
Surface Reconstruction from Points

William Y. Chang∗

Department of Computer Science and Engineering
University of California, San Diego

Abstract

This report surveys recent techniques for reconstructing surfaces
from points. We describe four main ideas in the graphics literature:
signed distance estimation, Voronoi-based reconstruction, implicit
surface fitting, and moving least squares surfaces. The main chal-
lenges include reconstruction without surface normals, robustness
to noise, accuracy to sharp features, and provable reconstruction
guarantees. We compare various techniques and discuss possible
avenues for future work.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: surface reconstruction, function approximation,
signed distance function, voronoi diagram, implicit surface, mov-
ing least squares

1 Introduction

In recent years, there has been an increasing demand for realistic
3D computer models in a wide variety of fields and applications,
including industrial manufacturing, computer animation, medi-
cal visualization and manufacturing, machine learning, and much
more. One may model these surfaces by hand, using tools from
the CAD/CAM community (Computer-Aided Design / Computer-
Aided Manufacturing) or the graphics community. Fortunately, it is
becoming more affordable and reliable to acquire a real-world ob-
ject using a 3D scanning device. The following are some examples:

• Range scanning is used as a non-invasive method for scanning
the surface of an object. In range scanning, a camera captures
the surface as a structured pattern of light illuminates the ob-
ject1.

• Destructive scanning is used to inspect molded parts by ma-
chining and scanning thin slices of the object.

• Computer vision techniques, such as photometric stereo,
multi-view geometry, shape from shading, etc. generate point
samples using photographs from multiple viewpoints or light-
ing conditions.

• Contact probe measurement machines measure locations on a
surface by directly touching the surface with a probe.

The key ingredient here is an excellent surface reconstruction al-
gorithm, which allows us to construct a continuous surface given
the scanned point samples of an unknown surface. This would be
useful for many applications:

• Industrial applications and reverse engineering: engineers can
inspect the quality of their manufactured parts by scanning
them and comparing with the original 3D CAD model.

∗e-mail: wychang@cs.ucsd.edu
1This technique additionally requires a global registration step to align

multiple scans

• Animation, film production, special effects: animators and
artists can acquire real-world surfaces to create and reproduce
realistic scenes and environments.

• Scientific simulation: physical objects can be simulated effi-
ciently by representing them using point samples and deduc-
ing the behavior of the rest of the surface.

• Medical reconstruction and visualization: doctors and scien-
tists can visualize medical data obtained from CAT/MRI scans
or microscopy data. The data can also be used to design
and manufacture medical devices and prosthetics. for exam-
ple, dentists can automatically manufacture teeth to replace
cracked or damaged ones by scanning and reconstructing the
surface of the original tooth.

• Machine learning: examples are treated as points in a high-
dimensional space, and a generalization of the reconstruction
technique can be used to infer the surface or manifold which
interpolates the examples.

The main challenge in designing a surface reconstruction algorithm
is to guarantee that the topology of the original surface is preserved,
while sharp features and surface boundaries and reproduced accu-
rately in the reconstructed surface. In addition, the algorithm would
ideally be robust to sampling density and measurement error.

This problem has been studied extensively in the literature, and
there are several surveys that describe the work in this area [Bolle
and Vemuri 1991; Mencl and Müller 1997; Cazals and Giesen
2006]. In this report, we will focus on recent techniques devel-
oped in the computer graphics literature. The earliest techniques
for solving the problem used parametric surfaces such as NURBS
or B-splines to fit and stitch together local surface patches, but we
do not discuss these methods here. In addition, we will not discuss
work in the vision literature that utilizes level set methods or active
contours.

We examine four main ideas for point-based surface reconstruc-
tion. In section 2, we discuss techniques to estimate the signed dis-
tance function of a surface from sample points. In section 3, we will
examine Voronoi-based methods, which provide a provable recon-
struction guarantee. Next, in section 4 we describe implicit surface
fitting techniques that produce high-quality surfaces that accommo-
date sharp features and boundaries. In section 5 we discuss moving
least squares surfaces which are robust to noise. Finally, we com-
pare these methods and describe areas for future work.

2 Estimating the Signed Distance Function

A key idea in finding a surface is to reliably estimate the signed
distance function of the surface; i.e. the distance from a point to the
surface, with positive or negative sign indicating whether the point
is inside or outside if the surface is closed. Given this function, we
can easily recover the surface by extracting its zero set. In this sec-
tion, we examine in detail two techniques that estimate the signed
distance function. Although these methods do not guarantee pre-
serving topology and sharp features, they perform well in practice
and provide a basis for which later ideas are developed.

2.1 Tangent Plane Based Estimation

Hoppe et al. [1992] consider using oriented tangent planes to es-
timate the signed distance function. Given a set of point samples
X = {x1,x2, . . . ,xN},xi ∈ R3, of an unknown surface S (where N is
the number of points), we would like to compute the signed distance
d(x) from an arbitrary location x ∈ R3. A naive approach would be
to take d(x) to be the distance to the closest point sample. How-
ever, in this case the estimate would be quite inaccurate without
a sufficient sampling density, and the resulting zero set would just
consist of the point samples themselves. To resolve this problem,
the authors approximate the surface using a set of tangent planes
computed at each sample point. The tangent planes are computed
as follows:

1. For each point xi ∈X , find the k nearest sample points. Denote
this set as N(xi).

2. Compute the centroid oi (average) of the points in N(xi).

3. Find a tangent plane T (xi) that goes through oi which best
fits N(xi) in the least squares sense. We only need to estimate
the surface normal ni by minimizing the squared distance to
the points

ni = argmin
n∈R3,‖n‖=1

∑
y∈N(xi)

(n · (y−oi))
2 .

Given the tangent planes, they obtain an estimate of the signed dis-
tance at x by finding the closest centroid oc and computing the dis-
tance to the tangent plane T (xc) (with normal nc):

d(x) = (x−oc) ·nc.

A problem with this method is that there is no guarantee that the
normal vectors ni have a consistent orientation. To fix this problem,
they propagate the orientation of the tangent planes by traversing an
augmented Euclidean minimum spanning tree graph on the sample
points. Starting at an initial vertex, the orientation of the normal is
propagated by visiting the neighboring vertex with the closest (most
parallel) normal. Finally, the marching cubes algorithm [Lorensen
and Cline 1987] is used to extract the zero set of the surface as a
triangle mesh. In this step the distance function is sampled at the
vertices of a cubical lattice, and the zero intersection is computed
for each cube. The steps of this technique are shown in Figure 1,
which illustrates the process of computing the set of tangent planes
and extracting the zero contour in a cubical lattice. Notice that the
sharp features in the original surface are smoothed out in the recon-
structed surface; this behavior is influenced by the tangent plane
estimate at the corner, which straddles both sides at the corner in-
stead of preserving two distinct sides. In addition, although this
algorithm works well with the clean datasets in this paper, it would
not perform as well with a noisy data set. This is because the tan-
gent plane estimation is not robust to outliers, as we see in the case
with sharp corners.

In a series of two follow-up improvements to this method, Hoppe
et al. [1993; 1994] further optimize the output to fit a subdivision
surface that allows for sharp features. They incrementally tweak the
mesh by a series of edge collapses, edge splits, and edge swaps to
better the data points while maintaining a compact representation.
This method depends on having a good initial estimate of the final
surface, so it shares some of the limitations of the tangent plane
based method. However, the optimization process is able to recover
sharp features and boundaries.

2.2 Volumetric Estimation

A different method, known as VRIP (Volumetric Range Image Pro-
cessing), is given by Curless and Levoy [1996] to estimate the

Figure 1: Reconstruction of a widget. Top left: the original sur-
face. Top middle: a closeup of the sampled points xi. Top right:
the oriented tangent planes Ti. Bottom left: cubes visited during
contouring. Bottom middle: the signed distance function shown
as lines from the cube vertices to the surface. Bottom right: final
surface. From [Hoppe et al. 1992].

signed distance from a set of range scans. Unlike the tangent plane
estimation used above, rays are casted from the point of view of
the scanner to determine the distance to the surface. This method
is able to also combine a set of weighted range images (see Figure
2) to produce a single distance function. Their basic approach is as
follows:

1. Generate range meshes by constructing triangles, connecting
nearest neighbors in the range images.

2. Discretize the space surrounding the object into voxels. The
voxels will store the signed distance function.

3. Cast a ray from the sensor through each voxel and intersect
with the range mesh. The ray gives the distance from the voxel
to the surface. The voxel is inside the surface it is closer to
the sensor than the intersection point; otherwise it is labeled
as outside the surface.

4. Repeat for each range mesh. This gives an array of signed
distance values for each voxel, which are combined into a
weighted sum.

5. The line of sight between the sensor and the mesh is an empty
region, so label these as empty voxels. This approach is re-
ferred to as “space carving.”

6. The zero isosurface is extracted using the marching cubes
technique [Lorensen and Cline 1987].

The weights used in step 4 are determined by the dot product be-
tween each vertex normal and the viewing direction. Since the
measurement has more uncertainty at grazing angles to the sur-
face [Turk and Levoy 1994], the weights decrease as the normal
becomes perpendicular to the viewing direction. In Figure 3, a 2D
voxel grid is labeled as empty (black), unseen (green), or near sur-
face (gradient) by thresholding the distance to the surface. Here,
a backdrop surface behind the object can be used to reliably mark
empty regions outside the object. The right side of Figure 3 is an
example where a backdrop has been used to detect holes which are
incorrectly filled due to the limitation of the data.

This method has a number of advantages over the tangent-plane
based method. First, it is able to extract the surface from range data
without the need for registration. Second, it takes into account the

Figure 2: Acquiring a range scan. Left: a sheet of laser light illu-
minates the surface, while a CCD observes the reflected stripe and
computes a depth profile. Right: the set of surface points generated
as the laser sweeps the object from left to right. The points are con-
nected to form a piecewise linear range surface. From [Curless and
Levoy 1996].

Figure 3: Left: a labeled 2D voxel grid. The green dashed lines
denote the isosurface, and the red lines denote the hole fill surfaces.
Right: the benefit of using a backdrop surface while scanning. The
two pictures show the reconstruction result before and after using a
backdrop. Notice that the incorrectly filled hole is easily detected.
From [Curless and Levoy 1996].

uncertainty of the measurements; so it is robust to outliers and is
able to detect and fill holes in the reconstruction. However, there
are some limitations in reproducing sharp corners (limited to the
resolution of the voxel grid), and the method has trouble with thin
surfaces, where the range images on each side of the surface can
interfere with each other. Nevertheless, this technique is quite prac-
tical, so it is cited frequently in the literature and used as a prepro-
cessing step in a number of algorithms.

