use a portion of the spectrum to reconstruct
the image. The first image (top left) represents the reconstruction with only four
pixels in the spectrum (the top left four). Subsequent images use higher “levels” of
pixels in the spectrum, i.e., the top left,B8,256,1024 ... pixels. Each of these
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50+

100

150

2001

2501

50 100 150 200 50 100 150 200
(a) Original Image (b) Recovered Image
250
5‘0 1(;0 1‘50 2(‘)0 2‘50 5‘0 160 1éO 260 ZéO
(c) Spectrum Amplitude (d) Spectrum Phase

Figure 4.3: Decomposition
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Figure 4.4: Multiresolution
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levels correspond to traversing the quad tree spectrum only up to a certain depth.
Notice here that the quad-tree scan can be employed to give a progressive stream
of reconstructions, capturing finer and finer details as more and more information
is available.

Finally, we can compare the different transformations of the same image to
build an intuition of what these transformations do. We ran the algorithm on three
images: geometry, sinsin, and tartan, shown in Figure 4.5, Higure 4.6, and Figure
[4.1. These images were obtained from MATLAB'’s Wavelet Toolbox, and they are
interesting because they contain regular patterns and symmetries.

Overall, the Haar transform and the Fourier transform yield similar results.
Notice in the dihedral, alternating, and symmetric transforms that some of the pro-
jections are two or three dimensional. In the dihedral case, the third and fourth
guadrants comprise a two dimensional projection, and in the alternating/symmetric
case the second, third, and fourth quadrants represent a three dimensional projec-
tion. The darker parts of the spectra represent places where the variance component
(the orthogonal complement to the average) is small. This difference component is
based on how the image differs from the down-sampled average image, depending
on the particular symmetry.

Examining the geometry example more closely, notice that around the far edges
and corners of the original image, the pixel values are nearly the same. This is re-
flected in the Haar, Fourier, and dihedral spectrum, where there is a quadrant that
has darker parts around the edges of the quadrant. In addition, the Haar transform
has an “H” shaped quadrant and an “I” shaped quadrant. This is reminiscent of
the vertical and horizontal flips d, x Z, and since the original image is sym-
metric horizontally and vertically down the midpoint, the difference component is
small in those areas where there are greater amounts of symmetry. For the Fourier
transform, there seem to be lower (darker) values where there is rotational symme-
try (cyclic shifts); and for the dihedral transform, there are dark diagonals going
across two of the quadrants, probably representing shift-and-flip symmetry. The
alternating transform does not seem to have as many darker parts, because we are
decomposing with respect to a greater number of symmetries, which is harder to
satisfy. Finally, the symmetric transform is exactly the same as the alternating
transform, since the matrix we derived was exactly the same. The sinsin example
seems to yield similar results in comparison to the geometry example, in terms of
which symmetries are encoded as darker parts of the spectrum. The Fourier phase
of the sinsin example is quite strange, because it appears almost three-dimensional.

Comparing these different transforms, we see that some transforms are bet-
ter than others in encapsulating more information using less space, based upon
the particular symmetries that the group presents. This is especially important
when compressing data using these transforms; the darker the image, the better
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(e) Dihedral Transform (f) Alternating Transform(g) Symmetric Transform

Figure 4.5: Decompositions of the Geometry Image
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20 40 60 80

(a) Original Image

20 0 60 80 100 120 20 a0 60 EJ 100 120

(b) Haar Transform (c) Fourier Amplitude

20 40 60 80 100 120 20 0 60 80 100 120

(e) Dihedral Transform (f) Alternating Transform(g) Symmetric Transform

Figure 4.6: Decompositions of the Sinsin Image
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(e) Dihedral Transform (f) Alternating Transform (g) Symmetric Transform

Figure 4.7: Decompositions of the Tartan Image
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the compression rate. We will explore compression and other applications of these
decompositions in the next chapter.



Chapter 5

Image Processing with Wreath
Product Groups

In this chapter we investigate applications of the wreath product decomposition

from the last chapter. We will consider three main applications: compression,

convolution, and de-noising. By discarding small values in the image spectrum, we
can achieve image compression. In addition, we can construct filters that change
the image spectrum in certain ways in order to achieve certain affects. A high-pass
filter, for example, would be able to filter out edges in the data. These and more
approaches are described with examples in this chapter.

5.1 Compression

5.1.1 Near-Zero Thresholding

In the spectrum of Figure 4.3, the information is very sparse, since most of the
spectrum is white (meaning that the Fourier coefficients are zero at those locations).
We can use this to our advantage to achieve compression. For a given spectrum, we
can discard small values by setting them equal to zero. The results of this method
are in Figurd 5]1. Notice that this image results in a high level of compression,
due to the sparse amount of information in the original image. The maximum and
minimum error (denoted b&f) increases as more information is discarded in the
spectrum, as expected. Also, the average error of the image seems to increase as
well.

Now compare this to Figufe §.2. We see here that parts of the image with finer
detail are left relatively untouched, while sections with less detail are adversely
affected. This is because the places with fine detail have larger coefficients in the



42 Image Processing with Wreath Product Groups

50 100 150 200 50 100 150 200

(a) Amplitude > 0.0001 (b) Amplitude > 0.03
90.5273% Compressed aAB54% Compressed
—4.4409x 10716 < Af < 6.6613x 10716  —0.078163< Af < 0.086008
1.4494% 10~ 17 AverageAf —0.00019505 AveragAf

50 100 150 200 50 100 150 200

(c) Amplitude > 0.06 (d) Amplitude > 0.09
93.4128% Compressed H533% Compressed
—0.17512< Af <0.28371 —0.28052< Af <0.56501

—0.0017895 Averagaf 0.024224 Averag@f

Figure 5.1: Compression
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(a) Amplitude > 0.0001 (b) Amplitude > 0.03
5.5216% Compressed 4%98% Compressed
—9.1912x 10°° < Af <0.00013021  —0.18411< Af < 0.20542
2.24x 1079 AverageAf —0.00013933 AveragAf
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(c) Amplitude > 0.06 (d) Amplitude > 0.09
55.0279% Compressed Bi6626% Compressed
—0.32995< Af <0.45321 —0.41145< Af <0.58572
—3.8713x 10°° AverageAf —1.1713x 10°° AverageAf

Figure 5.2: More Compression
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spectrum (due to high local variance of the data), and subsequently the coefficients
are not set to zero. However, we have discarded relatively small coefficients, caus-
ing errors that propagate through each level-of-detail subset in the spectrum. The
first key difference is that less information is compressed. This is because the in-
formation in the image varies quite rapidly for adjoining pixels. Thus, the average
amplitude of the spectrum is much higher than in Figur¢ 5.1. There is another
strange difference between the two experiments, and that is the average error. The
average error does not get very high, even when we throw away amplitudes that
are less than or equal to0®. In addition, the average error and the compression
rate seems to be correlated, because the overall brightness of the picture increases
as image is more compressed. However, this seems to be image-dependent, since
in Figure[5.1 the average error is small wit90% compression.

5.1.2 Sparsity-Norm Balance Thresholding

With the near-zero thresholding method, it is hard to determine exactly where the
optimal threshold is. If possible, we would like to construct an algorithm that
guesses an appropriate threshold for an image. One such method is the sparsity-
norm balancing method. Under this heuristic, we test successive thresholds and
calculate the norm of the spectrum after each threshold.pfierm of a vectox

is given by ([14]):
1/p
rm:(zwﬂ .
|

From this, we can define tienorm of a matrixA ([14]):

1Al = max{|Ax]|,.

xs.t.|X[p=1

It turns out that computing the matrix norm is quite difficult for valuegpo# 1.
We instead choose a simpler method, modeled after the vector norm:

HM=<ZZH$Y@

Our goal in calculating the norm of the spectrum is to balance thresholding
with loss in image quality. The metric we use to measure loss of image quality is
the norm, which actually calculates how much total “energy” we lose after com-
pression. Now, if we were to use the matpxorm, we would use the 2-norm
|All2, which is the square root of the maximum eigenvalud'bA whereA" is the
conjugate transpose. However, for large matrices, the norm is difficult to compute.
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Since we just want to calculate how much total energy is lost in the image, the
simpler heuristic works well and is much easier to compute To find the right bal-
ance, we calculated the norm of the Fourier spectrum of the image for uniformly
distributed threshold values between 0 and 1. For each threshold, we calculated the

ratio
norm of the compressed spectrum

norm of the original spectrum’

When the threshold is 0, the percent number of zeros should be close to 0%, while
the percent norm is 100%. However, when the threshold is at 1, we would expect
the percent zeros to be 100%, while the percent norm is 0%. Thus, the curves of
the two quantities intersect at some point, and we set the global threshold to be
at this intersection. This method, borrowed from MATLAB’s Wavelet Toolbox, is
calledbalanced sparsity-norm.

