
Automatic Registration

for Articulated Shapesfor Articulated Shapes

Problem Statement

� Solve pairwise registration problem

� Develop robust method independent of initial pose

� Do not require markers or a template

� Contributions:

� Useful for initialization: used as preprocessing step
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� Useful for initialization: used as preprocessing step

� Focus on registration: does not solve for a reduced 

motion model

?
?

Related Work

� Correlated correspondence algorithm, requires a 

template (Anguelov et al. 2004)
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Template Model Partial

Example

Registered

result

Ground Truth

(from Anguelov et al. 2004)

Algorithm Overview

� Articulated motion � small set of transformations

� Predetermine a set of transformations describing the 

motion

� Optimize assignment of transformations to the points
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Algorithm Description

Motion Sampling Global Motion OptimizationMotion Sampling

Motion Sampling Illustration

� Find transformations that move parts of the 

source to parts of the target
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Source Shape Target Shape

Motion Sampling Illustration

� Find transformations that move parts of the 

source to parts of the target

Sampled Points

30

Source Shape Target Shape

Sampled Points

Motion Sampling Illustration

� Find transformations that move parts of the 

source to parts of the target
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Source Shape Target Shape



Motion Sampling Illustration

� Find transformations that move parts of the 

source to parts of the target

Translate

Rotations
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Rotate and Translate

Translate

Translations

Source Shape Target Shape Transformation Space

Motion Sampling Illustration

� Find transformations that move parts of the 

source to parts of the target
s1�t1 s1�t2

Rotations
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s2

s1 t1

t2

s2�t1s2�t2

Source Shape Target Shape Transformation Space

Translations

Limitations of Motion Sampling

� Final Output: finite set of rigid transformations

� If there are multiple similar parts

� Does not figure out the correct part

� Disambiguate in the optimization step
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Source with Selected Region Visualized Transformations

Candidate Transformations

Algorithm Description

Motion Sampling Global Motion OptimizationGlobal Motion Optimization



Global Motion Optimization

� Optimize an assignment from a finite set of transformations

A discrete labelling problem � Graph Cuts for optimization

Data Cost + Smoothness Costargmin
Assignment from

a set of transformations
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� A discrete labelling problem � Graph Cuts for optimization

Transformations

from finite set

Source Shape Target Shape

� Move all points as close as possible to the target

� How to measure distance to target?

� Apply selected transformation        for all        = 

� Measure distance to closest point      in target

Data Term
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Smoothness Term

� Preserve edge length between neighboring points

� Disambiguates multiple possible mappings

Original Length Transformed Length
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Symmetric Cost Function

� Swapping source / target can give different results

� Optimize assignment in both meshes (forward & 

backward)

� Enforce consistent assignment: penalty when 
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, No Penaltyup ff = , Constant Penaltyup ff ≠



Optimization Using Graph Cuts

Data Smoothnessargmin
Assignment from

a set of transformations

+
Source

TargetData

Source

TargetSmoothness+

+

+

Symmetric Consistency
Source & Target

� Data and smoothness terms apply to both shapes

� Additional symmetric consistency term

� Weights to control relative influence of each term

� Use “graph cuts” to optimize assignment

� [Boykov, Veksler & Zabih PAMI ’01]
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Source & Target

Horse Dataset

Arm Dataset

Results

Arm Dataset

Hand Dataset

Horse Dataset Results

12 poses of galloping horse: total of 66 pairs, correct leg matched in 64 pairs

Histogram of Error in Galloping Horse Dataset (minimum over 3 trials)
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Synthetic Dataset Example

43
Motion Segmentation (from Graph Cuts)

Source Target Aligned Result

Registration Error

1.5%

0%



Synthetic Dataset w/ Holes

Source

Aligned Result
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Distance (from Target) to the closest point

(% bounding box diagonal)

5.3%

0%

Target

Arm Dataset Results

12 poses of arm scans: total of 66 pairs, arm & hand orientation matched in all pairs

Histogram of Error in the Arm dataset (1 trial)
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Arm Dataset Example

Missing Data

Source Noisy Target

Missing Data
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Arm Dataset Example

5.4%

Aligned Result Motion Segmentation
47

0%

Distance (from Target) to the closest point

(% bounding box diagonal)