In another work, Turk and Levoy [1994] give a technique to re-
construct a surface from range scans by explicitly registering the
range scans and combining the range meshes by “zippering” the
boundaries together. This technique is not robust to outliers, so
VRIP is usually preferred.

3 Voronoi / Delaunay Based Methods

In this section, we examine surface reconstruction techniques that
use Voronoi diagrams and Delaunay complexes. These methods
generate triangle meshes whose vertices are the sample points, and
the goal is to determine the connectivity of the sample points that
preserve the topology of the original surface. These methods come
with a provable guarantee of producing a topologically correct sur-
face. However, the quality of the output surface depends directly
on the quality of the input data set, so noisy data will produce noisy
surfaces.

Before discussing these methods, let us review some of the key
geometric concepts. We use the definitions used by Amenta et al.
[1998b]. A Voronoi diagram is a partition of Rd (where d is the
dimension of the space) into Voronoi cells for each xi, where ev-

Delaunay Voronoi Delaunay
Triangulation Diagram and Voronoi

Figure 4: The Voronoi diagram and Delaunay triangulation for
a 2D dataset. The blue points are the sample points, and the red
points are the Voronoi vertices. From www.mathworld.com.

Figure 5: The medial axis. For a curve, the medial axis is also a
curve, but for a surface, the medial axis can be both a surface and a
curve. Left: A medial ball is shown for a point equidistant to two
points on the surface. From [Amenta et al. 1998b].

ery cell consists of a region closer to its sample point xi than any
other x j, j 6= i (Figure 4). Each Voronoi cell is a convex poly-
tope, with Voronoi vertices equidistant from exactly d + 1 sample
points. There is a connection with the Delaunay complex: these
d + 1 points form a Delaunay simplex with the property that each
face of the simplex has a circumsphere containing no other sample
points. The set of Delaunay simplices form the Delaunay simpli-
cial complex. It is also the graph dual of the Voronoi diagram. The
Delaunay complex can be computed in O(n logn) for n input points
using the Quickhull algorithm [Barber et al. 1996].

3.1 Alpha Shapes

We first examine an earlier method that does not preserve the topol-
ogy of the surface, but has inspired the development of the subse-
quent techniques in this section. This is the α-shape representation
developed by Edelsbrunner and Mücke [1994]. Intuitively, given a
point set and its Delaunay complex, an α-shape is a subset of the
Delaunay complex such that the size of the simplices are less than
α . In other words, we include a simplex as part of the shape if
the radius of the circumsphere enclosing the simplex is less than α .
Computing the α-shape is straightforward: we compute the Delau-
nay complex of the data set, and for each simplex we test to see
if its circumsphere has radius less than α . Note that α is not de-
termined automatically but chosen manually by the user. Figure 6
shows the different α-shapes obtained by varying the parameter α .
When α = ∞, the resulting shape is the convex hull of the point
set, and as α decreases, large triangles are discarded. Notice in the
figure that the resulting shape is not necessarily a connected sur-
face. The hope is that the surface is sufficiently well-sampled so
that a user can find an α which preserves the shape of the original
surface.

There has been further work to extend this technique for use in
surface reconstruction. Edelsbrunner et al. [1998] describe a soft-
ware package called Wrap which requires some user input to carve
the surface from the 3D Delaunay complex. Cazals et al. [2005]
discusses a new approach called conformal alpha shapes where in-

Figure 6: Reconstructing two tori. On the top right, α = ∞ and
the resulting shape is exactly the convex hull. Subsequent images
show the effect of decreasing α (decreasing left to right). From
[Edelsbrunner and Mücke 1994].

Figure 7: The two-dimensional crust algorithm. Left: the black
points are the sample points, and the red points and lines show the
Voronoi diagram. Middle: the Delaunay triangulation of the sam-
ple points. Right: the Delaunay triangulation of the sample points
+ Voronoi vertices. The sample points are connected to form the
reconstructed surface. From [Amenta et al. 1998b].

stead of a global α parameter, the α is chosen on a local scale.

3.2 Crust Algorithm

Amenta et al. [1998b] show that given a sufficient sampling of the
surface, the correct topology of a surface is guaranteed to be re-
covered based on its point samples. The method is called the crust
algorithm and it is based on the Delaunay complex of the sample
points. The main idea is illustrated in Figure 7, which shows on the
left the Voronoi diagram (red) and Delaunay triangulation (blue)
for a 2D data set. The observation used here is that a subset of the
Voronoi diagram approximates the medial axis, which is the set of
points that are equidistant to more than one point on the surface
(Figure 5). The Voronoi vertices and lines in the figure are equidis-
tant from at least two points in the dataset, and so it forms an ap-
proximation of the medial axis for the shape outlined by the sample
points. When the Voronoi vertices are added into the dataset (right
side of Figure 7, the resulting Delaunay complex does not have any
edges crossing the medial axis. Therefore, the edges adjacent to
the Voronoi vertices are removed, and we obtain the reconstructed
surface, called the crust.

To obtain a guarantee that this procedure gives the correct topol-
ogy, Amenta et al. devise a sampling condition on the data set. Let
p be a point on the sampled surface S, and define the local feature
size (lfs) to be the distance between p and the closest point on the
medial axis. The ε-sampling condition states that the distance from

any point p∈ S and the closest sample point xc is less than ε · lfs(p).
This is saying that for every point on the surface, a sample point can
be found which is a factor of ε closer than the medial axis. Going
back to the algorithm, adding the Voronoi vertices to the sample
points, is akin to adding an approximate medial axis to the data set.
Intuitively, these Voronoi vertices prevent Delaunay simplices from
crossing the medial axis; by the ε-sampling, a triangle violating
this condition would contain another sample point in its circumcir-
cle. The full proof, for ε ≤ 0.06, was obtained by Amenta and Bern
[1998a].

A slight modification to this basic algorithm is needed to recon-
struct 3D surfaces. The caveat with 3D Voronoi diagrams is that
not all Voronoi vertices approximate the medial axis. Figure 8 is
an example where we can see a Voronoi vertex that actually lies
close to the surface because it is equidistant from the four sample
points in the center. However, many of the Voronoi vertices do ap-
proximate the medial axis, and we select those points by picking
two Voronoi vertices (from either side of the surface) that are far-
thest from the cell’s sample point. These vertices, called poles, are
added to the dataset to obtain the three-dimensional crust. Like the
2D case, Amenta and Bern [1998] prove that the crust is topologi-
cally equivalent to the original surface.

To summarize the algorithm:

1. Compute the Voronoi diagram of the sample points X .

2. Find the two poles for each Voronoi vertex; let P be the set of
all poles.

3. Compute the Deluanay complex of X ∪P.

4. Keep only the simplices for which all vertices are sample
points in X .

This algorithm works well in practice for ε-sampled surfaces. Fig-
ure 8 shows an example reconstruction. The running time of this
algorithm depends on the total number of Voronoi vertices and sam-
ple points. Since we add two poles for each sample point, the num-
ber of points at the start of the second pass is at most 3n. Thus, the
complexity of this algorithm corresponds to the worst case time re-
quired for computing a three-dimensional Delaunay triangulation,
which is O(n2).

This method produces a mesh topologically equivalent to the
original surface, but it does not necessarily produce a manifold, and
sometimes contains very flat tetrahedra. Also, note that it is some-
times difficult and impractical for the datasets to meet the sampling
condition. For example, if there is a sharp corner in the surface,
then the medial axis touches the corner, and this requires the ε-
sample to be infinitely dense at the corner. In addition, the output
surface does not always produce a watertight surface, and there may
be undesirable holes in the output mesh.

3.3 Improvements and Extensions

There have been a number of improvements to address these defi-
ciencies discussed above. Amenta et al. [2000] give an alternative
algorithm which finds a surface with a single pass, while still guar-
anteeing that the reconstructed surface preserves the original topol-
ogy. This algorithm, called the cocone algorithm, selects a subset of
Voronoi edges whose dual simplices form the reconstructed surface.
The intuition is to select those Voronoi edges that are approximately
normal to the surface. Figure 10 illustrates this algorithm with a 2D
dataset. To select the Voronoi edges, they first approximate the nor-
mal at each sample point p by connecting with the furthest Voronoi
vertex within p’s Voronoi cell. The cocone, also shown in Figure
9, is the complement of the double cone with apex p making an an-
gle of π/2−θ with the estimated normal (for small θ). Using this
information, the Voronoi edges that are incident with cocones on

Figure 8: Left: the problem with three dimensions. The Voronoi
cell of the blue point is shown; one of the Voronoi vertices lies close
to the surface. Right: example of a reconstructed surface. The white
dots are the poles used to compute the crust. From [Amenta et al.
1998b].

Figure 9: Illustration of the 2D and 3D cocone. The Voronoi cell
of sample point p is shown with its two poles p+ and p−. The
estimated normal direction is shown as an arrow from p to the far-
thest Voronoi vertex. The cocone is the shaded region, marking the
directions nearly perpendicular to the normal up to a small angle θ .

all sides are selected, and their dual edges form the reconstructed
surface. This method is simpler than the crust algorithm, because it
only requires computing the Voronoi diagram and Delaunay com-
plex once for the original set of sample points. In addition, given
a sufficient sampling, this algorithm guarantees that the output sur-
face is a manifold and is homeomorphic to the original surface,
which did not hold in the crust algorithm.

Dey and Giesen [2001] further improve the cocone algorithm to
make it robust to undersampled point sets. This method detects un-
dersampled regions by checking that each Voronoi cell is elongated

Figure 10: The cocone algorithm in 2D. Left: the Voronoi diagram
of the sample points. Middle and Right: the cocone algorithm se-
lects the Voronoi edges that are nearly normal to the surface. Their
dual edges are marked as blue, and they form the reconstructed sur-
face shown on the right. Adapted from [Amenta et al. 1998b].

Figure 11: Removing undersampled triangles. Triangles incident
to boundary sample points are shaded darker. Left: the inner struc-
ture of the ear is occluded by triangles spanning an undersampled
region. Right: the improved result. From [Dey and Giesen 2001].

in the normal direction and consistent with its cocone neighbors.
Points that fail this criterion are marked as boundary points, and tri-
angles whose vertices consist only of boundary points are removed
in the reconstructed surface. In Figure 11, garbage triangles that
occlude the inner structure of the ear are removed after boundary
detection.