In addition, we recognize that a loss of coefficients at the lower levels of the de-
composition (the smaller quadrants in the upper left corner) makes a much greater
impact on the quality of the image than the coefficients at higher levels of the
decomposition. A solution to this problem is to only decompose the image to a
certain level, instead of decomposing the image down to the last pixel. In fact,
depending on the recursive depth of the image spectrum, one obtains drastically
different compression rates. In the previous examples of near-zero thresholding,
we decomposed the image up to the full recursive depth, but here we decompose
the image only up to the third recursive level.

We present examples of the described method in F[gufe 5.3 and Figure 5.4. We
performed the decomposition (only up to level 3) and ran the sparsity-norm balance
routine. In most cases, the threshold seemed to be too high in terms of preserving
image quality. To decrease the threshold in proportion to the calculated threshold,
for fixed ¢ and threshold value we calculated thequare-root balance sparsity-
normthreshold,,/(t/c)/c (also from MATLAB’s Wavelet Toolbox). In our case,
¢ = 128. In both cases, the square-root balance proves to be the better trade off
between image quality and compression rate. Although the balance threshold gives
us phenomenal compression rates (better than 1:20 compression), the image quality
is sacrificed.

5.2 Convolution

Let G be a finite group acting on a ¥t= {xo,X1,...,X,—1}. The cyclic convolu-
tion of signalsf andh (on X) is defined by ([18]):

n-1 n-1

(Fxh)(x) = Z} f(x)h(X_i) = ; f(o'x0)h(6 %),



46 Image Processing with Wreath Product Groups

20 40 60 80 100 120

(a) Original Image

20 40 60 80 100 120 20 40 60 80 100 120

(b) Balance Sparsity-Norm  (c) Square-root Balance Sparsity-Norm
95.7947% Compressed BD37% Compressed

‘Sparsity-Norm Analysis (threshold = 0082781, retained energy = 95.8187 percent) ‘Sparsity-Norm Analysis (threshold = 0.025431, retained energy = 99,2444 percent)

Number of Zeros / Percent Energy Retained
Number of Zeros / Percent Energy Retained

04 05 06 07 08 09 1 04 05
Threshold Threshold

(d) Sparsity-Norm Graph (e) Sparsity-Norm Graph

Figure 5.3: Balance Sparsity-Norm with the Cat Image
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50 100 150 200 250 300 350 400 450 500

(a) Original Image

(b) Balance Sparsity-Norm  (c) Square-root Balance Sparsity-Norm
96.7696% Compressed Y 64% Compressed

‘Sparsity-Norm Analysis (threshold = 0.066788, retained energy = 96.7511 percent) Sparsity-Norm Analysis (threshold = 0.022842, retained energy = 99.3215 percent)

Number of Zeros / Percent Energy Retained

Number of Zeros / Percent

—— Percent Number of Zeros
— Percent ay Re
Calculated Threshold

o o1 o0z 03 04 07 08 09 1 o o1 02 03 04

05
Threshold

05
Threshold

(d) Sparsity-Norm Graph (e) Sparsity-Norm Graph

Figure 5.4: Balance Sparsity-Norm with the Mountain Lake Image
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whereo cyclically permutesK, and the underlying grou@ is the cyclic grouZ,
generated by. We can generalize this formula for an arbitrary gr@ipcting on
X. Again, for signalsf andh defined orX, their group-based convolution is ([18]):

_ X -
(fxh) () = @ﬁng(ﬁXo)h(ﬁ %0)-

Mirchandani et. al. ([18]) develop a convolution for iterated wreath product
cyclic groups based on cyclic convolution. They describe both convolution in the
image spectrum and in the signal space as well. We will state their important
results: Theorem 2.5 and Theorem 2.6.in/[18].

Theorem 5.1. For signals f and h defined on the leaves of an SHRT, (¢} @nd

Q(h) denote their spectra, respectively. Then the convolution of these signals may
be computed in the spectral domain by multiplying each entry in each nested grid
irreducible sub-matrix of Qf) by the upper left-hand entry of the corresponding
block matrix of @h).

To explain this in more familiar terms, recall example Exanfiplé 4.2 where we
demonstrated how to explicitly construct the image spectrum. The matrix we ob-
tained in that case was:

a & B B

& &  Pa P

oo & n P
0 03 Y Vs

The nested grid irreducible submatrices of this spectrum refer to each and every
dotted square block in the spectrum. Now suppose we have another spectrum:

& & b b
& €& by Dbs
d o ¢ ©
dg d3 ¢ C3

Suppose that the first spectrunQsf) and the secon@(h). Then the convolution
of these two signals is obtained by simply scaling each dotted blo€X in with
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the upper left-hand entry of the corresponding dotted blod®(im):

&g & B B e & b b
& e Pa B || e & by Dbs
0 & n P dh &z a c
04 &3 1MW dy d3 ¢ 3

eer e bfr b
a&r ees by bufs
héy didz an ar
théy dids Gy Ciys

Intuitively, this multiplication seems to be a sort of selective or graduated thresh-
olding, since we are scaling each distinct block separately. We now proceed to
describe convolution in the signal space itself, for the case of a quad-tree of height
n and for the iterated wreath product cyclic grayx Z4 ¢ - - - 1 Z4 with the follow-

ing theorem ([18]):

Theorem 5.2. Let X = {Xo,X1,...,Xan_1} be the set of leaves of the quad tree

7777

subgroup of G fixing the leapxFor any index i, let he L(X) be the unit impulse
delta function supported ai;xi.e. hi(x;) = §j for 0 <i < 4" — 1. Define § to be
hg. Then the following hold:

(1) For any index > 0, the convolution ¢ h; is the function defined by

0 if X; and » do not lie in a common subtree
not containing ¥
(foxh)(x0) = °

45" where the largest subtree containingaxd %
but not x has root on level s

where §*hg = fo.
(2) Letoj be an element of G such thafxo = Xj. Then
41 -1
(fixhi) () = % F(xj) oty (fox i) (x) = Z) F(x3) (Forx hi) (@ ~X)-

1= 1=

(3) The linearity of convolution in the second variable reduces the computation
of fxh for an arbitrary h to linear combinations of convolutions of the types
in parts (1) and (2).
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To provide a rough sketch of the proof of this theorem, part (1) of this theorem
comes from the group-based convolution formula defined at the beginning of this
section, and Parts (2) and (3) follow as a result of some other properties of group-
based convolution. Part (2) comes mainly from the facthdt«h) = (o f)«hfor
all f,h e L(X) and all € G, then showing thalt (o; %) = a;j(fo*h)(x). Part
(3) results from the property that convolutionlifiX) is bilinear and associative.

For more details of the proof of this and the previous theorem, consult [18].

To interpret this convolution, we would prefer to think of it as scaling each
guadrant in the decomposition separately. Now, the question is, how do we apply
convolution for image processing? We present two applications of convolution:
edge detection and de-noising.

5.2.1 Edge Detection and De-noising

The idea behind detecting edges in the image is to filter out all the details in the im-
age except for where the pixel values sharply change. This is equivalent to using a
high-pass filter in order to pick out sudden changes. To accomplish this, we selec-
tively filled in the spectrum with zeros (represented by black quadrants), including
the upper left-most corner, which contains a small, average-value filtration version
of the ariginal image.

We obtained two more test images from MATLAB’s Wavelet Toolbox: a pic-
ture of a woman and a noisy closeup. Figurg 5.5 is an example where some quad-
rants were filled with zeros. The edges in the image are picked up remarkably well
in the filtered image. In Figuije §.6, the exact same filtration was performed in the
mountain lake image. However, this image was a color image with all three RGB
channels, and as a result of filtering out the upper left-most corner, too much pixel
intensity was lost. To make up for that loss, a constant value of 1 was inserted in
the upper left-most corner. Again, the filtered image seems to have picked up the
edges quite well.

To de-noise an image, instead of trying to retain the highest details as we have
done with edge detection, we remove the highest details in order to smooth the im-
age out. In Figurg 5|7 and Figyre 5.8, we removed two of the three detail quadrants
at the highest recursive level (largest quadrants).