Hand Dataset Example

Missing Data

Source Target
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Hand Dataset Example

2%

0%

Motion Segmentation

Aligned Result
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Distance (from Target) to the closest point

(% bounding box diagonal)

0%

Performance

Dataset #Points # Labels Matching Clustering Pruning Graph Cuts

Horse 8431 1500 2.1 min 3.0 sec (skip) 1.6 sec 1.1 hr

Arm 11865 1000 55.0 sec 0.9 sec 12.4 min 1.2 hr

Hand (Front) 8339 1500 14.5 sec 0.7 sec 7.4 min 1.2 hr

Hand (Back) 6773 1500 17.3 sec 0.9 sec 9.4 min 1.6 hr

50

� Graph cuts optimization is most time-consuming 

step

� Symmetric optimization doubles variable count

� Symmetric consistency term introduces many edges

Limitations

� Errors in registration

� Trade-off between data and smoothness costs

� Data weight too high � May break smoothness

� Smoothness weight too high � Prefer bad alignment

Source Target Registration
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� Errors in registration

� Motion sampling: may fail to sample properly when 

too much missing data, non-rigid motion

� Hard assignment of transformations

Limitations

Source Target Registration
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Conclusions

� Automatic method for registering articulated shapes

� No template, markers, or manual segmentation needed

� Explicitly sample a discrete set of motion

� Optimize the assignment of transformations

� Graph cut result gives intuitive segmentationGraph cut result gives intuitive segmentation

� Useful for obtaining a robust initialization of the 

registration

� Does not provide an articulated motion model
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Range Scan Registration Using

Reduced Deformable ModelsReduced Deformable Models

Problem Statement

� Fit a model of the surface motion to a pair of scans

� Articulated model (e.g. joints, smooth weights)

� Serves as the basis for fitting on multiple frames
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� User provided segmentation: Pekelny08

� Unsupervised pairwise registration: Li08, Huang08

Related Work

56(from Pekelny and Gotsman 2008, Li et al. 2008 and Huang et al. 2008)

Problem Formulation

Model: Linear Blend Skinning

� Transformations (bones) and weights

Shape Weighted Blending ResultTransformed by Bone 2Transformed by Bone 1
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Shape with Weights

Bone 1 Bone 2

Model: Linear Blend Skinning

� Each point assigned weights in reference pose

� Transformations move each point according to its 

weights
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[1,0] [0.5, 0.5] [0,1]

Bone 1 Bone 2

Weighted Blending Result



� Define weights on grid enclosing surface

� Covers small holes, reduces variables

� Provides regular structure for optimization

Weight Grid
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Shape

Grid

� Fit the transformations and weights to align a pair 

of range scans

LBS for scan registration
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Algorithm Description

Initialization Weight

Refinement
Final

Result
Main Optimization Loop

Optimization strategy
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Optimization strategy
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(Converged)

Optimization strategy
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Optimization strategy

66
(Converged)

Optimization strategy
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Optimization strategy

68
(Finished)

Optimization overview
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Initialization Weight

Refinement

Final

Result

Main Optimization Loop

Optimization overview

� T-Step: Optimize Alignment

� Distance Term

� Joint Constraint Term
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Initialization Weight

Refinement

Final

Result

Main Optimization Loop

T-Step: Distance Term

� Fix weights & solve for transformations

Source
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Source

Target



T-Step: Distance Term

� Fix weights & solve for transformations

� Use closest point correspondences

Bone 1

72

Bone 2

Bone 3

� Fix weights & solve for transformations

� Use closest point correspondences

T-Step: Distance Term

Bone 1
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Bone 2

Bone 3

� Fix weights & solve for transformations

� Use closest point correspondences

� Iterate further until convergence

T-Step: Distance Term

Bone 1
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Bone 2

Bone 3

T-Step: Joint Constraint Term

� Prevent neighboring bones from separating

Bone 1
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Bone 2

Bone 3



� Prevent neighboring bones from separating

� Constrain overlapping weight regions

T-Step: Joint Constraint Term

Unwanted stretch
Bone 1
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Bone 2