Amenta et al. [2001] improve upon the original crust algorithm
to produce a topologically correct, watertight surface even in the
presence of moderate noise. This method uses the pole vertices to
approximate the medial axis as in the crust method. However, in-
stead of adding the Voronoi vertices to the point set to compute
the crust, this method computes the power diagram on the pole
vertices. Figure 12 illustrates the power crust algorithm for a 2D
dataset; from the Voronoi diagram a set of polar balls–spheres cen-
tered at each Voronoi vertex and touch the equidistant points–are
extracted at each pole vertex. The power diagram is just a Voronoi
diagram with a different distance metric: instead of the normal Eu-
clidean metric, a weight value at each point is subtracted from the
usual Euclidean distance. Here, the radii of the polar balls (which
are equivalent to the circumsphere of each Delaunay simplex) de-
fine weights on the poles. They show that the vertices of this power
diagram are the sample points themselves, so the power diagram
produces a simplicial complex, which is similar but different from
the Delaunay complex. Finally, each power diagram cell is marked
as either interior or exterior to the surface by propagating the inte-
rior / exterior label at each pole based on how much their polar balls
intersect. This heuristic works well because a dense set of samples
well-separates polar balls on each side of the sample, causing a
shallow intersection. The boundary of the interior region is the re-
constructed surface, called the power crust. In Figure 12, (d) shows
the power diagram with each cell labeled as interior or exterior, and
(e) shows the reconstructed surface by selecting the boundary of the
interior cells. Because they explicitly label a region as interior to
a surface, this algorithm produces watertight models. In addition,
the power diagram allows sharp corners to be recovered even with
sparse samples by discarding Voronoi cells that are not elongated
outwards in the normal direction of the surface.

4 Implicit Surface Constructions

In this section, we discuss a different type of surface representation
called implicit surfaces. For rendering applications, implicits are
usually converted to triangle meshes, but they are useful for mod-
eling and simulation. The main advantage is the ability to easily

Figure 12: Power crust algorithm. (a) shows the medial axis, (b) the Voronoi diagram and a polar ball, (c) the set of polar balls, (d) the
resulting power diagram with cells labeled as interior/exterior to the shape, and (e) the reconstructed power crust. From [Amenta et al. 2001].

test if a point is inside or outside the surface. Constructive solid ge-
ometry (CSG) modeling operations are particularly easy to imple-
ment, where we compute the addition, intersection, and subtraction
of multiple implicit surfaces. In addition, collision detection can
be implemented efficiently using implicit surfaces [Pentland 1990].
For surface reconstruction, implicits provide a compact representa-
tion of a surface that can allow either smooth interpolation or ap-
proximation to the data points.

An implicit surface is defined as the isocontour of a scalar func-
tion. Given a function f : R3 → R, the isosurface at scalar c is the
set of all x ∈ R3 such that

f (x) = c.

Note that the signed distance function discussed in section 2 is a
special case of the class of implicit functions, where the surface is
defined at c = 0.

Given a set of scattered data points, we would like to directly
fit an implicit surface which interpolates or approximates the data
points. Mathematically, we can express this as an optimization
problem as follows: given a scattered data set P = {xi ∈ R3}, find
an implicit function f (x) such that for all xi,

f (xi) = c. (1)

Alternatively, we can cast this as an approximation problem by min-
imizing the quantity

efit(f) = ∑
xi∈P

(f (xi)− c)2. (2)

There is a trivial solution to this problem, when f (x) is the constant
function with value c, i.e.

f (x) = c for all x ∈ R3.

In order to avoid this solution, we need additional constraints which
say that f (x) 6= c for points x inside or outside the surface. This
can be specified explicitly using off-surface points and assigning
them values fi which are less than or greater than c, or implicitly by
specifying a normal vector ni for each data point xi. We can easily
obtain normals for the implicit surface by computing normalized
gradient evaluated at the surface point x:

n(x) =
∇ f (x)
‖∇ f (x)‖

.

This is indeed the surface normal because the gradient denotes the
direction of greatest change, and therefore it must be perpendicular
to the isosurface which has no change in value. In addition to the
normal and positional constraints, there usually is a regularization
term that helps to control the smoothness of fit.

The main challenge in this method is choosing the type of func-
tion to represent the surface, and then solving the resulting opti-
mization problem in (1) and (2). In the following sections, we dis-
cuss global and local fitting techniques, and discuss the robustness

of each method with respect to noise and sharp features. Unlike
the Voronoi-based techniques in the previous section, most of these
methods have no provable guarantee to preserve the topology of
the original surface. However, implicits are better able to deal with
noise and can produce a wide variety of smooth surfaces that fit the
points. The main limitation of these techniques is that they usually
require sampling surface normals in addition to sampling surface
locations. It is possible to measure surface normals when sampling
real-world objects, but often the normals contain noise and are un-
reliable.

4.1 Radial Basis Function Techniques

4.1.1 Fitting the Blobby Model

Muraki considers applying the “Blobby Model” [Blinn 1982] to fit
a scattered dataset [Muraki 1991]. This model f (x) consists of a
weighted sum of M “primitive” functions fi(x),

f (x) =
M

∑
j=1

b je−a j f j(x)

where each f j(x) is a spherically symmetric function centered at
p j ∈ R3,

f j(x) = ‖x− p j‖2

and parameters a j,b j determine the size and weight of function f j,
respectively. The goal is to automatically determine the number of
primitives M and the parameters a j,b j, and p j that best fit the data
points. The resulting minimization problem has the form

argmin
f

1
N

N

∑
i=1

(f (xi)− c)2︸ ︷︷ ︸
Constraint 1

+α

∥∥∥∥ ∇ f (xi)
‖∇ f (xi)‖

−n j

∥∥∥∥2

︸ ︷︷ ︸
Constraint 2


+β

(
M

∑
j=1

a−3/2
j |b j|

)2

︸ ︷︷ ︸
Constraint 3

(3)

where ni is the measured surface normal at each xi (given as input),
and α and β are weighting parameters specified by the user to con-
trol the strength of the constraints 2 and 3. The constraints in this
equation have the following roles:

• Constraint 1. Fits the given point locations.

• Constraint 2. Matches the surface normals to the given nor-
mals.

• Constraint 3. Limits the influence of each primitive to prevent
forming shapes far away from the data points.

Figure 13: Approximating a head model with increasing number
of primitives. From [Muraki 1991].

This is a non-linear optimization problem involving 5M unknowns
total (5 unknowns (a j,b j, p jx , p jy , p jz) for each primitive f j(x)).
Since it is difficult to solve for all unknowns simultaneously, the
objective function is repeatedly optimized with two copies of a sin-
gle primitive, choosing a different primitive at each step. This pro-
cess continues until the approximation error falls below a chosen
threshold (see Figure 13). To solve (3) they use the downhill sim-
plex method [Press et al. 1988] to obtain an initial value for the
quasi-Newton method [Press et al. 1988]. Although this method
produces reasonable results, the optimization is expensive to eval-
uate because there are too many degrees of freedom. Also, there is
no bound on the number of primitives needed to accurately approx-
imate a surface.

4.1.2 Fitting Radial Basis Functions

The blobby model discussed in the previous section belongs to a
family of functions called “radial basis functions (RBF)”. Radial
basis functions have the general form

f (·) = p(x)+
N

∑
j=1

λ jφ(‖ ·−x j‖), (4)

where p(x) = ∑
t
l=1 cl pl(x), is a polynomial of degree m and φ(‖ ·

−x j‖) is called a basic function centered at x j ∈ R3. Here, the
polynomial is expressed as a linear combination of polynomial ba-
sis functions {p1, . . . , pt} with coefficients c1, . . . ,ct ∈ R. Example
basic functions are shown in Table 1 [Reuter 2003]. If we have a
basic function for each data point xi (total N) and a specific φ(x),
the data interpolation problem (1) reduces to a linear system, where
we solve for the unknown weights λ j and polynomial p(x):(

A P
PT 0

)(
λ

c

)
=
(

f
0

)
, (5)

where

Ai, j = φ(‖xi− x j‖) (φ centered at x j evaluated at xi)
Pi,l = pl(xi) (evaluation of polynomial pl at xi)
λ = (λ1, . . . ,λN)T (RBF coefficients)
c = (c1, . . . ,ct)T (polynomial coefficients)
f = (f1, . . . , fN)T (function values at xi)

In this system, the size of A is N ×N, and the size of P is N × t,
so the size of the entire system scales quadratically (O(N2)) with
the number of points N. PT λ = 0 is called the “orthogonality” or

Name Formula

Gaussian φ(‖x‖) = e−c‖x‖2

Multiquadric φ(‖x‖) =
√
‖x‖2 + c2

Inverse Multiquadric φ(‖x‖) = 1/
√
‖x‖2 + c2

R3 Biharmonic Spline φ(‖x‖) = ‖x‖
R3 Triharmonic Spline φ(‖x‖) = ‖x‖3

Multivariate Spline φ(‖x‖) =

{
‖x‖2k−d d odd
‖x‖2k−d ln‖x‖ d even

Table 1: Commonly used basis functions φ(‖x‖) : Rd → R in (4).

Figure 14: A hand dataset with on-surface (green) and off-
surface(outside red, inside blue) points and resulting reconstruc-
tion. From [Carr et al. 2001].

”side condition” which ensures that f (x) is well-behaved. To avoid
a degenerate solution, the linear system requires off-surface con-
straints that specify implicit function values away from the surface.
Usually off-surface points are generated by displacing the surface
points along the normal direction and offsetting the function value
by the displacement distance.

Carr et al. [2001] give a practical technique to fit these radial ba-
sis functions to a scattered data set. This technique requires the use
of off-surface points, as shown in Figure 14, where the off-surface
points are generated by displacing the points along the positive and
negative normal directions. This is a clear limitation of this method,
along with the inability to fit sharp features in the dataset.

The main contribution of this paper is to use the Fast Multi-
pole Method (FMM) to efficiently evaluate the radial basis func-
tion [Greengard and Rokhlin 1987]. This is an important contribu-
tion because the linear system of (5) is dense and difficult to solve
quickly with millions of input points. The FMM technique evalu-
ates RBFs rapidly up to any accuracy by first hierarchically cluster-
ing the RBF centers and then using approximate evaluation (“far-
field”) or direct evaluation (“near-field”) based on the distance to
the evaluation point. The basic mathematical tool behind this clus-
tering technique is a series expansion of the basic function φ(xi,x j)
into the form ∑k ϕk(xi)ψk(x j). This allows us to rewrite the latter
part of (4) in the form

∑
j

λ jφ(xi,x j) = ∑
k

ϕk(xi)

(
∑

j
λ jψk(x j)

)
.