5.3 Further applications

In addition to edge detection and de-noising, a variety of other image processing
techniques can be employed with our decomposition. Mirchandani et.[ al. ([18])
describe a method for using the image spectrum to determine image similarity. In
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(a) Original Image (b) Original Spectrum
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(c) Filtered Image (d) Filtered Spectrum

Figure 5.5: Edge Detection on the Woman Image
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50 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500
(a) Original Image (b) Original Spectrum
100
200
(c) Filtered Image (Inverted) (d) Filtered Spectrum

Figure 5.6: Edge Detection on the Mountain Lake Image



Further applications 53

a0

80

100

120

120

20 40 60 80 100 120

20 40 60 80 100 120

(b) Kept 29 Quadrant

20

a0t

80

100

1201

1201

20 40 60 80 100 120

(c) Kept 39 Quadrant

20 40 60 80 100 120

(d) Kept 4" Quadrant

Figure 5.7: De-noising the Noisy Woman Image
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Figure 5.8: Spectra of the Noisy Woman Image
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their approach, they compare two image spectra using standard linear correlation,
which seems to exhibit significantly higher correlation after a low-pass or high-pass
transformation of the spectrum. An application of determining image similarity is
pattern matching in images. Given an input image, and a target image that specifies
a particular shape or object, the goal of pattern matching is to find where the target
is located in the input image. A reliable method to determine similarity between
images would facilitate pattern matching.

Other applications in image processing include sharpening - is it possible to
make an image less blurry using a transformation of the image decomposition?
This problem falls under the more general category of image restoration, along with
many other problems such as unsharp-masking (accentuating edges in the image),
noise suppression, and distortion suppression. These applications and more are
described in[[26].






Chapter 6

Conclusion and Future Work

In this paper, we have described a general representation theoretical framework
surrounding iterated wreath product groups, resulting in decompositions of digital
images. We first presented tools from representation theory in Chapter 2, followed
by a derivation of the classical DFT. Next, we described the wreath products and
their structure in Chapt¢r 3, which provided the background for Chapter 4. We
then described a multiresolution filtration that provided us with a wreath product
group invariant decomposition. After presenting examples of image decomposi-
tions with respect to various iterated wreath products, in Chppter 5 we applied our
decomposition to compression, edge detection, and de-noising.

6.1 Future Work

6.1.1 Image Decomposition

In Chaptef #, we described the quad-tree scanning method and derived the spectral
decomposition of a function on the leaves of a quad tree, based on the multireso-
lution filtering of the function space. We have considered the case for a quad-tree,
but it would be worthwhile to investigate decompositions for other SHRTs and their
automorphism groups. Furthermore, our decomposition is with respect to iterated
wreath products of the same group; what happens for decompositions of iterated
wreath products of different automorphism groups for each level of the SHRT?
In addition, how could we better explain the role of each symmetry group in the
decomposition? Further research in this field may result in a catalog of decompo-
sitions of functions defined on SHRTSs.

In addition, it would be interesting to investigate decompositions with respect
to finite field-valued functions instead of complex-valued functions. In this case, it
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may not be necessarily true that the characteristic of the field does not divide the
order of the group, and thus new representation theoretical tools would be needed.

Finally, as a natural extension to the decomposition, we would like to see our
methods applied to 3D volumetric data. Is it worthwhile to construct an analogous
oct-treescanning method and decompose it with respect to this oct-tree? What
kind of information would the volume spectrum encapsulate in this case?

6.1.2 Image Processing

The thresholding methods described in Sedtioh 5.1 use the sparsity-norm balanc-
ing method to determine an appropriate threshold. In JPEG compression, the im-
age is transformed to YUV space, which separates the image into luminance and
chrominance components. The human eye is apparently less sensitive to changes
in chrominance than to changes in luminance values. We could run the same com-
pression algorithm, but instead of running it on an RGB image, we could run it on
the chrominance components of the YUV version of the image. This might achieve
better compression results in terms of perceived image quality.

Lastly, a promising direction of research would be to determine which wavelet-
based image processing methods could be effectively applied to our decomposition
scheme. So far, the three application areas of compression, edge detection, and de-
noising seem comparable with analogous wavelet-based methods. What are the
comparative advantages of wavelet methods versus wreath product methods?

6.2 In Closing

Researchers are making many connections between practical algorithms and math-
ematical theory. In particular, 1 have attempted to connect ideas from algebra,
engineering, and computer science in this paper, by linking representation theory,
wavelets, and image processing. | hope that my paper has inspired further interest
in this fascinating area of mathematics.



Appendix A

Manual for my MATLAB
Programs

| developed the image processing software entirely in MATLAB. The scripts are
setup so that some global variables (variables in the workspace) are used among
many scripts, so it is imperative to set these global variables up before attempting
other image processing operations.

In order to initially read an image, first, the image must be located in the current
directory. Next, the scriptun.m should be modified so that thmagefile
variable is set to the name of the desired image. Next, you can modify a dazzling
number of different global options to suit your needs, and the purpose of each
option is described as comments in the code.

When you are ready to begin processing, typa in the command win-
dow, which will execute theun.m script. This will automatically generate the
spectrum and run the inverse decomposition routine, displaying everything con-
cisely in one window. After running this command, you are able to run any other
image processing script. These scripts emenpression.m , isocurve.m
multiresolution.m , andreplacement.m
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Programs

B.1 autocrop.m

Routine for automatically cropping an image so that its dimensions are powers of
2.

1 function cropped = autocrop( image)

2

3 % autocrop automatically crops or pads and image so that it's suitable
4 % for processing. It rounds the smaller dimension to the

5 % nearest power of 2, which compromises between minimizing
6 % the amount of whitespace and preserving features in the

7 % original image. The algorithm also crops pictures a fourth
8 % of the way down in height, because this is where people’s
9 % faces usually end up.

10 %

11 % Usage: autocrop(matrix) where matrix represents a loaded image. The
12 % program can accomodate up to four dimensions.

13 %

14

15 sizearray = size (image);

16 height = sizearray(1);

17 width = sizearray(2);

18 otherdims = sizearray(3: end);

19

20 new_height = height;

21 new_width = width;

22 log_height = log2 (height);

23 log_width = log2 (width);

24

25 % test "power of 2"-ness

26 powertest = [log_height == floor (log_height), log_width == floor (log_width)];
27

28 % in case we need to reset both width and height,

29 % do some calculations based on the larger dimension

30 suggested_pwr = ceil (log2 (width));

31 if (height < width)

32 suggested_pwr =  round (log2 (height));
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33 end

34 if (suggested_pwr > 10)

35 suggested_pwr = 10;

3 end

37

38 if height "= width

39 disp ’'Warning: The number of rows do not match the number of columns.’;
40

41 % if both are powers of 2, then set the new dimensions to the higher value
42 if (powertest(l) && powertest(2))

43 if (height >= width)

44 new_width = height;

45 else

46 new_height = width;

47 end

48 elseif  powertest(1)

49 new_width = height;

50 elseif ~ powertest(2)

51 new_height = width;

52 else

53 % just set it to 256 times 256

54 new_height = 2"suggested_pwr;

55 new_width = 2"suggested_pwr;

56 end

57 else

58 % if the rows and columns match, then test only one

59 if ~ powertest(1)

60 % just set it

61 new_height = 2"suggested_pwr;

62 new_width = 2"suggested_pwr;

63 end

64 end

65

66

67 changetest = [new_height "= height, new_width "= width];

68

69 if (changetest(l) || changetest(2))

70 disp (New dimesions are: ’ num2str (new_height) ' by ’ num2str (new_width) ' by ’
num2str (otherdims)]);

71 end

72

73 % if we need to change width
74 if changetest(2)

75 % test if we need to pad with ones or eliminate some lines

76 if width < new_width

77 % number of lines to pad

78 nlines = new_width - width;

79 % distribute both left and right

80 leftpad =  floor (nlines / 2);

81 rightpad = nlines - leftpad,;

82

83 % assume the height is constant and pad it

84 image = [ones([height leftpad otherdims]), image , ones([height rightpad otherdims
DI;

85 width = new_width;

86 else
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% let's try to crop either side of it

% number of lines to crop

nlines = width - new_width;

% distribute both left and right

leftcrop = floor (nlines / 2) + 1;
rightcrop = leftcrop + new_width - 1;

% assume the height is constant and pad it
image = image (:, leftcrop:rightcrop, :, :);
width = new_width;
end
end

% if we need to change height (copied directly from the width case with minor changes)
if changetest(1)
% test if we need to pad with ones or eliminate some lines
if height < new_height
% number of lines to pad
nlines = new_height - height;
% distribute both top and bottom
toppad = floor (nlines / 2);
bottompad = nlines - toppad;