Bone 3

T-Step: Joint Constraint Term

� Prevent neighboring bones from separating

� Constrain overlapping weight regions

Bone 1
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Bone 2

Bone 3

� Prevent neighboring bones from separating

� Constrain overlapping weight regions

T-Step: Joint Constraint Term

Bone 1
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Bone 2

Bone 3

T-Step: Optimization summary

� Like rigid registration

� Except multiple parts & joint constraints

� Non-linear least squares optimization

� Solving for a rotation matrix

� Gauss-Newton algorithm� Gauss-Newton algorithm

� Solve by iteratively linearizing solution

� Few variables � Fast performance

� # variables  =  6  x  #bones

� Typically 5~10 bones in our examples
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Optimization overview
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Initialization Weight

Refinement

Final

Result

Main Optimization Loop

Optimization overview

� W-Step: Optimize Weights

� Use Discrete Labelling

� Continuous Weight Refinement
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Initialization Weight

Refinement

Final

Result

Main Optimization Loop

W-Step: Optimizing weights

� Fix transformations, solve for continuous weights

Source
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Correspondences from last T-Step

Target

W-Step: Optimizing weights

� Fix transformations, solve for continuous weights

Good Alignment
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Bone 1

(Applied to entire shape)



W-Step: Optimizing weights

� Fix transformations, solve for continuous weights

Good Alignment
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Bone 2

(Applied to entire shape)

W-Step: Optimizing weights

� Fix transformations, solve for continuous weights

Good Alignment
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Bone 3

(Applied to entire shape)

W-Step: Optimizing weights

� Fix transformations, solve for continuous weights

Bone 1
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Bone 2

Bone 3

““““Ideal” solved result

� Without additional constraints, problem is 

underconstrained

W-Step: Optimizing weights

Bone 1 & 3

Bone 1
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Bone 2 & 3Bone 2 & 3

Bone 1 & 3

Bone 1 & 2

Bone 2

Bone 3

Bone 1

Bone 2

Bone 3

Typical solved result



Use discrete labeling

� Our solution: one transformation per location

� Bones = labels

� Becomes discrete labeling problem
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Closer to “Ideal”

solved result!

Bone 1

Bone 2

Bone 3

W-Step: Optimization Summary

� Use “graph cuts” to optimally label grid cells

� [Boykov, Veksler & Zabih PAMI ’01]

� Distance term + Smoothness term

� Distance: measures alignment for a given label

� Smoothness: penalizes different labels for adjacent cells� Smoothness: penalizes different labels for adjacent cells

� Good Performance

� Only ~ 1000 grid cells (graph nodes) in our examples

� Fast performance for graph cuts
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Robot, torso video

Interactive posing video

Results

Interactive posing video

Additional results & statistics

Robot video (real-time recording)
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Alignment Result Solved Weights

7  bones

1454 cells



Torso video (2x speed recording)
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Alignment Result Solved Weights

7  bones

4890 cells

Interactive posing (real-time recording)
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Interactive Posing ResultSolved Weights

(7  bones, 1598  cells)

Average performance statistics

Car Robot Walk Hand

Bones 7 7 10 12

Corresp. 1200 1200 1000 1500

Vertices 5389 9377 4502 34342

Max Dist 20 40 20 30

Grid Res 60 65 50 40
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Grid Res 60 65 50 40

Grid Cells 1107 1295 1014 814

Grid Points 2918 3366 2553 1884

Setup 0.185 sec 0.234 sec 0.136s ec 0.078 sec

RANSAC 8.089 sec 20.001 sec 5.517 sec N/A

Align 9.945 sec 19.644 sec 23.092 sec 49.918 sec

Weight 6.135 sec 10.713 sec 10.497 sec 3.689 sec

Total Time 24.355 sec 50.591 sec 39.242 sec 53.684 sec

Limitations

� Discussion

� Topology issues with grid

� Improve in next section using graph-based approach

� Limited to a pair of scans

� Simultaneously register multiple frames in next section� Simultaneously register multiple frames in next section

� Limitations with LBS

� Optimize better model (e.g. DLB)
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Conclusion

� A new algorithm to align range scans by modeling 

the motion with a reduced deformable model

� Use LBS to represent the motion

� Represent weight function using a 3D grid

� Solve for the parameters using alternating � Solve for the parameters using alternating 

optimization

� No marker, template, segmentation information

� Robust to occlusion & missing data

� Next: extend this method to handle multiple frames
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