The latter part of the RHS is indpendent of i, so it can be precom-
puted and reused in subsequent evaluations. This series expansion
has bounded error within a specific radius from the center of ex-
pansion, which is why the RBF centers x j are clustered into regions
approximated with a single expansion. Further details on the fast
multipole method and the fitting methods can be found in [Beatson
and Greengard 1997] and [Beatson et al. 1999; Beatson et al. 2000].
Using these techniques reduces the evaluation time of a single sam-
ple point from O(N) to O(1) after O(N logN) preprocessing time,
and linear solving time complexity from O(N3) to O(N logN).

Figure 15: Two-dimensional reconstruction. On the left, the data
points are black dots, and the basis function centers are crosses
color-coded based on their width. On the right is the resulting im-
plicit function and the surface rendered as a magenta line. From
[Walder et al. 2005].

4.1.3 Fitting RBFs Without Normals

Walder et al. [2005] demonstrate that it is actually possible to fit
RBFs without using normal vectors or off-surface points. They for-
mulate an optimization problem that enforces some desirable prop-
erties for the resulting fit f (x): the surface should fit the data, avoid
a degenerate solution f (x) = 0, have a consistent sign inside/outside
the surface, and be smooth everywhere. The resulting problem is

argmin
f

N

∑
i=1

f (xi)2

︸ ︷︷ ︸
Data Term

−λe

∫
u∈Rd

f (u)2 dµ(u)︸ ︷︷ ︸
Energy Term

−λ∇

N

∑
i=1

‖(∇ f)(xi)‖2

︸ ︷︷ ︸
Gradient Term

+ λΩ‖ f‖2︸ ︷︷ ︸
Regularization Term

(6)

where λe,λ∇,λΩ are weights that control the strength of each term.
The role of each item is:

• Data Term: constrains values at data points | f (xi)| to be small
(since we are fitting a zero isosurface f (x) = 0)

• Energy Term: constrains other values | f (x)| to be large

• Gradient Term: constrains the gradients ‖(∇ f)(xi)‖ to be
large

• Regularization Term: constrains the smoothness of f using
thin plate energy [Duchon 1976]

Each term in this problem is quadratic which allows them to for-
mulate it as an eigenvalue problem. Moreover, using compactly
supported B-splines, the matrices are sparse and the problem can
be solved efficiently. To set up the linear system, a grid of basis
functions covers the entire domain. The resolution of the grid is
dependent on the proximity to the data points. Figure 15 shows the
system solved for a two-dimensional dataset. Although this method
relieves the use of normals for fitting RBFs, a parameter search is
required to find reasonable values for λ -weights of each term to en-
sure that the solution is both stable and accurate. In addition, sharp
features tend to smoothed out in the reconstruction, and the algo-
rithm provides no control over the accuracy for sharp features (see
Figure 16).

4.2 Multi-level Partition of Unity Implicits

The multi-level partition of unity approach (MPU) by Ohtake et
al. solves the fitting problem by blending local shape functions

Figure 16: Closeup of the two-dimensional reconstruction. The
reconstructed implicit smooths out sharp features. From [Walder
et al. 2005].

Figure 17: Adaptive subdivision of the domain. Left: the original
dataset with normals. Middle: subdividing the domain. The cir-
cles denote the support of each cell. Right: the resulting implicit
function. From [Ohtake et al. 2003].

[Ohtake et al. 2003]. Unlike the previous RBF approaches that
fit the entire dataset at once, this technique fits small subsets of
the data separately and blends these fits together using partitions of
unity. This blending preserves the fitted shape in each cell, so sharp
features can be detected and fit independently without sacrificing
smoothness in other regions of the surface.

On a high level, this algorithm maintains an adaptive octree
which subdivides the domain into cells based on fitting error. Start-
ing by considering the entire domain as a single cell, the algorithm

1. Fits a local shape implicit Qi(x) in each cell,

2. Computes the approximation error (ε) of the fitted implicit
surface,

3. If ε is greater than a user-specified threshold, discards the fit
and subdivides the cell into multiple regions,

4. Repeats the above procedure until the error meets the thresh-
old criterion.

A partition of unity, used to blend the local implicits, is a set of non-
negative compactly supported functions {ϕi} in a bounded domain
Ω such that

M

∑
i=1

ϕi ≡ 1 on Ω.

These functions can be generated using any non-negative com-
pactly supported functions wi(x) by normalization:

ϕi(x) =
wi(x)

∑
M
j=1 w j(x)

.

This method uses quadratic B-splines to generate partitions of unity.
These functions are assigned to each cell in the domain such that its

General Bivariate Corner
Quadric Quadratic Detection

Figure 18: Fitting local shape functions. The dotted circle cen-
tered at c with radius R denotes the support of the blending function.
Q(x) = 0 is the locally fitted implicit, using the off surface con-
straints qi each with estimated distance di. Left: fitting a general
quadric. Middle: fitting a bivariate quadratic on a smooth patch.
Right: Clustering normals to detect corners. From [Ohtake et al.
2003].

support covers the entire cell. In regions where the supports over-
lap, the local implicits Qi(x) are blended by computing a weighted
sum

f (x) =
M

∑
i=1

ϕi(x)Qi(x).

Three types of local shape functions are used in this technique: gen-
eral quadrics, bivariate quadratics, and piecewise quadric surfaces.
Figure 18 shows examples of the three cases. General quadrics are
used to approximate a large number of points or multiple sheets,
bivariate quadratics are used to approximate local smooth patches,
and piecewise quadrics are used to model sharp features which are
detected by clustering the normal vectors in the cell. To avoid fit-
ting degenerate functions, off-surface constraints are generated at
the center and corners of each cell. The value of the constraint is
determined by averaging the projected distance to the six nearest
sample points along each sample normal.

This method differs significantly from all of the methods de-
scribed so far in that it is a local method as opposed to a global
method. Instead of fitting a surface to the entire dataset at once, this
method divides the dataset into manageable regions and locally fits
surfaces which are stitched together using partitions of unity. This
allows the fitted surface to have sharp features in the dataset, unlike
the RBF-based methods discussed in the previous two sections. In
addition, MPU runs considerably faster than RBF techniques such
as [Carr et al. 2001]. Unfortunately, MPU requires surface samples
equipped with surface normals, and the local shape functions are fit-
ted based on heuristics with no theoretical guarantees. It is unclear
that these heuristics would be robust in the presence of measure-
ment error in the sample positions and normals.

4.3 Moving-Least Squares Implicits

Closely related to the partition of unity method above, Shen et al.
[2004] discuss a moving-least squares technique to create implicit
surfaces that fit polygonal data. Their goal is to convert polygon
soup (an unstructured set of polygons) to an implicit surface us-
ing points and normals sampled from the polygons. Like the MPU
method, this method fits local shape functions to the data, but it does
not explicitly subdivide the domain and blend the shapes together.
Note that this method is not a surface reconstruction method by in-
terpolating/approximating scattered points; it constructs an implicit
surface from an unstructured polygon soup. However, this method
is a good application of the moving-least squares idea, which is the
main theme for the next section.

Recall that our overall goal is to find a function f (x) which ap-
proximates the values at the data points. Given a set of scattered
data values { fi} each at locations {xi}, we want f (xi)≈ fi for all i.

The approximation technique used by Shen et al. is called moving
least squares, also known as local regression in the statistics litera-
ture [Cleveland and Loader 1996]. In this method, for each point x
we find a function g̃ such that

g̃ = argmin
g∈B

n

∑
i=1

(g(xi)− fi)
2

θ(‖x− xi‖),

and assign the value f (x) = g̃(x). Here, B denotes a family of basis
functions (constant, linear, polynomial, etc.) and θ a local weight-
ing function. The role of θ here is to weight each data point accord-
ing to the distance from x. When the weight function is a Gaussian
θ(x) = e−x2/h2

, data points close by have large weights, but points
far away have smaller weights. In this sense, f (x) is a local ap-
proximation of the data. The important feature of this technique is
that the local fit varies based on where we evaluate the function.
Figure 19 shows an example of moving least square approximation
to a 1D data set. The top example shows a global least-squares fit
of a linear function. Note the striking difference in the second fig-
ure which uses moving least squares. Note that the approximating
behavior of the function can be controlled by changing the local
weighting function.

We now describe the approach used by Shen et al. Let b(x) be
the vector of basis functions we use for a local fit; for example
b(x) = [1] if we fit a constant function, or b(x) = [1,x,y,z] if we
fit a plane. Now, given the dataset {xi} with function values { fi}
as before, to evaluate the implicit function f (x) we first solve the
weighted least squares problem

argmin
c

eMLS(x,c) = argmin
c

N

∑
i=1

θ(‖x− xi‖)(bT (xi)c− fi)2

where θ(x,xi) is the weight function and c is the vector of basis
coefficients. Solving the resulting linear system for c produces a
local fit, and we assign the function value f (x) = bT (x)c. Here, the
authors use the weight function θ(‖x− xi‖) = 1/(‖x− xi‖2 − ε2),
because this function can produce varying degrees of interpolating
and approximating behavior. When ε = 0 then θ → ∞ as x → xi,
causing the fit to interpolate the data points, whereas a nonzero ε

will cause the fit to approximate the data points, as we have seen in
Figure 19.

Because the goal of this technique is to fit a set of polygons ac-
curately, more samples lead to a better approximation. Figure 20
demonstrates that a finite sampling results in dents and dimples in
the resulting surface. To simulate an infinite distribution of point
samples, they analytically integrate the objective function over each
polygon Ωk:

eMLS(x,c) = ∑
k

∫
p∈Ωk

θ(‖x− p‖)(bT (p)c− fk)2d p.

Here, the function values fk are equal to zero at each point p ∈ Ωk,
but they can be iteratively modified to fit approximating surfaces
that completely enclose the surface. The integral constraints here
are numerically evaluated using a modified quadrature rule that
avoids the singularity of the weighting function near zero.

In addition to the point constrains, Shen et al. use the normal in-
formation to avoid a degenerate solution. Unlike the RBF methods
which used off-surface constraints, they formulate a continuous off-
surface constraint by interpolating linear functions at each surface
point along the normal. So for each triangle k and a fixed point qk
and normal nk on this triangle, the points fk are replaced by func-
tions Fk(x):

Fk(x) = fk +(x−qk)T nk.

Here, each triangle is able to “predict” the implicit function value
based on the projected distance to the triangle along the normal.

Figure 19: On top: Comparison of least squares, moving least
squares interpolation, and moving least squares approximation. On
bottom: height field generated using a 2D dataset. On the left is
interpolation behavior, on the right approximation behavior. The
extracted isocontours are shown in the middle. From [Shen et al.
2004].