% assume the width is constant and pad it

image = [ones([toppad width otherdims]); image ; ones([bottompad width otherdims])
I
height = new_height;
else

% let's try to crop either side of it

% number of lines to crop

nlines = height - new_height;

% distribute both top and bottom

% ... let's skew it up a bit, because people’s faces tend to be
% ... near the top

topcrop = floor (nlines / 4);

bottomcrop = topcrop + new_height - 1;

% assume the width is constant and pad it

image = image (topcrop:bottomcrop, :, :, :);
height = new_height;
end

end

% assign the result
cropped = image;

B.2 batchread.m

Script for reading in a file from the variabimageloc

% % batchread.m reads a file using imread and saves
original = imread(imageloc);

original = double(original)/255;
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6 % autocrop the image
7 original = autocrop(original);

B.3 batchrun.m

Script for reading and automatically generating image decompositions in ppm for-

mat.
1 % % batchrun.m - calculation and display script in batch mode
2 batchread,;
3
4 % global options
5 spectSelected = ‘fourier’; % choose the basis
6 decompLevel = 2; % maximum spectral decomposition level
7 [basis, useslmaginary] = getBasis(spectSelected); % get the basis
8 invertMagnitude = false; % invert magnitude colors
9 invertPhase = false; % invert phase colors
10 brightness = 0.3; % defines the brightness of the colormap
11 % myColormap = brighten(gray, brightness); % assign the colormap with a certain brightness
12 myColormap = pink ; % assign the colormap with a certain brightness
13
14 % compression options
15 compressionRestoreHiLevel = true; % restores the avg pixel values at the highest level
16 % ... (smallest remaining upper left quadrant)
17 % ... after the compression step.
18 selectedThreshold = 'balance’; %
19 % selectedThreshold = 'sqrtBalance’; % thresholding method selection
20 % selectedThreshold = 'nearZero’; %
21
22
23 % Now, run through the decomposition and inverse decomposition
24 % display the original
25 figure ; close
26 imagesc (original); axis square; colormap gray ;
27 print (gcf, -dppm’, [imageloc ’-orig.ppm’]);
28
29 % do the decomposition
30 spect = quad_spectrum2(original, decompLevel, spectSelected);
31
32 % display the decomposition
33 figure ; close
34 if (invertMagnitude) imagesc (1-normalize(spect));
35 else imagesc (normalize(spect)); end
3 axis square; colormap gray ;
37 print (gcf, -dppm’, [imageloc '-amp.ppm’);
38
39 % display phase information if we have imaginary numbers
40 figure ; close
41 if (useslmaginary)
42 if  (invertPhase) imagesc (1-normalize( angle (spect)));
43 else imagesc (normalize(  angle (spect))); end
44 else imagesc (zeros (size (original))); end
45 axis square; colormap (myColormap);
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print (gcf, -dppm’, [imageloc ’'-phase.ppm’);

% do the inverse decomposition
recovered = quad_inverse(spect, decompLevel, spectSelected);

% fix numerical errors

test = double(recovered >= 0); recovered = recovered.*test;
less than 0 as O

test = double(recovered <= 1); recovered = recovered.*test + (1-test);
greater than 1 as 1

% display recovered image

figure ; close

imagesc (recovered); axis square; colormap (myColormap);
print (gcf, -dppm’, [imageloc ’'-recov.ppm’]);

% find error between original and recovered image

error = original-recovered;

disp ([Maximum Error: ’ num2str ( max( max( max( error ))))));

disp (Maximum Recovered Value: ’ num2str ( max( max( max(recovered))))]);
disp ([Minimum Recovered Value: ’ num2str ( min ( min ( min (recovered))))]);

B.4 blowup.m

% cast all values

% cast all values

Script for enlarging a smaller quadrant of the spectrum to replace a larger quadrant.

function result = blowup(M, factor)

height = size (M, 1);

width = size (M, 2);

colors = size (M, 3);

result =  zeros (height*factor, width*factor, colors);
for i = 1:height

for j = l:width
for c¢ = 1l:colors

result(factor*(i-1)+1:factor*(i), factor*(j-1)+1:factor*(j), c) = M(, j,

c)*ones(factor, factor);
end
end
end

B.5 compression.m

Script for compression. Handles the input and output of figures.

% compression.m script to run compression routines

numpixels = numel(spect);
ratio = 1;
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5 avgangle = sum(sum(sum(angle (spect))))/numpixels;

6

7 % calculate all the constants necessary

g8 dim = size (spect, 1); % the number of rows in the image

9 height = log2 (dim); % the "height’ of the quad-tree based on this image
10 highestLevel = 2°(height - decompLevel - 1);

11

12 [threshold, energy] = sparsityNorm(spect, selectedThreshold);

13

14 % nearzeroamp = (normalize(spect) <= threshold);

15 % bigangle = (angle(spect) >= avgangle);

16 % nearzeros = nearzeroamp.*(1-bigangle);

17 nearzeros = (normalize(spect) <= threshold);

18 ratio =  sum(sum( sum(nearzeros))) / numpixels;
19 pruned = spect.*(1-nearzeros);
20

21 % we don't want to threshold the highest level where the average pixels are

22 % stored - restore that part of the spectrum.

23 if (compressionRestoreHiLevel)

24 pruned(1:highestLevel, 1:highestLevel, :) = spect(1:highestLevel, 1:highestLevel, :)
25 end

26

27 % reconstruct the image

28 result = quad_inverse(pruned, decompLevel, spectSelected);

29 % fix numerical errors

30 fix = double(result >= 0); result = result.* fix ; % cast all values less than 0 as 0

31 fix = double(result <= 1); result = result.* fix + (1- fix ); % cast all values greater than 1
as 1

32

33 error = original-result;

34 disp ([Pruning amplitudes less than or equal to ’ num2str (threshold)]);

35 disp ([Compression Rate; ~ (# pixels pruned)/(# pixels total) : ’ numa2str (ratio*100) ’
%'D);

36 disp ([Maximum Error: ’ numa2str ( max( max( max( error )))));

37 disp (Minimum Error: ’ num2str ( min ( min ( min ( error )))1);

38 disp ([Average Error: ’ num2str ( sum( sum( sum( error )))/numel(  error ))]);

39 disp (Maximum Recovered Value: ’ num2str ( max( max( max(result))))]);

40 disp ([Minimum Recovered Value: ’ num2str (- min ( min ( min (result))))]);

41 disp '

42

43 if (displayCompress)

44 % display the original image

45 subplot (2, 2, 1); imagesc (original); tittle  ('Original Image’); axis square; colormap

myColormap);

46

47 % display the result

48 subplot (2, 2, 2); imagesc (result); title  ('Compression Result); axis square;

colormap (myColormap);

49

50 % display the thresholded decomposition

51 subplot (2, 2, 3);

52 if  (invertMagnitude)

53 imagesc (1-normalize(pruned));

54 title  ([Spectrum Magnitude After Thresholding (Inverted, ’ numa2str (ratio*100) '%

Compression Rate)’]);
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else
imagesc (normalize(pruned));
titte  ([Spectrum Magnitude After Thresholding (’ numa2str (ratio*100) '%
Rate)’]);
end
axis square; colormap (myColormap);
else
figure ; imagesc (result); axis square; colormap (myColormap);
end

B.6 isocurve.m

Draws lines around pixels of equal color value.

function lines = isocurve(M, values)

% from Schroeder, et. al. "The Visualization Toolkit."

%

% Marching Squares / Cubes Algorithm (p. 160)

%

% 1. Select a cell (a 2-by-2 submatrix, or a 2-by-2-by-2 subcube)
% 2. Calculate the inside / outside state of each vertex of the cell
% 3. Create an index by storing the binary state of each vertex

% in a separate bit

% 4. Use the index to look up the topological state of the cell

% in a case table

% 5. Calculate the contour location (via interpolation) for each edge
% in the case table.

