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Supplementary Material for “KinectAvatar: Fully Auto-
matic Body Capture Using a Single Kinect”

1 Conformal Geometric Algebra

In this section, we give a brief introduction of the Conformal Geometric Algebra, and a
relationship and framework transform between Conformal Geometric Algebra and the
normal Euclidean Algebra.

In Conformal Geometric Algebra, we use the motor M to express the rotation and
translation. The main question is now, how to solve a set of constraint equations for
multiple features with respect to the unknown motor M . Since a motor is a polynomial
of infinite degree, this is a non-trivial task, especially in the case of real-time estimation.
How to get a linear equation with respect to the generators of the motor? We try to solve
this problem with exponential representation of motors and the Taylor series expansion
with the first approximation order. This leads to a mapping of the above mentioned
global motion transformation to a twist representation, which allows for incremental
changes of pose.

In this section, we derive the linearization of the motor. This results in linear equa-
tions in the generators of the unknown 3D rigid body motion. For simplicity, we con-
sider the case of point transformations. The Euclidean transformations of a point X in
conformal space caused by the motor M is approximated as:
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We assume l := θl′ and m := θm′, then:

MXM̃ ≈ E + e∞ (x− l · x−m) (2)

Based on the definition above, we can use two vectors l ∈ R3 (l1, l2, l3) and m ∈ R3
(m1,m2,m3) express motor M . The transformation for point x ∈ R3 (x1, x2, x3) can
be expressed in Euclidean Algebra:x1

x2
x3

→
m1 + x1 − x2l3 + x3l2
m2 + x2 − x3l1 + x1l3
m3 + x3 − x1l2 + x2l1

 (3)

Due to the approximation ≈ in equation (1), the unknown motion parameters l and m
are linear. This equation contains six unknown parameters ((l1, l2, l3) and (m1,m2,m3))
for the rigid body motion.

The linear equations are solved for a set of correspondences by applying the House-
holder method. From the solution of the system of equations, the motion parameters R,
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t can easily be recovered by evaluating θ := ‖l‖ , l′ := l
θ ,m

′ := m
θ . The motor M can

be evaluated by applying the Rodrigues’ formula.
The principle of this approximation is illustrated in Fig. 1. The aim is to rotate a

point X by 90 degrees to a point X ′. The first order approximation of the rotation
leads to the tangent of the circle passing through X . Normalizing the tangent line to
X ′(denoted by dashed lines) X1 is gained as the first order approximation of the re-
quired point X ′. By repeating this procedure the points X2 . . . Xn will be estimated,
approaching to the point X ′. It is clear from figure 1 that the convergence rate of a ro-
tation depends on the amount of the expected rotation. All angles converge during the
iteration. For the most cases just a few iterations are sufficient to get a good approxima-
tion. In situations where only small rotations are assumed, four iterations are sufficient
for all cases.

Fig. 1. Principle of convergence for the iteration of a point X rotated around 90 degrees to a point
X ′. X1 is the result of the first iteration and X2 is the result of the second iteration.

2 Mathematical Details of the Registration Algorithm

In this section, we provide additional mathematical details to the registration algorithm.
In particular, we discuss the computations of the E-step and M-step in more detail.
E-step. For each pair of frames f and g, we need to update P old

f,g(m|yf,n) which is a
matrix of dimension Ng × Nf . The values of this matrix determine which correspon-
dences yf,n, yg,m will be included within the error term during the M-step.

We transform each point yf,n using the rigid transformation assigned to that point
T i(n)f (the transformation of index i(n) in frame f ). We express the transformation in
the conformal geometric algebra as follows:

T i(n)f (yf,n) =M
i(n)
f yf,nM̃

i(n)
f

Similarly, we transform yg,m using the rigid transformation T i(m)
g . The complete pro-

cedure for determining the matrix values for all pairs:
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• For all frames f = 1 . . .K
• For all frames g such that f − 4 ≤ g ≤ f + 4 (within four frames of f )
• For all n = 1 . . . Nf
• Find points in frame g that yield the smallest value according to the

following formula:

||T i(n)f (yf,n)− T i(m)
g (yg,m) ||2

To do this, we first transform each point yg,m of frame g using its
transformation T i(m)

g . Rebuild the k-d tree for nearest neighbor search.
For each point, we measure the distance to T i(n)f (yf,n) and find the
Nnear points that are closest. We store these points in a set denoted
“Near(yf,n).”

• At this point, we have a set Near(yf,n) of closest points for each yf,n. We
compute the variance of the pair of frames f, g by averaging the squared
distance to all closest points as follows:

σ2
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1

NfNnear
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g (yg,m)

∥∥∥2
• For all n = 1 . . . Nf
• For all pointsm ∈ Near(yf,n), compute the entry pm,n in the posterior

matrix P old
f,g(m|yf,n) using the following formula:
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All other entries pm,n = 0. The denominator in the above formula has
the effect of normalizing each column, so that the sum of each column
equals 1.

M-step. Based on the E-step values and corresponding frames, the new alignment pa-
rameter values are found by minimizing the negative log-likelihood function, or more
specifically, its upper bound Q which evaluates to:

Q (M,L) =
∑
f,g

 Nf∑
n=1

Ng∑
m=1

P old
f,g (m | yf,n)

∥∥∥T i(n)f (yf,n)− T j(m)
g (yg,m)

∥∥∥2
2σf,g2


Since the deformation parameters change after each M-step, the variances are recom-
puted after the M-step update. We perform the M-step in two sub-steps iteratively until
convergence.
Sub-Step 1. Fix labels L and solve for transformationsM. For Edata, the labels i(n)
and j(m) are fixed, and the variables are the transformations M . For the regularization
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Ereg, only the joint constraint remains, since the labels are fixed. We use the same opti-
mization method as the rigid registration, except that the joint constraints are added as
additional terms, and we solve for more transformations simultaneously.
Sub-Step 2. Fix transformations M and solve for labels L. The labels i(n) are the
variables that we are solving for, and this affects the location of the points because it
changes which transformation is being applied. Therefore, the goal is to re-segment the
points to yield a better registration. In Ereg, the joint constraint can be ignored, and
only the label constraint is left to ensure that the number of segmented parts in each
frame is not too high. We solve the resulting discrete optimization problem using the
α-expansion algorithm.
Effect of Nnear. The parameter Nnear is a fixed value for all experiments. We chose
the value of Nnear = 20 to balance between registration quality and the running time.
Larger values of Nnear helps the algorithm to be robust to noisy data. However, in our
experiments, we discovered that a very high value does not necessary improve the reg-
istration result. For data from the Kinect, a value of Nnear from 15 to 30 gives a good
registration quality without sacrificing too much performance.