Figure 20: Dimples resulting from a finite data set. Left: inte-
grated polygon constraints. Middle and Right: coarse and fine den-
sities of finite point constraints. From [Shen et al. 2004].

Adding this constraint gives the least squares minimization problem

eMLS(x,c) = ∑
k

∫
p∈Ωk

θ(‖x− p‖)(bT (p)c−Fk(x))2d p.

This method produces nice implicit surfaces that exactly fit the

Figure 21: Result of fitting a polygon mesh. Left: the original
polygon mesh. Middle left: close-up of an interpolating implicit
surface. Note the reproduction of sharp edges from the original
polygon mesh. The dented appearance near edges is a polygoniza-
tion artifact. Middle right: close-up of a slightly approximating
surface. Right: the entire interpolating surface. From [Shen et al.
2004].

Figure 22: Approximating various surfaces with varying ε . On the
far left is the original polygonal model, followed by an interpolating
implicit, and increasing ε to the right. From [Shen et al. 2004].

given polygonal models, including boundaries and sharp features.
Converting such models into implicit form is useful because an un-
structured set of polygons can be converted into a mesh by con-
touring the implicit representation. In addition, the implicits can be
used for CSG operations, physical simulation, or efficient collision
detection. Moreover, as Figure 22 demonstrates, with increasing
ε the method can generate coarse approximating implicit surfaces
that completely enclose the surface.

As mentioned before, the fk values are modified to guarantee the
enclosure. Initially if the approximating surface does not tightly
enclose the original mesh, the function values are incremented or
decremented depending on whether the implicit lies inside or out-
side the mesh. This procedure is iterated until the entire mesh is
enclosed within the implicit. These enclosures, and their corre-
sponding polygonizations, can be used as “simulation envelopes”
for creating efficient and practical physical simulations.

This method produces very high-quality implicit surfaces that
precisely fit a polygon mesh, reproducing sharp features, holes, and
boundaries. However, it has the unfair advantage that the input is a
polygon mesh, not point samples. Certainly this method is applica-
ble to a finite point set, but the quality of the surface degrades as we
have seen in Figure 20. Another drawback is that the entire point
set must be stored to evaluate the implicit surface, because this tech-
nique does not use parameterized functions such as RBFs or local
shape functions. Recent work has shown that it is possible to prove
reconstruction guarantees for the moving least squares implicit sur-
face. Kolluri analyzes a similar implicit surface that computes the
moving signed distance function of the sampled surface and shows
that for a sufficiently dense sampling, the zero-set U is homeomor-
phic to the original surface F [Kolluri 2005]. Dey and Sun show a
similar result with a normal estimation procedure in the absence of
normals [Dey and Sun 2005].

Figure 23: Projecting a point using MLS. From [Amenta and Kil
2004b].

5 Moving Least-Squares Surfaces

The moving least-squares surface (MLS for short) was first devel-
oped by Levin [2003] as a way to apply the moving least squares
function approximation to surface reconstruction. In the previous
section, we discussed a moving least squares technique to approx-
imate an implicit function that fits the sample points. However,
this required specifying function values and normal vectors at each
sample point. Without this information, we cannot apply this func-
tion approximation technique directly to our surface reconstruction
problem.

Instead, we could attempt to use the coordinates of the points as
function values above a two dimensional plane, but in general we
cannot hope to find such a global reference domain. The key idea
that was introduced by Levin is to use locally fitted planes as local
reference domains in which the coordinates resemble a function. In
the following sections, we present in more detail the definition of
the MLS surface and examine work that improves the surface defi-
nition by addressing non-smooth surfaces, surfaces with boundary,
and numerical issues such as convergence and stability.

5.1 MLS Surface Definition

The MLS surface is a generalization of MLS function approxima-
tion discussed in the beginning of Section 4.3. The basic idea is to
first find a local reference plane and then fit a polynomial function
to the data points [Levin 2003]. Both the local reference plane and
the polynomial fit depend on where we evaluate the MLS surface,
and like the functional setting there is no notion of “stitching to-
gether” fitted functions. This type of approach is non-parametric,
because the model is inferred directly from the data without the
need for estimating parameters.

To determine the MLS surface, given a query point we fit a sur-
face patch in a local neighborhood and move the query point to the
patch. This is similar to the functional setting, where we assign
the value of the locally fitted polynomial. Thus we “project” query
points to the surface.

Let us state this idea mathematically. We are given a point set
P = {pi ∈ R3}, and we would like to project a query point r ∈ R3

to the surface. There are two steps in the projection procedure:

• Step 1. First, we compute a local reference plane in the neigh-
borhood of r (Figure 23). More precisely, we find a plane
H with normal vector a ∈ R3 passing through some point
q = r + ta (for some t ∈ R) such that ‖a‖ = 1 and H mini-
mizes the least-squares error:

eMLS(a, t) = ∑
pi∈P

〈a, pi−q〉2 θ(‖pi−q‖)

= ∑
pi∈P

〈a, pi− r− ta〉2 θ(‖pi− r− ta‖), (7)

Figure 24: Noisy data, a line segment, and its MLS projection. 30
points on the line were projected to the MLS surface; one of these
projections is shown as a short line segment connecting the line and
the curve. From [Levin 2003].

where 〈·, ·〉 is a dot product of two vectors and ‖·‖ is the norm
of a vector. Here, θ(‖pi −q‖) is the weighting function, and
〈a, pi − q〉2 is the squared distance from each point pi to the
plane H. Note that eMLS is non-linear (due to θ(x) = e−x2/h2

),
but this optimization problem can be solved using an iterative
method.

• Step 2. Consider the orthogonal projections of the points
{pi} as the points {xi} on the plane H with projected distance
fi = 〈a, pi − q〉. Here, the fi’s can be considered as function
values at locations xi on the plane H oriented with normal
a and origin q. Thus, we can apply MLS function approxi-
mation, and this is the second step of the projection: find a
polynomial g̃ ∈Π2

m (bivariate polynomial of degree m) which
locally minimizes the least-squares error around q:

g̃ = argmin
g∈Π2

m

∑
i

(g(xi)− fi)2
θ(‖xi−q‖). (8)

Since g̃(0) is the local approximation of the surface at q, we
can project r along the normal with distance g̃(0): q+ g̃(0)a =
r + (t + g̃(0))a. This is the projection of r onto the surface
using a degree m polynomial fit.

Figure 24 is an example of this technique applied to a two-
dimensional dataset. This method also applies for reconstructing
(d−1)-dimensional manifold given a d-dimensional data set.

Some theoretical and practical questions remain with this work.
First, there is no guarantee that the result is a surface. To ensure
that the MLS surface does not have multiple overlapping sheets,
we need to assume a “uniqueness domain” U ⊆ Rd such that for
any r ∈ U , step 1 has a unique solution q. The existence of this
domain and its characterization has not resolved and remains an
open problem [Levin 2003]. Second, Levin conjectures that if the
weighting function is infinitely smooth, the resulting MLS surface
is also C∞ smooth. In the functional case this is certainly true [Levin
1998] [Lancaster and Salkauskas 1981]. This may be a desirable
property; however, if the surface has non-smooth features such as
sharp corners and boundaries, a C∞ smooth surface is undesirable.
It is possible to extend MLS surfaces to accommodate sharp surface
features, which we will discuss in the following sections.

Alternative Definition. Amenta and Kil [2004b] give an (equiv-
alent) explicit definition of the MLS surface that directly determines
whether a point belongs to the MLS surface. The key observation is

Figure 25: Sampling and splatting a bunny using MLS. From
[Alexa et al. 2001].

to characterize the MLS energy function independent of the query
point r:

eMLS(x,a) = ∑
pi∈P

θ(‖pi− x‖)〈a, pi− x〉2. (9)

Comparing (7) with this equation, we have substituted the quantity
q for x and have removed the dependence on r. This gives an ap-
proximation error for each choice of plane passing through x with
normal a. If we omit the polynomial fitting step from Levin’s proce-
dure (which is equivalent to fitting a constant polynomial in step 2),
the point x belongs to the MLS surface if there exists some query
point r which projects to x via Step 1 of Levin’s MLS projection
procedure. Amenta and Kil prove that this condition is satisfied if
there exists unique normal nx minimizing eMLS at the point x, and
if x is a local minimum of eMLS(x,nx) restricted to the line with
direction nx. These types of surfaces are known as extremal sur-
faces [Guy and Medioni 1995; Medioni et al. 2000]. Associated
with an extremal surface is a corresponding implicit surface, which
is obtained by evaluating the local minimum criteria at every point:

f (x) = nx ·∇y eMLS(y,nx)|x = 0

i.e. the directional derivative along nx of eMLS evaluated at x is
zero. The assumption here is that x belongs to a domain where nx
is uniquely defined and consistently oriented. With this definition,
Amenta and Kil introduce a modified projection procedure to search
for local minima of eMLS. Given a query point r0 ∈R3, we compute
the estimated normal nr0 and search along the line in the direction
nr0 for a local minimum of eMLS. The resulting local minimum
becomes the new query point r1, and the process is repeated until
it converges (i.e. ‖ri+1 − ri‖ < ε for some small ε ∈ R). The key
difference between this procedure and Levin’s procedure is that

1. The projection is iterated until it converges to a point on the
MLS surface.

2. In Step 1 of Levin’s procedure, we needed to solve a nonlin-
ear optimization problem to obtain a estimated hyperplane; in
Amenta and Kil’s approach the normal estimate is obtained
by calculating a best-fit hyperplane through the query point r.
Since the weights θ are constant in the optimization with each
choice of r, this results in a linear eigenvalue problem.

5.2 Improvements and Extensions

Based upon this work, Alexa et al. [2001] explore the potential to
represent surfaces entirely using points. The idea here is to use only
the point set as the surface representation, without using a triangle
mesh or an implicit function. Although this was not possible be-
fore, the MLS method allows us to structure an point set with an

Figure 26: Trouble with a sharp corner. The blue line denotes
local minima of the energy function; the green line local maxima.
From [Amenta and Kil 2004b].

implicitly defined non-parametric surface representation. This un-
derlying representation enables a resampling of the surface. First,
downsampling is achieved by iteratively removing point samples
with smallest contribution to the MLS surface up to an error thresh-
old. Second, upsampling is achieved by placing additional points
where there is a large spacing between points. This is accomplished
by locally computing a Voronoi diagram, finding the Voronoi ver-
tex with the largest distance to points, and projecting that vertex to
the MLS surface. The process yields a point set with bounded dis-
tance between samples. We can also use a point set to visualize the
surface by splatting the points (see Figure 25) [Rusinkiewicz and
Levoy 2000].