%

% test case

% M=[01132136633797327862 123343
% value = 5;

for value = values

drawline =  zeros (2, 2);

drawline2 = zeros (2, 2);

% for now, assume M is a two-dimensional matrix.
height = size (M, 1);
width = size (M, 2);

for i =1 : height-1
for j =1: width - 1
% first we select the 2-by-2 cell where (i, j) specifies the upper
% left hand corner ((i,j), (i+1,), (i,j+1), (i+1,j+1)
cell = M(i:i+1, j:j+1);

% next, we calculate the inside / outside state
% a vertex is in if its value is greater or equal than the value given
inNout = (cell >= value);

% next, we associate each case with a index (binary, 16 cases)

index = inNout(1, 1) + 2*inNout(1, 2) + 4*inNout(2, 2) + 8*nNout(2, 1);

Compression
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a1
42
43
a4
45
46
47
48
49
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58
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70
71
72
73
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76
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78
79
80
81
82
83
84
85

AW NP

top = [i, j + interp(value, cell(1, 1), cell(1, 2))];
bottom = [i+1, j + interp(value, cell(2, 1), cell(2, 2))];
left = [i + interp(value, cell(1, 1), cell(2, 1)), jI;

right = [i + interp(value, cell(1, 2), cell(2, 2)), j+1J;

% now, go through the cases for the topology & make contours
% lines are represented: height location first, then width location
switch (index)
case {0, 15}
case {1, 14}
drawline = [top; left];
case {2, 13}
drawline = [top; right];
case {3, 12}
drawline = [left; right];
case {4, 11}
drawline = [bottom; right];
case 5
drawline = [left; bottom];
drawline2 = [top; right];

case {6, 9}

drawline = [top; bottom];
case {7, 8}

drawline = [left; bottom];
case 10

drawline = [bottom; right];
drawline2 = [top; left];
end

% draw the isocurve

line (drawline(:, 1), drawline(:, 2));

if ((index == 5) || (index == 10))
line (drawline2(:, 1), drawline2(:, 2));

end

end
end
end
function ans = interp(v, a, b)
if (@ ™= b)

ans = abs((v - a) / (a - b));
else

ans = 0;
end

B.7 getBasis.m

Function that returns the appropriate DFT matrix for a group.

function [M, useslmaginary] = getBasis(selection)

% define change of basis here
W=
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spectTypes = {fourier’,
‘haar’, [1 1 1 1;
‘dihedral’, [1 1 1
‘alternating’, [1 1
'symmetric’, [1 1

[1111;1ww‘2w”3;1 2
1-11-1;1 -1
1, 1-1
11;-1
11;-1

% basis selction
numTypes = size (spectTypes, 1);
M = 0;

for i=1:numTypes
% compare strings to choose basis
if (strcmp (spectTypes(i,
M = spectTypes{i, 2};
if (imag (M) == 0)
usesimaginary = false;

1}, selection))

else
usesimaginary = true;

end
break ;
(i == numTypes)
disp (No match found for basis of name °’
end

elseif

end

B.8 multiresolution.m

selection ’

W*G; 1 w3 w6 w9l4,..

3ya..
3)a);

Please try again.’);

Script to progressively recover the image from portions of the spectrum.

height = log2 (size (spect, 1));
for i=height:-1:height-decompLevel
G = spect(1:27, 1:27, 3);
H = quad_inverse(G, decompLevel+(i-height), spectSelected);
% F = double(H >= 0); H = H.*F;
% F = double(H <= 1); H = H*F + (1-F);
figure ; imagesc (normalize(H)); axis
end

square;

B.9 normalize.m

% cast all values less than 0 as 0
% cast all values greater than 1 as 1

Normalizes the values of the recovered image so that it falls under 0 and 1.

function result = normalize(matrix)
result =  abs (matrix);
% result = matrix;

for i=1: size (matrix, 3);

result(;, :, i) = (1/ max( max(result(:, :, i))))*result(;,

end
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B.10 quadinverse.m

Performs the inverse decomposition.

1 function result = quad_inverse(spectrum, spectLevel, basis)

2

3 % quad_inverse quad-tree/DFT inverse decomposition of an image

4 %

5 % Usage: quad_inverse(M)

6

7 % change of basis matrix

8 % w=-;

9 %d=[11111ww2w3 1w2w4 w6 1w3wb6 w9

0 %d=[11111-11-111-1-1;1-1-11]

11 [d, usesimaginary] = getBasis(basis);

12

13 % invert the matrix

14 d = inv (d);

15

16 % split the change of basis matrix into real and imaginary parts

17 dr = real (d);

18 di = imag(d);

19

20 % calculate all the constants necessary

21 dim = size (spectrum, 1); % the number of rows in the image
22 cols = size (spectrum, 2); % the number of columns in the image
23 height = log2 (dim); % the "height’ of the quad-tree based on this image
24 colors = size (spectrum, 3); % the number of colors in the image
25

26 % special factor for calculating spectrum

27 % discontinued

28  %factor = 4;

29

30 if dim "= cols

31 disp ’Error: The number of rows do not match the number of columns.’;
32 spectrum = 0;

33 return

34 elseif height "=  floor (height)

35 disp ’Error: Each dimension of the image must be a power of 2.;
36 spectrum = 0;

37 return

38 end

39

40 rspectrum = real (spectrum);

41 roriginal = zeros (dim, dim, colors);

42 rfft_values = zeros (4, 1);

43 rpixel_values = zeros (4, 1);

44 ispectrum =  imag (spectrum);

45 ipixel_values = zeros (4, 1);

46 if (useslmaginary)

47 ioriginal = zeros (dim, dim, colors);

48 ifft_values = zeros (4, 1);

49 end

50

51 % % do the first quadrant! (the top 4 pixels).

al
N

% for color=1:colors
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%
%
%

% % ioriginal(1,

% % ioriginal(2,

% pick out the pixel values for each color
rpixel_values(l) = rspectrum(1, 1, color);
rpixel_values(2) = rspectrum(1, 2, color);
rpixel_values(3) = rspectrum(2, 2, color);
rpixel_values(4) = rspectrum(2, 1, color);

ipixel_values(1) = ispectrum(1, 1, color);
ipixel_values(2) = ispectrum(1, 2, color);
ipixel_values(3) = ispectrum(2, 2, color);
ipixel_values(4) = ispectrum(2, 1, color);

% calculate the dft by multiplying the matrix

% do this for both the real and imaginary parts

rfft_values = dr*rpixel_values*factor - di*ipixel_values*factor;

% This line is unnecessary because the recovered image should only be

% real, and the imaginary part should just be zero.

% assign the resulting values

roriginal(1, 1, color) = rfft_values(1);
roriginal(1, 2, color) = rfft_values(2);
roriginal(2, 2, color) = rfft_values(3);
roriginal(2, 1, color) = rfft_values(4);

, color) = ifft_values(1);

, color) = ifft_values(3);

1

% % ioriginal(1, 2, color) = ifft_values(2);
2
1

% % ioriginal(2,

, color) = ifft_values(4);

% end

%
%
%
%
%

S

for color=1:colors

%
%
%
%

ifft_values = dr*ipixel_values*factor + di*rpixel_values*factor;

1st quadrant
2nd quadrant
3rd quadrant
4th quadrant

%
%
%
%

1st quadrant
2nd quadrant
3rd quadrant
4th quadrant

rspectrum(1:2, 1:2, color) = roriginal(1:2, 1:2, color);
%ispectrum(1:2, 1:2, color) = ioriginal(1:2, 1:2, color);

ispectrum(1:2, 1:2, color) = zeros(2, 2);

% end

% quad ordering routine copied here.

for

current_height= max(2,height-spectLevel):height

maxlevel = 1,

row = 1;

col = 1;

counter = 1;

while  maxlevel <= (current_height-1)

% do stuff here
for color=1:colors

% pick out the pixel values for each color
rpixel_values(1l) = rspectrum(row, col, color);

rpixel_values(2) = rspectrum(row, col + 2°(current_height-1), color);
rpixel_values(3) = rspectrum(row + 2°(current_height-1), col + 2"(current_height

-1), color);

rpixel_values(4) = rspectrum(row + 2°(current_height-1), col, color);

if  (useslmaginary)
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108 ipixel_values(1) = ispectrum(row, col, color);

109 ipixel_values(2) = ispectrum(row, col + 27(current_height-1), color);

110 ipixel_values(3) = ispectrum(row + 27(current_height-1), col + 27(
current_height-1), color);

111 ipixel_values(4) = ispectrum(row + 2°(current_height-1), col, color);

112 end

113

114 % calculate the dft by multiplying the matrix

115 % do this for both the real and imaginary parts

116 if  (useslmaginary)

117 rfft_values = dr*rpixel_values - di*ipixel_values;

118 else

119 rfft_values = dr*rpixel_values;

120 end

121

122 % This line is unnecessary because the recovered image should only be

123 % real, and the imaginary part should just be zero.