An important assumption in Amenta and Kil’s work is the exis-
tence of a uniqueness domain U ⊆ R3 where nx is uniquely deter-
mined and allows a consistent orientation [Amenta and Kil 2004b].
Recall that a similar assumption was in Levin’s work [Levin 2003].
This domain seems to be affected by several factors, including:

1. The weighting function θ . The choice of h in the function
θ(x) = e−x2/h2

determines the width of the neighborhood
around the sample points where a good nx can be estimated
[Alexa et al. 2003]. It also determines the smoothness of the
resulting surface; too large a value of h will tend to smooth
fine-scale features.

2. The sampling density and noise level of the points. A poor
sampling can yield holes in the domain, and a noisy point set
will increase the approximation error of the normal. However,
a larger h in our weighting function can be used to accommo-
date these problems, in exchange for smoothing out the sur-
face [Lee 2000; Alexa et al. 2003].

3. Derivative discontinuities of the underlying surface (see Fig-
ure 26). A sharp corner has an ambiguous surface normal
which is difficult to estimate [Amenta and Kil 2004b; Amenta
and Kil 2004a].

A variety of techniques have been used to address these problems.
Lee considered the problem of reconstructing a curve from a noisy
point cloud [Lee 2000]. Noise makes it difficult to apply MLS to
obtain a good estimate for the normal direction and also remove un-
wanted neighboring points. Lee solves this problem by construct-
ing a Euclidean minimum spanning tree (EMST) for the point set,
which provides a rough estimate of the connectivity information
in the point set. The nearby points are gathered by traversing the
EMST, which helps to find connected structures and discard points
that are close by but actually part of a different structure. To deal
with noise, Lee computes the local correlation of the dataset, and

Figure 27: Curve reconstruction using MLS (a) and Lee’s ap-
proach (b). The pluses are the input points and the squares are the
projected points. From [Lee 2000].

Figure 28: Problems with estimating the normal at a point. From
[Amenta and Kil 2004a].

the width of the weight function h is increased until the correlation
(measure of linearity of the point set) exceeds a user-defined thresh-
old. This process is iterated until the approximation error is small.
An example of applying this approach is in Figure 27.

In a follow-up paper, Amenta and Kil [2004a] attack this prob-
lem by changing the definition of the MLS error function. The ob-
servation is that the estimated normal can be parallel to the surface
if the query point is sufficiently far away (see Figure 28) [Amenta
and Kil 2004b]. Here, eMLS is a weighted sum of the distances from
the data points to their closest point on the plane, so Amenta and Kil
consider an alternative definition of the error function. Intuitively,
their error function integrates the distance from the plane to the the
dataset along points on the plane. This would avoid a case like
Figure 28 because if the plane is perpendicular to the surface, then
the points of the plane far away from the dataset would be highly
penalized. Mathematically we can describe this idea as:

eI(x,a) =
∫

y∈H(x,a)
δ

2(y)θ(y,x)

where
δ (y) = ∑

pi∈P

‖y− pi‖2
θN(x, pi),

and θN is the normalized version of a weighting function θ . This
variant not only gives reliable normal estimates, but also is able to
deal better with corners (see Figure 29).

Fleishman et al. [2005] extends the MLS surface to accommo-
date sharp features by separating the dataset into multiple smooth
regions. They apply a technique called forward search [Atkinson
and Riani 2000; Hadi 1992] to classify the point set into one or
more smooth subsets. The surface is described as the “intersection”
of these smooth regions, resulting in a piecewise smooth MLS sur-
face that is able to describe sharp corners. The forward search tech-
nique takes an initial smooth subset and incrementally grows it by

Figure 29: Projection with the new MLS error function for a sharp
corner. The blue points are the projected points. From [Amenta and
Kil 2004a].

Figure 30: Projection with multiple smooth regions. A query point
is projected to each of the two surfaces, and the closest projected
point is chosen in (a). If both the projected points lie outside the
intersection of the two regions, then the intersection of the tangent
planes at the projected points are used to compute the location of
intersection in (b). Inside/outside testing is done with the estimated
normals in (c), and the regions where points are projected are shown
in (d). From [Fleishman et al. 2005].

fitting a surface model (a bivariate polynomial of degree two) to the
points, and adding the point with the smallest residual (difference
between estimated and measured point) to the smooth region. If
the smallest residual exceeds some threshold, then the remaining
points are classified as outliers, and we can use the forward search
algorithm to classify them into one or more smooth regions as well.
This procedure is illustrated in Figure 30. Although this work al-
lows for sharp features in the surface, it is not clear how well the
technique deals with noisy point sets.

There has been a flurry of research activity investigating the use
of point sets as an alternative surface representation. The goal is
to use point sets to create and edit surfaces as well as rendering

the surface without converting the point set into a triangle mesh or
implicit surface. Zwicker et al. [2002] and Pauly et al. [2003]
give techniques to directly model and edit point set data. Pauly et
al. [2002] considers the problem of simplifying a point set, and
Fleishman et al. [2003] introduce a hierarchy of point sets with
increasing level of detail. Point sets can also be rendered using ray-
tracing [Adamson and Alexa 2003]. The MLS surface is extended
to include boundaries in the recent papers by Adamson and Alexa
[2003; 2006]. Also, a mesh can be directly generated from the
MLS surface by incrementally growing the mesh over the surface
[Scheidegger et al. 2005] or projecting vertices of a coarse mesh
[Sharf et al. 2006]. In addition, there has been some theoretical
work concerning the error and a better choice of neighborhood size
h [Lipman et al. 2006].

5.3 Future Work on MLS surfaces

Some future avenues of research include better estimation of nor-
mals, comparing surfaces resulting from different extremal sur-
faces, and theoretical work on the error and convergence of the
method. Many methods depend on normals or off-surface points
[Shen et al. 2004] [Carr et al. 2001] [Ohtake et al. 2003], and the
MLS method is unique in that it does not require such information.
However, the MLS method can benefit from normal information
[Amenta and Kil 2004b], and a consistent, reliable way of estimat-
ing normals could improve the quality of the resulting surface. One
idea is to directly fit local non-linear models to the data set, which
may improve over the tangent plane estimation in the original MLS
method. The challenge here is to find an appropriate non-linear
model that fits the surface well without overfitting the data.

An important parameter that influences the quality of the surface
is the choice of neighborhood around the query point. In previous
work, the neighborhood was selected to be the k-nearest neighbors
[Pauly et al. 2002] or the points within a certain radius of the query
point [Alexa et al. 2001]. Just like how Fleishman et al. [2005]
were able to accommodate sharp features by intelligently selecting
point sets, a good technique to select the neighborhood in three-
dimensions (perhaps by traversing a graph [Lee 2000]) could im-
prove the quality of the resulting surface.

6 Discussion

We first summarize the user-specified parameters of the methods in
Table 2. As a general trend, we observe here that there is a fun-
damental trade-off between the accuracy of the reconstruction and
robustness of the method. Almost all of the methods have a param-
eter to control the smoothness of the resulting surface, which trades
off with computation time, with surface fidelity (reducing artifacts
and unwanted features), and with robustness to error and noise.

Kazhdan et al. [2006] have performed a direct comparison of
their method with several methods we have discussed. The quality
of the reconstruction varies quite a bit, which suggests that either
the method is sensitive to the quality of the input (amount of noise)
or sensitive to the user-specified parameter values. Among the ex-
amples shown in Figure 31, the best method seems to be VRIP,
which generates a complete surface with no visible artifacts. It is
curious that they have not been able to generate a correct surface
with each of these methods; the Stanford Bunny is a common ex-
ample and it has been successfully recovered using each of these
methods. Perhaps the data input format may have been in favor
of this method (a raw dataset assembled from range scans); in any
case this comparison gives an idea about the practicality of these
algorithms.

Comparing the running times of the methods is a difficult task,
because the work spans ∼10 years of research, and the computing

Figure 31: Reconstructing the Stanford bunny using: (a) Power
Crust [Amenta et al. 2001], (b) Robust Cocone [Dey and Giesen
2001], (c) FastRBF [Carr et al. 2001], (d) MPU [Ohtake et al. 2003],
(e) Hoppe et al. [1992], and (f) VRIP [Curless and Levoy 1996].
Figure from [Kazhdan et al. 2006].

environment has changed dramatically in that span of time. Al-
though we have not implemented the algorithms and performed ac-
tual experiments, Kazhdan et al. [2006] has performed a running
time comparison with the Stanford Bunny dataset. Here, the slow-
est method was FastRBF, where the execution time was on the order
of ∼1 hour, followed by Power Crust and Robust Cocone, which
ran on the order of ∼10 minutes, and the fastest being MPU, Hoppe
et al. [1992], and VRIP, which ran on the order of ∼1 minute.

We also compare the methods using the following high-level cri-
teria, summarized in Table 3:

• Normals: Does the method require normals?

• Noisy Data: Is the method robust to noisy data?

• Approx: Does the method produce an approximating or an
interpolating surface?

• Fill holes: Does the method fill holes (due to insufficient sam-
pling) in the surface?

• Smooth: Does the method produce a smooth surface?

• Sharp: Can the method preserve sharp features?

• Guarantee: Does the method provide a guarantee to preserve
topology?

• Global/Local: Does the method solve for the entire surface at
once (global) or does it compute localized fits to the data?