124 % if (useslmaginary)

125 % ifft_values = dr*ipixel_values + di*rpixel_values;

126 % end

127

128 % assign the resulting values

129 roriginal(2*row - 1, 2*col - 1, color) = rfft_values(1); % 1st quadrant

130 roriginal(2*row - 1, 2*col, color) = rfft_values(2); % 2nd quadrant

131 roriginal(2*row, 2*col, color) = rfft_values(3); % 3rd quadrant

132 roriginal(2*row, 2*col - 1, color) = rfft_values(4); % 4th quadrant

133

134 % if (usesimaginary)

135 % ioriginal(2*row - 1, 2*col - 1, color) = ifft_values(l); % 1st quadrant

136 % ioriginal(2*row - 1, 2*col, color) = ifft_values(2); % 2nd quadrant

137 % ioriginal(2*row, 2*col, color) = ifft_values(3); % 3rd quadrant

138 % ioriginal(2*row, 2*col - 1, color) = ifft_values(4); % 4th quadrant

139 % end

140 end

141

142 % the rest of the counting program

143 if counter == 4"maxlevel

144 row = 1;

145 col = 2"maxlevel + 1,

146 maxlevel = maxlevel + 1,

147 else

148 % initial starting values

149 level = 0;

150 quad = mod(counter, 4);

151

152 while quad ==

153 level = level + 1,

154 quad = mod(counter, 4°(level+1));

155 end

156

157 if mod(counter, 47level) == 0

158 quad = mod(counter / 47level, 4);

159 end

160

161 row = row - (27level - 1);

162
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%

%
%

%
%

switch  quad
case 1
col = col + 27level;
case 2
row = row + 2'level;
case 3
col = col - 27evel;
otherwise
% turns out that putting in debugging statments like this
% slows things down significantly
disp(['Error: quad = ' num2str(quad) ' should have never happened...1);
end
end

% increment pixel counter
counter = counter + 1;
end

% After we are done with this level, re-assign the spectrum so that we can analyze
% it in a recursive fashion
% In the classical DFT case, the top left quadrant will be real, so we
% only need to pass on the real values.
for color=1:colors
rspectrum(1:2"current_height, 1:2"current_height, color) = roriginal(1:2"
current_height, 1:2°current_height, color);
if (useslmaginary)
ispectrum(1:2°current_height, 1:2°current_height, color) = ioriginal(1:2"current_height, 1:2"
current_height, color);
ispectrum(1:2°current_height, 1:2"current_height, color) = zeros(2"current_height, 2 current_height);
end
end

end

%
%
%
%

make it complex
if (useslmaginary)

result = complex(roriginal, ioriginal);
end

result = roriginal;

B.11 quadordering.m

Routine that handles the quad-tree scan. This routine is embedded in the decom-
position and inverse decomposition routines.

function matrix = quad_ordering(height)

%
%
%
%
%
%
%
%

S

S

S

S

quad_ordering Returns a quad-tree like ordering of a matrix

Usage: quad_ordering(height)

For a given height, this function produces a matrix that traverses the
image in a quad-tree like fashion. The algorithm is simply based on
detecting when we have finished traversing the current quadrant and then
moving our position to the next quadrant. It's very fast, and | don’t
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11 % think it can get much faster.

12 %
13 % Written 11/16/03, Will Chang

14

15 dim = 2 height;

16 matrix = zeros (dim, dim);
17

18 maxlevel = 1,
19 row = 1;

20 col = 1;
21 counter = 1,
22

23 % in this program, a "level" signifies the level in the quad tree. Unlike

24 % the quad_spectrum program, level 0 means that we are on the pixel level;
25 % level 1 on the quad-pixel level, level 2 on the 16-pixel level, and so on
26 % and so forth.

27

28 while maxlevel <= height

29 matrix(row, col) = counter;

30

31 % we know when we have hit the last pixel of the current level when our
32 % pixel counter has reached number 4"maxlevel. Move to the first pixel
33 % in the next level, and increment our maxlevel counter.

34 if counter == 4"maxlevel

35 row = 1;

36 col = 2"maxlevel + 1,

37 maxlevel = maxlevel + 1,

38 else

39 % initial starting values

40 level = 0;

41 quad = mod(counter, 4);

42

43 % find the local level, that is, find out if we're on the pixel

44 % level, the 4-pixel level, the 16-pixel level, etc. by testing

45 % the divisibility of our pixel counter by powers of 4.

46 while quad == 0

47 level = level + 1,

48 guad = mod(counter, 4°(level+1));

49 end

50

51 % given that we're on some level, we want to find our the relative
52 % position of our quadrant, because we’ll have to find out a way to
53 % move to the next quadrant.

54 % This is a very cool trick.

55 if mod(counter, 47level) ==

56 guad = mod(counter / 47level, 4);

57 end

58

59 % go back to position 1 in our local quadrant

60 % This is also a very cool trick.

61 row = row - (27level - 1);

62

63 switch  quad

64 case 1

65 col = col + 27level;

66 case 2
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%

end

row = row + 27level;

case 3
col = col - 27level;

otherwise
% turns out that putting in debugging statments like this
% slows things down significantly

disp(['Error: quad = ' num2str(quad) ' should have never happened...);
end

end

% increment pixel counter
counter = counter + 1;

B.12 quadspectrum2.m

Performs the decomposition.

function result = quad_spectrum2(M, userMaxLevel, basis)

% quad_spectrum2 quad-tree/DFT decomposition of an image

%

% Usage: quad_spectrum2(M)

%
%
%
%
%
%
%
%
%
%

M is the image to be decomposed. This is a fast version of the
recursive quad_spectrum program.

The way | made it fast was to use the quick ordering method developed in
quad_ordering so that | can march through the image and do a constant
amount of work per pixel in the image.

Since MATLAB hates dealing with complex numbers, | split up the
decomposition into separate real and imaginary parts so that every line

in the processing loop is "accelerated."

% get change of basis matrix

% w = -;

% d
% d

=1111;1ww2w3 1w2w4wsb 1w3weé w9
=[1111,1-11-111-1-1;1-1-11];

[d, usesimaginary] = getBasis(basis);

% split the change of basis matrix into real and imaginary parts

dr = real (d);

di imag (d);

% calculate all the constants necessary

dim = size (M, 1); % the number of rows in the image

cols = size (M, 2); % the number of columns in the image

height = log2 (dim); % the "height’ of the quad-tree based on this image
colors = size (M, 3); % the number of colors in the image

% special factor for calculating spectrum
% discontinued
%factor = 4;

quadspectrum2.m 75
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if dim "= cols
disp 'Error: The number of rows do not match the number of columns.’;
spectrum = 0;
return
elseif height "=  floor (height)
disp 'Error: Each dimension of the image must be a power of 2.
spectrum = 0;
return
end
pixel_values = zeros (4, 1);
rspectrum =  zeros (dim, dim, colors);
rfft_values = zeros (4, 1);
ifft_values = zeros (4, 1);
if  (useslmaginary)
ispectrum =  zeros (dim, dim, colors);
end

% quad ordering routine copied here.
current_height=height:-1: max(2, height-userMaxLevel) % this needs to go up only to 2
because maxlevel starts at 1.

maxlevel = 1;

for

%
%
%
%

row = 1;

col = 1;

counter = 1,

while  maxlevel <= (current_height-1)

% do stuff here

for

color=1:colors
% pick out the pixel values for each color
pixel_values(1) = M(2*row - 1, 2*col - 1, color);
pixel_values(2) = M(2*row - 1, 2*col, color);
pixel_values(3) = M(2*row, 2*col, color);
pixel_values(4) = M(2*row, 2*col - 1, color);

% calculate the dft by multiplying the matrix
% do this for both the real and imaginary parts
rfft_values = dr*pixel_values;
if (useslmaginary)
ifft_values = di*pixel_values;
end

% assign the resulting values

rspectrum(row, col, color) = counter; % 1st quadrant
rspectrum(row, col + 2°(current_height-1), color) = counter; % 2nd quadrant
rspectrum(row + 2°(current_height-1), col + 2"(current_height-1), color) = counter; % 3rd quadrant
rspectrum(row + 2°(current_height-1), col, color) = counter; % 4th quadrant

rspectrum(row, col, color) = rfft_values(1);

rspectrum(row, col + 2°(current_height-1), color) = rfft_values(2);
% 2nd quadrant

rspectrum(row + 2°(current_height-1), col + 2%(current_height-1), color) =
rfft_values(3); % 3rd quadrant

% 1st quadrant
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rspectrum(row + 2°(current_height-1), col, color) = rfft_values(4);
% 4th quadrant

if (useslmaginary)
ispectrum(row, col, color) = ifft_values(1); % 1st
quadrant
ispectrum(row, col + 2°(current_height-1), color) = ifft_values(2);
% 2nd quadrant
ispectrum(row + 2°(current_height-1), col + 2"(current_height-1), color) =
ifft_values(3); % 3rd quadrant
ispectrum(row + 2°(current_height-1), col, color) = ifft_values(4);
% 4th quadrant
end
end

% the rest of the counting program

if counter == 4"maxlevel
row = 1;
col = 2"maxlevel + 1;
maxlevel = maxlevel + 1,

else
% initial starting values
level = 0;

quad = mod(counter, 4);

while quad ==

level = level + 1;

quad = mod(counter, 47(level+1));
end
if mod(counter, 4’level) == 0

quad = mod(counter / 47level, 4);
end

row = row - (27level - 1);

switch quad
case 1
col = col + 27level;
case 2
row = row + 27level;
case 3
col = col - 27level;
otherwise
% turns out that putting in debugging statments like this
% slows things down significantly
% disp(['Error: quad = ' num2str(quad) ' should have never happened...);
end
end

% increment pixel counter
counter = counter + 1;
end

% After we are done with this level, re-assign M so that we can analyze
% it in a recursive fashion
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140 % In the classical DFT case, the top left quadrant will be real, so we
141 % only need to pass on the real values.