An ideal surface reconstruction algorithm would require no nor-
mals, be robust to noisy data, be able to produce both interpolating

M
et

ho
d

Pa
ra

m
et

er
s

D
es

cr
ip

tio
n

C
om

m
en

t

Ta
ng

en
tp

la
ne

es
tim

at
io

n
k

N
um

be
ro

fn
ea

re
st

ne
ig

hb
or

s
A

ff
ec

ts
th

e
sm

oo
th

ne
ss

of
th

e
ap

pr
ox

im
at

io
n

ρ
,δ

D
en

si
ty

an
d

no
is

e
of

th
e

da
ta

se
t,

re
sp

ec
tiv

el
y

U
se

d
fo

rd
et

er
m

in
in

g
bo

un
da

ri
es

an
d

th
e

vo
xe

ls
iz

e
fo

rm
ar

ch
in

g
cu

be
s

V
R

IP
w

i
W

ei
gh

ts
fo

re
ac

h
ra

ng
e

sc
an

R
ep

re
se

nt
s

va
ri

at
io

n
ac

ro
ss

ra
ng

e
su

rf
ac

es
,u

se
d

to
co

m
bi

ne
si

gn
ed

di
st

an
ce

s
D

m
in
,D

m
ax

R
an

ge
of

th
e

si
gn

ed
di

st
an

ce
fu

nc
tio

ns
U

se
d

fo
rfi

nd
in

g
ze

ro
-c

ro
ss

in
g,

ho
le

-fi
lli

ng
α

-s
ha

pe
s

α
M

ax
im

um
si

ze
of

a
D

el
au

na
y

si
m

pl
ex

“C
ar

vi
ng

”
pa

ra
m

et
er

th
at

de
te

rm
in

es
th

e
sh

ap
e

of
th

e
co

m
pl

ex

C
ru

st
&

va
ri

an
ts

r
Sa

m
pl

in
g

de
ns

ity
of

th
e

da
ta

se
t

Pr
ov

id
es

th
eo

re
tic

al
gu

ar
an

te
e

fo
rt

he
re

co
ns

tr
uc

tio
n

t
N

or
m

al
fil

te
ri

ng
th

re
sh

ol
d

T
hr

es
ho

ld
fo

rt
hr

ow
in

g
ou

tt
ri

an
gl

es
th

at
di

ff
er

to
o

m
uc

h
fr

om
th

e
es

tim
at

ed
no

rm
al

s

Po
w

er
C

ru
st

λ
E

st
im

at
e

of
th

e
r-

sa
m

pl
in

g
de

ns
ity

E
st

im
at

es
le

ve
lo

fn
oi

se
to

di
sc

ar
d

co
rr

es
po

nd
in

g
po

le
s

α
In

te
rs

ec
tio

n
an

gl
e

be
tw

ee
n

th
e

po
la

rb
al

ls
T

hr
es

ho
ld

fo
rp

ro
pa

ga
tin

g
po

le
la

be
ls

ε
T

hr
es

ho
ld

fo
rd

et
ec

tin
g

un
st

ab
le

po
le

s
U

se
d

fo
rm

ed
ia

la
xi

s
si

m
pl

ifi
ca

tio
n

δ
T

hr
es

ho
ld

fo
rd

et
ec

tin
g

re
du

nd
an

tp
ol

es
U

se
d

fo
rm

ed
ia

la
xi

s
si

m
pl

ifi
ca

tio
n

B
lo

bb
y

M
od

el

α
St

re
ng

th
of

th
e

no
rm

al
co

ns
tr

ai
nt

C
on

tr
ol

s
th

e
fit

to
th

e
su

rf
ac

e
no

rm
al

s
β

St
re

ng
th

of
th

e
sh

ri
nk

co
ns

tr
ai

nt
C

on
st

ra
in

s
th

e
re

su
lti

ng
su

rf
ac

e
to

av
oi

d
sp

ur
io

us
fe

at
ur

es
n

Su
rf

ac
e

no
rm

al
s

es
tim

at
ed

fr
om

th
e

de
pt

h
im

ag
es

U
se

d
in

fo
rm

ul
at

in
g

th
e

no
rm

al
co

ns
tr

ai
nt

T
Is

os
ur

fa
ce

va
lu

e
Fu

nc
tio

n
va

lu
e

of
th

e
ex

tr
ac

te
d

is
os

ur
fa

ce

Fa
st

R
B

F
ε

Fi
tti

ng
ac

cu
ra

cy
C

on
tr

ol
s

th
e

ac
cu

ra
cy

of
R

B
F

ev
al

ua
tio

n
n

Su
rf

ac
e

no
rm

al
s

R
eq

ui
re

d
at

ea
ch

po
in

tt
o

ge
ne

ra
te

of
f-

su
rf

ac
e

po
in

ts
ρ

Su
rf

ac
e

ap
pr

ox
im

at
io

n
pa

ra
m

et
er

A
ff

ec
ts

th
e

sm
oo

th
ne

ss
of

th
e

re
su

lti
ng

su
rf

ac
e

E
ig

en
R

B
F

λ
e

St
re

ng
th

of
th

e
en

er
gy

te
rm

C
on

tr
ol

s
th

e
ov

er
al

lm
ag

ni
tu

de
of

th
e

fu
nc

tio
n

λ
∇

St
re

ng
th

of
th

e
gr

ad
ie

nt
te

rm
Tr

ad
es

of
fs

m
oo

th
ne

ss
vs

.fi
de

lit
y

in
th

e
re

su
lt

λ
Ω

St
re

ng
th

of
th

e
re

gu
la

ri
za

tio
n

te
rm

C
on

st
ra

in
s

th
e

sm
oo

th
ne

ss
of

th
e

fu
nc

tio
n

M
PU

α
Si

ze
of

th
e

su
pp

or
tr

ad
iu

s
fo

rt
he

PO
U

A
dj

us
te

d
to

co
ve

rt
he

su
pp

or
to

fe
ac

h
oc

tr
ee

ce
ll

n
Su

rf
ac

e
no

rm
al

s
U

se
d

fo
ra

pp
ro

xi
m

at
in

g
si

gn
ed

di
st

an
ce

(fi
tti

ng
lo

ca
ls

ha
pe

s)
an

d
de

te
ct

in
g

co
rn

er
s

ε
A

cc
ur

ac
y

th
re

sh
ol

d
O

ct
re

e
co

nt
in

ue
s

su
bd

iv
is

io
n

un
til

th
e

fit
te

d
er

ro
ri

s
be

lo
w

th
is

th
re

sh
ol

d

IM
L

S
ε

W
ei

gh
tf

un
ct

io
n

pa
ra

m
et

er
C

on
tr

ol
s

th
e

de
gr

ee
of

in
te

rp
ol

at
io

n
/a

pp
ro

xi
m

at
io

n
of

th
e

su
rf

ac
e

γ
A

dj
us

tm
en

tr
at

e
pa

ra
m

et
er

D
et

er
m

in
es

th
e

ra
te

at
w

hi
ch

th
e

fu
nc

tio
n

va
lu

es
f k

ar
e

ad
ju

st
ed

f k
Fu

nc
tio

n
va

lu
e

co
ns

tr
ai

nt
s

A
dj

us
te

d
vi

a
γ

to
pr

od
uc

e
a

tig
ht

ly
en

cl
os

in
g

im
pl

ic
it

fu
nc

tio
n

M
L

S
h

W
id

th
of

th
e

w
ei

gh
tf

un
ct

io
n

D
et

er
m

in
es

th
e

su
pp

or
to

ft
he

w
ei

gh
tf

un
ct

io
n

an
d

sm
oo

th
ne

ss
of

th
e

re
su

lt
m

D
eg

re
e

of
th

e
lo

ca
la

pp
ro

xi
m

at
in

g
po

ly
no

m
ia

l
A

ff
ec

ts
fit

tin
g

ac
cu

ra
cy

an
d

ov
er

fit
tin

g
ε

A
cc

ur
ac

y
pa

ra
m

et
er

fo
rp

oi
nt

pr
oj

ec
tio

n
D

et
er

m
in

es
th

e
co

nv
er

ge
nc

e
lim

it
fo

ri
te

ra
te

d
pr

oj
ec

tio
n

on
to

th
e

su
rf

ac
e

In
te

gr
al

M
L

S
va

ri
an

t
h

W
id

th
of

th
e

w
ei

gh
tf

un
ct

io
n

D
et

er
m

in
es

th
e

su
pp

or
to

ft
he

w
ei

gh
tf

un
ct

io
n

e h
C

ha
ng

e
in

h
U

se
d

to
m

od
ul

at
e

th
e

w
id

th
of

th
e

w
ei

gh
tf

un
ct

io
n

fo
rs

ea
rc

hi
ng

th
e

be
st

va
lu

e

Pi
ec

ew
is

e
sm

oo
th

M
L

S
r t

T
hr

es
ho

ld
of

th
e

m
ax

im
al

to
le

ra
te

d
re

si
du

al
In

th
e

fo
rw

ar
d

se
ar

ch
,d

et
er

m
in

es
w

hi
ch

po
in

ts
ar

e
ou

tli
er

s
L s

M
in

im
al

ne
ig

hb
or

ho
od

si
ze

fo
ra

su
rf

ac
e

U
se

d
to

se
le

ct
a

ne
ig

hb
or

ho
od

of
po

in
ts

to
fit

th
e

su
rf

ac
e

Ta
bl

e
2:

L
is

tin
g

of
us

er
-s

pe
ci

fie
d

pa
ra

m
et

er
s

fo
re

ac
h

m
et

ho
d.

Method Normals Noisy Data Approx Fill holes Smooth Sharp Guarantee Global / Local
Computation

Ideal No Yes Both Yes Yes Yes Yes Any
Tangent plane estimation No Probably Approx No Probably No No Global
VRIP No Yes Approx Yes Probably No No Global
α-shapes No No Interp No No Yes No Global
Crust & variants No No Interp No No Yes Yes Global
Power Crust No No Interp Yes No Yes Yes Global
Blobby Model Yes Probably Approx Yes Yes No No Global
FastRBF Yes Yes Both Yes Yes No No Global
EigenRBF No Yes Approx Yes Yes No No Global
MPU Yes No Approx Probably Piecewise Yes No Local
IMLS Yes Probably Both Yes Yes Yes No Local
Point-based IMLS Yes Probably Both Yes Yes Yes Yes Local
MLS No Yes Approx Yes Yes No No Local
MLS curve reconstruction No Yes Approx Yes Yes No No Local
Integral MLS variant No Yes Approx Yes Yes Probably No Local
Piecewise smooth MLS No Yes Approx Yes Piecewise Yes No Local

Table 3: Comparison of surveyed methods.

and approximating surfaces, be able to fill holes and preserve sharp
features, and provide a guarantee that the reconstructed surface is
homeomorphic to the original surface. Unfortunately, none of the
techniques satisfy all of these criteria.

A potential avenue for future work is to combine the strength
of different techniques to approach the ideal solution. The main
strength of Voronoi-based methods is their provable reconstruction
guarantee, while implicit surfaces can produce accurate interpolat-
ing and approximating surfaces with sharp features, and moving
least squares surfaces are robust to noisy data. It may be fruitful to
pre-process a noisy point set using moving least squares to produce
a clean point set, and then use a Voronoi-based method to provide
a topologically accurate estimation of the surface. In the final step,
an implicit surface would be fit to provide a smooth surface accom-
modating sharp features and boundaries.

Another interesting problem is to reconstruct surfaces from time-
varying point sets. The problem is interesting because the data
may not necessarily maintain point-to-point correspondence be-
tween frames, and the sampling density or noise level may vary
with time as well. The first challenge is to find a good surface
model that can also describe how the data deforms over time. For
this part, it may be possible to adapt mesh deformation models and
apply them to deform point sets. The second challenge is to gather
and integrate partial information about the surface from multiple
frames. In particular, for poorly sampled regions, it may be possi-
ble to incorporate more surface points as the surface evolves over
time.

7 Conclusion

In this report, we have surveyed many techniques that reconstruct
a surface from point samples. We focused on four key ideas for
surface reconstruction: signed distance estimation, Voronoi-based
reconstruction, implicit surface fitting, and moving least squares
surfaces. The main challenges have been identified, which include
reconstruction without normal information, robustness to noise, ac-
curacy to sharp features, and provable reconstruction guarantees.
We hope to have had informed the reader about recent trends in this
field to identify possible avenues for future work.

Acknowledgements I give thanks to God, who has graciously
given me the wisdom and strength to tackle this examination. I am
indebted to my adviser Matthias Zwicker for his aid in navigating

the literature and for providing support during the writing of this
report. Also, thanks to Wojciech Jarosz, Neel Joshi, and Wan-yen
Lo for proofreading a draft of this paper.

References

ADAMSON, A., AND ALEXA, M. 2003. Approximating and intersecting
surfaces from points. In SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 230–239.

ADAMSON, A., AND ALEXA, M. 2006. Point-sampled cell complexes.
ACM Trans. Graph. 25, 3, 671–680.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D.,
AND SILVA, C. T. 2001. Point set surfaces. In VIS ’01: Proceedings of
the conference on Visualization ’01, IEEE Computer Society, Washing-
ton, DC, USA, 21–28.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D.,
AND SILVA, C. T. 2003. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graphics 9, 1, 3–15.

AMENTA, N., AND BERN, M. 1998. Surface reconstruction by voronoi
filtering. In SCG ’98: Proceedings of the fourteenth annual symposium
on Computational geometry, ACM Press, New York, NY, USA, 39–48.

AMENTA, N., AND KIL, Y. J. 2004. The domain of a point set surface.
Eurographics Symposium on Point-Based Graphics.

AMENTA, N., AND KIL, Y. J. 2004. Defining point-set surfaces. ACM
Trans. Graph. 23, 3, 264–270.

AMENTA, N., BERN, M., AND EPPSTEIN, D. 1998. The crust and the
beta-skeleton: combinatorial curve reconstruction. Graph. Models Im-
age Process. 60, 2, 125–135.

AMENTA, N., BERN, M., AND KAMVYSSELIS, M. 1998. A new voronoi-
based surface reconstruction algorithm. In SIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 415–421.

AMENTA, N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2000. A simple
algorithm for homeomorphic surface reconstruction. In SCG ’00: Pro-
ceedings of the sixteenth annual symposium on Computational geometry,
ACM Press, New York, NY, USA, 213–222.

AMENTA, N., CHOI, S., AND KOLLURI, R. K. 2001. The power crust. In
SMA ’01: Proceedings of the sixth ACM symposium on Solid modeling
and applications, ACM Press, New York, NY, USA, 249–266.

ATKINSON, A., AND RIANI, M. 2000. Robust Diagnostic Regression
Analysis. Springer.

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996. The quick-
hull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4, 469–
483.

BEATSON, R. K., AND GREENGARD, L. 1997. A short course on fast
multipole methods. In M. Ainsworth, J. Levesley, W.A. Light, and M.
Marletta, editors, Wavelets, Multilevel Methods and Elliptic PDEs, Ox-
ford University Press, 137.

BEATSON, R. K., CHERRIE, J. B., , AND MOUAT, C. T. 1999. Fast
fitting of radial basis functions: Methods based on preconditioned gmres
iteration. Advances in Computational Mathematics 11, 253–270.

BEATSON, R. K., LIGHT, W. A., AND BILLINGS, S. 2000. Fast solution of
the radial basis function interpolation equations: Domain decomposition
methods. SIAM J. Sci. Comput. 22, 5, 17171740.

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM
Trans. Graph. 1, 3, 235–256.

BOLLE, R. M., AND VEMURI, B. C. 1991. On three-dimensional surface
reconstruction methods. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1,
1–13.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J.,
FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R. 2001. Re-
construction and representation of 3d objects with radial basis functions.
In SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, ACM Press, New York, NY,
USA, 67–76.

CAZALS, F., AND GIESEN, J. 2006. Delaunay triangulation based sur-
face reconstruction. In Effective Computational Geometry for Curves
and Surfaces, J.-D. Boissonnat and M. Teillaud, Eds., Mathematics and
Visualization. Springer-Verlag.

CAZALS, F., GEISEN, J., PAULY, M., AND ZOMORODIAN, A. 2005. Con-
formal alpha shapes. Eurographics Symposium on Point-Based Graph-
ics.

CLEVELAND, W. S., AND LOADER, C. L. 1996. Smoothing by local re-
gression: Principles and methods. Statistical Theory and Computational
Aspects of Smoothing, 10–49.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for building
complex models from range images. In SIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 303–312.

DEY, T. K., AND GIESEN, J. 2001. Detecting undersampling in surface
reconstruction. In SCG ’01: Proceedings of the seventeenth annual sym-
posium on Computational geometry, ACM Press, New York, NY, USA,
257–263.

DEY, T. K., AND SUN, J. 2005. Adaptive mls surfaces for reconstruction
with guarantees. SGP.

DUCHON, J. 1976. Interpolation des fonctions de deux variables suivant le
principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numrique
10, 5–12.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1994. Three-dimensional alpha
shapes. ACM Trans. Graph. 13, 1, 43–72.

EDELSBRUNNER, H., FACELLO, M. A., FU, P., QIAN, J., AND
NEKHAYEV, D. V. 1998. Wrapping 3D scanning data. In Proc. SPIE
Vol. 3313, p. 148-158, Three-Dimensional Image Capture and Applica-
tions, Richard N. Ellson; Joseph H. Nurre; Eds., R. N. Ellson and J. H.
Nurre, Eds., 148–158.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C. T. 2003.
Progressive point set surfaces. ACM Trans. Graph. 22, 4, 997–1011.

FLEISHMAN, S., COHEN-OR, D., AND SILVA, C. T. 2005. Robust moving
least-squares fitting with sharp features. ACM Trans. Graph. 24, 3, 544–
552.

GREENGARD, L., AND ROKHLIN, V. 1987. A fast algorithm for particle
simulations. Journal of Computational Physics 73, 2, 325–348.

GUY, G., AND MEDIONI, G. 1995. Inference of surfaces, 3-d curves, and
junctions from sparse 3-d data. 599–604.

HADI, A. 1992. Identifying multiple outliers in multivariate data. J. R.
Statist. Soc. B 54, 3, 761–771.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUET-
ZLE, W. 1992. Surface reconstruction from unorganized points. In
SIGGRAPH ’92: Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, ACM Press, New York, NY,
USA, 71–78.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUET-
ZLE, W. 1993. Mesh optimization. In SIGGRAPH ’93: Proceedings of
the 20th annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 19–26.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MC-
DONALD, J., SCHWEITZER, J., AND STUETZLE, W. 1994. Piece-
wise smooth surface reconstruction. In SIGGRAPH ’94: Proceedings of
the 21st annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 295–302.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson surface
reconstruction. Eurographics Symposium on Geometry Processing.

KOLLURI, R. 2005. Provably good moving least squares. In SODA ’05:
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1008–1017.

LANCASTER, P., AND SALKAUSKAS, K. 1981. Surfaces generated by
moving least squares methods. Mathematics of Computation 37, 155,
141–158.

LEE, I. 2000. Curve reconstruction from unorganized points. Computer
Aided Geometric Design 17, 161–177.

LEVIN, D. 1998. The approximation power of moving least-squares. Math-
ematics of Computation 67, 224, 1517–1531.

LEVIN, D. 2003. Mesh-independent surface interpolation. Geometric Mod-
eling for Scientific Visualization.

LIPMAN, Y., COHEN-OR, D., AND LEVIN, D. 2006. Error bounds and
optimal neighborhoods for mls approximation. In Eurographics Sympo-
sium on Geometry Processing.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high res-
olution 3d surface construction algorithm. In SIGGRAPH ’87: Proceed-
ings of the 14th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 163–169.

MEDIONI, G. G., LEE, M.-S., AND TANG, C.-K. 2000. A Computational
Framework for Segmentation and Grouping. Elsevier.

MENCL, R., AND MÜLLER, H. 1997. Interpolation and approximation of
surfaces from three-dimensional scattered data points. In DAGSTUHL
’97: Proceedings of the Conference on Scientific Visualization, IEEE
Computer Society, Washington, DC, USA, 223.

MURAKI, S. 1991. Volumetric shape description of range data using
“blobby model”. In SIGGRAPH ’91: Proceedings of the 18th an-
nual conference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 227–235.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H.-P.
2003. Multi-level partition of unity implicits. ACM Trans. Graph. 22, 3,
463–470.

PAULY, M., GROSS, M., AND KOBBELT, L. P. 2002. Efficient simplifi-
cation of point-sampled surfaces. In VIS ’02: Proceedings of the con-
ference on Visualization ’02, IEEE Computer Society, Washington, DC,
USA.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003. Shape
modeling with point-sampled geometry. ACM Trans. Graph. 22, 3, 641–
650.

PENTLAND, A. 1990. Computational complexity versus virtual worlds.
SIGGRAPH Comput. Graph. 24, 2, 185–192.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTER-
LING, W. T. 1988. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press, New York, NY, USA.

REUTER, P. 2003. Reconstruction and Rendering of Implicit Surfaces from
Large Unorganized Point Sets. PhD thesis, LaBRI - Université Bordeaux.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multiresolution
point rendering system for large meshes. In Siggraph 2000, Computer
Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, K. Akeley, Ed., 343–352.

SCHEIDEGGER, C., FLEISHMAN, S., AND SILVA, C. 2005. Triangulat-
ing point-set surfaces with bounded error. In Proceedings of the third
Eurographics/ACM Symposium on Geometry Processing, Eurographics
Association, 63–72.

SHARF, A., LEWINER, T., SHAMIR, A., KOBBELT, L., AND COHENOR,
D. 2006. Competing fronts for coarse-to-fine surface reconstruction. In
Eurographics.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Interpolating
and approximating implicit surfaces from polygon soup. ACM Trans.
Graph. 23, 3, 896–904.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes from range
images. In SIGGRAPH ’94: Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 311–318.

WALDER, C., CHAPELLE, O., AND SCHOLKOPF, B. 2005. Implicit sur-
face modeling as an eigenvalue problem. ICML.

ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002. Pointshop
3d: an interactive system for point-based surface editing. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA, 322–329.