142 M = rspectrum;

143 end

144

145

146 % do the last quadrant! (the remaining top 4 pixels are not done yet).

147 % for color=1:colors

148 % % pick out the pixel values for each color

149 % pixel_values = [M(1, 1, color); M(1, 2, color); M(2, 2, color); M(2, 1, color)];
150 %

151 % % calculate the dft by multiplying the matrix

152 % % do this for both the real and imaginary parts

153 % rfft_values = dr*pixel_values/factor;

154 % ifft_values = di*pixel_values/factor;

155 %

156 % % assign the resulting values

157 % rspectrum(1, 1, color) = rfft_values(l); % 1st quadrant
158 % rspectrum(1, 2, color) = rfft_values(2); % 2nd quadrant
159 % rspectrum(2, 2, color) = rfft_values(3); % 3rd quadrant
160 % rspectrum(2, 1, color) = rfft_values(4); % 4th quadrant

161 %
162 % ispectrum(1,

B

, color) = ifft_values(1); o 1st quadrant

1
163 % ispectrum(1, 2, color) = ifft_values(2); % 2nd quadrant
164 % ispectrum(2, 2, color) = ifft_values(3); % 3rd quadrant
165 % ispectrum(2, 1, color) = ifft_values(4); % 4th quadrant
166 % end
167

168 % make it complex
169 if (useslmaginary)

170 result = complex(rspectrum, ispectrum);
171 else

172 result = rspectrum;

173 end

B.13 read.m

Reads the image file.

1 % % read.m reads a file using imread

2 original = imread(imagefile);

3

4 original = double(original)/255;

5 % R = original(;, :, 1);

6 % G = original(;, :, 2);

7 % B = original(;, :, 3);

8 % original = B;

9

10 % figure; imagesc(R); colormap(gray); axis square;
11 % figure; imagesc(G); colormap(gray); axis square;
12 % figure; imagesc(B); colormap(gray); axis square;
13

14 % autocrop the image

15 original = autocrop(original);
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B.14 replacement.m

Replaces a quadrant with zeros.

function result = replacement(spect, levels, replaces, basis, mymap)
% replacement scheme - I'm experimenting with replacing certain
% decomposition levels with lower-resolution equivalents.

height = size (spect, 1);
width = size (spect, 2);
colors = size (spect, 3);

% height and width should be the same
dim = height;
counter = 0;

result = spect;

for level=levels
counter = counter + 1;
lo = dim / (2°(level+1));
hi = dim / (2°(level));

% quad_a = spect(l:lo, lo+1:2*lo, :);
% quad_b = spect(lo+1:2*lo, lo+1:2*lo, :);

% quad_c = spect(lo+1:2*lo, 1:lo, :);
quad_0 = ones(lo, lo, colors);
quad_a = zeros (lo, lo, colors);
quad_b = zeros (lo, lo, colors);
quad_c = zeros (lo, lo, colors);

for replace=replaces{counter}
switch (replace)

case 1
result(1:hi, 1:hi, :) = blowup(quad_0, 2);
case 2
result(1:hi, hi+1:2*hi, :) = blowup(quad_a, 2);
case 3
result(hi+1:2*hi, hi+1:2*hi, :) = blowup(quad_b, 2);
case 4
result(hi+1:2*hi, 1:hi, :) = blowup(quad_c, 2);
end
end
end
figure ;imagesc (normalize(result)); axis square; colormap (mymap);

recovered = quad_inverse(result, 3, basis);

test = double(recovered >= 0); recovered = recovered.*test; % cast all values
less than 0 as 0
test = double(recovered <= 1); recovered = recovered.*test + (1-test); % cast all values

greater than 1 as 1
figure ; imagesc (recovered); axis square; colormap (mymap);
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B.15 run.m

Script that runs the decomposition and inverse decomposition.

1 % run.m - calculation and display script

2 % My Examples

3 imagefile = ’cat.bmp’;

4 % imagefile = 'strange6-256.bmp’;

5 % imagefile = 'oh_my-256.bmp’;

6 % imagefile = 'mountain-lake.tif’;

7

8 % Examples from the wavelet toolbox

9 % imagefile = 'geometry.bmp’;

10 % imagefile = 'sinsin.omp’;

11 % imagefile = 'tartan.bomp’;

12 % imagefile = 'woman.bmp’;

13 % imagefile = 'noisewom.bmp’;

14 % imagefile = 'tire.omp’;

15 % imagefile = ‘finger.omp’;

16 % imagefile = ‘finger256.bmp’;

17 % imagefile = 'chess.bmp’;

18 % imagefile = 'facets.bmp’;

19 read;

20

21 % global options

22 spectSelected = ‘fourier’; % choose the basis

23 decompLevel = 2; % maximum spectral decomposition level
24 [basis, useslmaginary] = getBasis(spectSelected); % get the basis
25 invertMagnitude = false; % invert magnitude colors

26 invertPhase = false; % invert phase colors

27 brightness = 0.3; % defines the brightness of the colormap
28 myColormap = brighten (pink , brightness); % assign the colormap with a certain brightness
29

30 % Display Options

31 displayRun = true; % displays the decomposition / inverse decomposition
32 displayCompress = true; % displays all the information about the compression
33

34 % compression options

35 compressionRestoreHiLevel = false; % restores the avg pixel values at the highest level
36 % ... (smallest remaining upper left quadrant)

37 % ... after the compression step.

38 % selectedThreshold = ’balance’; %

39 selectedThreshold = ’sqrtBalance’; % thresholding method selection
40 % selectedThreshold = ’'nearZero’; %

41

42

43 % Now, run through the decomposition and inverse decomposition

44

45 % do the decomposition

46 spect = quad_spectrum2(original, decompLevel, spectSelected);

47

48  %figure; imagesc(normalize(spect)); axis square; colormap(myColormap);

49

50

51 if (displayRun)

52 % display the original
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title  ([Results of ' spectSelected ’ transform’]);
subplot (2, 2, 1); imagesc (original); title  ('Original Image’); axis square; colormap (
myColormap);

% display the decomposition

subplot (2, 2, 3);

if  (invertMagnitude) imagesc (1-normalize(spect)); title  ('Spectrum Magnitude (
Inverted)’);
else imagesc (normalize(spect)); title  ("Spectrum Magnitude’); end

axis square; colormap (myColormap);

% display phase information if we have imaginary numbers
subplot (2, 2, 4);
if  (useslmaginary)

if (invertPhase) imagesc (1-normalize( angle (spect))); titte  ('Spectrum Phase (
Inverted)’);
else imagesc (normalize(  angle (spect))); titte  ('Spectrum Phase’); end
else imagesc (zeros (size (original))); title  ('Spectrum Phase’); end

axis square; colormap (myColormap);

% do the inverse decomposition
recovered = quad_inverse(spect, decomplLevel, spectSelected);

% fix numerical errors

test = double(recovered >= 0); recovered = recovered.*test; % cast all values
less than 0 as O
test = double(recovered <= 1); recovered = recovered.*test + (1-test); % cast all

values greater than 1 as 1

% display recovered image

subplot (2, 2, 2); imagesc (recovered); title  ('Recovered Image’); axis square;
colormap (myColormap);

% find error between original and recovered image

error = original-recovered;

disp (Maximum Error: ’ num2str ( max( max( max( error ))));

disp ([Maximum Recovered Value: ’ num2str ( max( max( max(recovered))))]);

disp (Minimum Recovered Value: ’ num2str ( min ( min ( min (recovered))))]);
end

B.16 runall.m

Script that runs many different decompositions for many images.

% runallm -- script to execute all of the different types of decompositions
% My Examples

%
%
%

imagefile = ’cat.bmp’;
imagefile = ’strange6-256.bmp’;
imagefile = 'oh_my-256.bmp’;

S

S

S

% Examples from the wavelet toolbox
% imagefile = 'geometry.bmp’;

% imagefile = 'sinsin.omp’;

%

S

S

imagefile = ‘tartan.bmp’;

S
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11 % imagefile = 'woman.bmp’;
12 % imagefile = 'tire.omp’;

13 % imagefile = ‘finger.omp’;
14 % imagefile = ‘finger256.bmp’;
15 % imagefile = 'chess.bmp’;
16 % imagefile = 'facets.bomp’;
17

18 imagefiles = {"oh_my-256};
19 % imagefiles = {'geometry’, 'sinsin’, 'tartan’};
20 % spectra = {'alternating’, 'symmetric’};

21

22 numFiles = size (imagefiles, 2);
23 % numSpectra = size(spectra, 2);

24

25

26 % global options
27 spectSelected = ‘fourier’;

28 % decomplLevel = 9; % maximum spectral decomposition level

29 invertMagnitude = true; % invert magnitude colors

30 invertPhase = false; % invert phase colors

31 brightness = 0.3; % defines the brightness of the colormap

32 myColormap = brighten (pink , brightness); % assign the colormap with a certain brightness
33

34 % compression options

35 compressionRestoreHiLevel = true; % restores the avg pixel values at the highest level
36 % ... (smallest remaining upper left quadrant)

37 % ... after the compression step.

38 selectedThreshold = ’balance’; %

39 % selectedThreshold = 'sqgrtBalance’; % thresholding method selection

40 % selectedThreshold = ’'nearZero’; %

41

42 % Now, run through the decomposition and inverse decomposition

43 % display the original

44 % figure;

45 % subplot(2, numSpectra, 1); imagesc(original); title('Original Image’); axis square; colormap(myColormap);
46

47 for i=l:numFiles

48 % for j=l:numSpectra

49 for j=0:6;

50 imagefile = [imagefiles{i} ".bmp’];

51 read;

52 % spectSelected = spectra{j}; % choose the basis

53 [basis, usesimaginary] = getBasis(spectSelected); % get the basis
54 decompLevel = j;

55

56 % do the decomposition

57 spect = quad_spectrum2(original, decompLevel, spectSelected);

58

59 % display the decomposition

60 % subplot(2, numSpectra, i+numSpectra);

61 figure ;

62 if  (invertMagnitude) imagesc (1-normalize(spect));

63 else imagesc (normalize(spect)); end

64 axis square; colormap (myColormap);

65 print (gcf, -depsc2’, '-r150’, [imagefiles{i} - spectSelected '.eps’);

66
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% display phase information if we have imaginary numbers

% subplot(2, 2, 4);
% if (useslmaginary)
% if (invertPhase) imagesc(1-normalize(angle(spect))); title('Spectrum Phase (Inverted)’);
% else imagesc(normalize(angle(spect))); title('Spectrum Phase’); end
% else imagesc(zeros(size(original))); title('Spectrum Phase’); end
% axis square; colormap(myColormap);
end
end

B.17 sparsityNorm.m

Function that calculates sparsity-norm balancing.

function [finalThreshold, finalEnergy] = sparsityNorm(spectrum, threshold)

thresholdMethod = {’balance’, 'sqrtBalance’, 'nearZero’};
sqrtFactor = 128;

index = 1;

numThresholds = 200;

normSpect = normalize(spectrum);

zerosExceed = 0;

% size information

rows = size (spectrum, 1); % the number of rows in the image
cols = size (spectrum, 2); % the number of columns in the image
colors = size (spectrum, 3); % the number of colors in the image

numElements = rows * cols;

if (colors > 0) numElements = numElements * colors; end
% totalEnergy = norm(spectrum, 2);

totalEnergy = sum( sum( sum(spectrum.*  conj (spectrum))));
comparison = zeros (size (spectrum));

thresholds = zeros (1, numThresholds + 1);

percentZeros = zeros (1, numThresholds + 1);

percentEnergy = zeros (1, numThresholds + 1);

for currentThreshold = 0:1/numThresholds:1
comparison = double(normSpect > currentThreshold);
numZeros = sum( sum( sum(comparison)));

% apply the threshold
spectrum = spectrum .* comparison;
% energy = norm(spectrum, 2);
energy = sum(sum( sum(spectrum.*  conj (spectrum))));

thresholds(index) = currentThreshold;
percentZeros(index) = (numElements - numZeros) / numElements * 100;
% percentEnergy(index) = (energy / totalEnergy) * 100;

percentEnergy(index) = sgrt (energy / totalEnergy) * 100;

if  ((percentZeros(index) >= percentEnergy(index)) && (zerosExceed == 0))
zerosExceed = index;

end
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index = index + 1;
end

% compute final threshold by linear interpolation

a = thresholds(zerosExceed - 1); b = thresholds(zerosExceed);

el = percentEnergy(zerosExceed - 1); e2 = percentEnergy(zerosExceed);
z1 = percentZeros(zerosExceed - 1); z2 = percentZeros(zerosExceed);

% assume that el, e2 and zl, z2 each define a line, and that the two lines
% cross between a and b. |If lines don't cross, then it might give a funky result.

balanceThreshold = (el-z1)*(b-a)/((z2-z1)-(e2-el)) + a;
balanceEnergy = (z2-z1)/(b-a)*(balanceThreshold-a) + z1,
sqrtBalanceThreshold = sqrt (balanceThreshold*sqrtFactor)/sqrtFactor;
nearZeroThreshold = 0.01;
% find these values by linear interpolation
nearZerolndex = 1,
sgrtBalancelndex = 1;
for i=1:numThresholds+1
if (thresholds(i) < nearZeroThreshold)
nearZerolndex = nearZerolndex + 1;
end
if  (thresholds(i) < sqrtBalanceThreshold)
sgrtBalancelndex = sqrtBalancelndex + 1;
end
if  ((thresholds(i) >= nearZeroThreshold) && (thresholds(i) >= sqrtBalanceThreshold))
break ;
end
end

% now we know that the thresholds in the indices are greater than the given thresholds
if (sgrtBalancelndex > 1)
sqrtBalanceEnergy = percentEnergy(sqrtBalancelndex-1) +...
(percentEnergy(sqrtBalancelndex)-percentEnergy(sqrtBalancelndex-1)) *...
(sgrtBalanceThreshold-thresholds(sqgrtBalancelndex-1)) /...
(thresholds(sgrtBalancelndex)-thresholds(sqrtBalancelndex-1));
else
sqrtBalanceEnergy = percentEnergy(sqrtBalancelndex);
end

if (nearZerolndex > 1)
nearZeroEnergy = percentEnergy(nearZeroindex-1) +...
(percentEnergy(nearZerolndex)-percentEnergy(nearZerolndex-1)) *...
(nearZeroThreshold-thresholds(nearZerolndex-1)) /...
(thresholds(nearZerolndex)-thresholds(nearZerolndex-1));
else
nearZeroEnergy = percentEnergy(nearZerolndex);
end

% select the threshold

select = strcmp (threshold, thresholdMethod);

if  (select(1))
finalThreshold = balanceThreshold;
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finalEnergy = balanceEnergy;
elseif  (select(2))
finalThreshold = sqrtBalanceThreshold;
finalEnergy = sqrtBalanceEnergy;
elseif (select(3))
finalThreshold = nearZeroThreshold;
finalEnergy = nearZeroEnergy;
else
disp (['Specified Threshold ' threshold ' not found. Defaulting to balance sparsity-
norm.’]);
finalThreshold = balanceThreshold,;
finalEnergy = balanceEnergy;
end

% display result

% this is meant to display in the compression script.

figure ; subplot (2, 2, 4);

plot (thresholds, percentZeros, thresholds, percentEnergy);

line ([finalThreshold, finalThreshold], [0.0, 100.0], 'LineStyle’, *’, 'Color’, [0.8,
0.1, 0.1]);

title  (['Sparsity-Norm Analysis (threshold = ’ num2str (finalThreshold) ’, retained
energy = ' num2str (finalEnergy) ' percent)’);

xlabel (‘Threshold’); ylabel ('Number of Zeros / Percent Energy Retained’);

legend ('Percent Number of Zeros', 'Percent Energy Retained’, 'Calculated Threshold’,
3);
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