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Abstract

Photometric stereo is one technique for 3D shape determination that has been imple-
mented in a variety of experimental settings and that has produced consistently good re-
sults. The idea is to use intensity values recorded from multiple images obtained from the
same viewpoint but under different conditions of illumination. The resulting radiometric
constraint makes it possible to obtain local estimates of both surface orientation and sur-
face curvature without requiring global smoothness assumptions and without requiring prior
image segmentation.

This paper moves photometric stereo one step closer to practical viability by describing
an experimental setting in which surface gradient estimation is achieved on full frame video
data at near video frame rates (i.e., 15Hz). The implementation uses commercially available
hardware. Reflectance is modeled empirically using measurements obtained from a calibra-
tion sphere. Estimation of the gradient, (p, q), requires only simple table lookup. Curvature
estimation uses, in addition, the reflectance map, R(p, q). The required lookup table and
reflectance maps are derived during calibration. Because reflectance is modeled empirically,
no prior physical model of the reflectance characteristics of the objects to be analyzed is
assumed. At the same time, if a good physical model is available, it can be retrofit to the
method for implementation purposes.

Photometric stereo is subject to error in the presence of cast shadows and interreflec-
tion. No purely local technique can succeed since these phenomena are inherently non-local.
Nevertheless, this paper demonstrates that one can exploit the redundancy in three light
source photometric stereo to, in most cases, locally detect the presence of cast shadows and
interreflection. Detection is facilitated by explicitly including a local confidence estimate in
the lookup table used for gradient estimation.
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1 Introduction

The purpose of computational vision is to produce descriptions of a 3D world from 2D images
of that world, sufficient to carry out a specified task. Robustness in many tasks is improved
when use is made of all the information available in an image, not just that obtained from a
sparse set of features. The idea of using multiple images obtained from the same viewpoint
but under different conditions of illumination has emerged as a principled way to obtain
additional local radiometric constraint in the computation of shape-from-shading. In many
cases, multiple images overdetermine the solution locally. This further improves robustness
by allowing local validation of the radiometric model used.

Photometric stereo is one technique for shape-from-shading that has been implemented in
a variety of experimental settings and that has produced consistently good results. The un-
derlying theory follows from principles of optics. An image irradiance equation is developed
to determine image irradiance as a function of surface orientation. This equation cannot be
inverted locally since image brightness provides only one measurement while surface orien-
tation has two degrees of freedom. Brightness values obtained from the same viewpoint but
under different conditions of illumination do make it possible to obtain dense, local estimates
of both surface orientation and surface curvature, without requiring global smoothness as-
sumptions and without requiring prior image segmentation. In three light source photometric
stereo, the three local intensity measurements overdetermine the two degrees of freedom of
surface orientation. Similarly, the six local spatial derivatives of intensity overdetermine the
three degrees of freedom of surface curvature. Photometric stereo was originally described
in [1, 2]. The first implementation was by Silver [3]. Photometric stereo has since been used
for a variety of recognition and localization tasks [4, 5, 6, 7, 8, 9]. The relation to surface
curvature also has been explored [10, 11, 12, 13, 14, 15].

Optics determines that an image irradiance equation necessarily exists but says very
little about the particular form that image irradiance equation must take. Of course, one
can exploit situations where the reflectance properties of a material are known to satisfy a
particular functional form. Formal analysis of these situations helps to establish the exis-
tence, uniqueness and robustness of solution methods under varying degrees of uncertainty
and approximation. Implementation also is facilitated because the resulting computations
typically involve equations of known form with unknown coefficients that can be determined
as a problem of parameter estimation. By now, the literature on reflectance models applica-
ble to computer graphics and computer vision is quite vast. Some examples are explicit to
photometric stereo [16, 17, 18, 19].

The usual formulation of an image irradiance equation assumes that each surface ele-
ment only receives illumination directly from the light source(s). This is correct for scenes
consisting of a single convex object. In general, a surface element also receives illumination
indirectly from light reflected from other surface elements in the scene. Interreflection is im-
portant for two reasons. First, as demonstrated by Gilchrist [20], interreflection near concave
junctions is perceptually salient. It is determined by the intrinsic reflectance (i.e., albedo) of
the surface material, independent of the amplitude of the ambient illumination [21, 22]. Sec-
ond, local shape recovery methods are unreliable if interreflection is not taken into account,
as recently has been shown [23, 24].

Indeed, photometric stereo is subject to error in the presence of cast shadows and in-
terreflection. No purely local technique can succeed since these phenomena are inherently
non-local. Nevertheless, this paper demonstrates that one can exploit the redundancy in
three light source photometric stereo to, in most cases, locally detect the presence of cast
shadows and interreflection. Detection is facilitated by explicitly including a local confidence
estimate in the lookup table used for gradient estimation.

Here, it is assumed that objects to be analyzed are made of a single material. Reflectance
properties are measured using a calibration sphere made of that material. Measurements
from the calibration sphere are directly applicable to the analysis of other objects of different
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shape but made of the same material and illuminated and viewed under the same conditions.
In this way, a material with any reflectance characteristic can be handled, provided that the
necessary calibration can be done. In some applications, it may be necessary to use paint (or
other coating) to match reflectance properties between a calibration sphere and the objects
to be analyzed.

Three representations for reflectance data are employed. First, the relationship between
measured intensity and surface gradient is represented by the familiar reflectance map,
R(p, q). Second, for a material with constant albedo, triples of measured intensity val-
ues, [E1, E2, E3], are shown to define a 2D surface in the 3D coordinate space whose axes are
E1, E2 and E3. In the absence of interreflection and cast shadows, all triples of measured
intensity fall on this surface. Interreflection causes some intensity values to be larger than
expected. Cast shadows cause some intensity values to be smaller than expected. Thus, in
practice, not all measured triples will lie exactly on the specified surface. Third, the rela-
tionship between triples of intensity values, [E1, E2, E3], and surface gradient is represented
in a lookup table for implementation purposes.

In the implementation described, each measured triple is projected onto the 2D calibra-
tion surface in order to estimate the gradient. The distance each measured triple needs to be
projected is used to define a local confidence estimate. Projection tends to decrease error due
to interreflection. Of course, any claim to quantitative correction would be fortuitous since
neither interreflection nor cast shadows are a local effect. On the other hand, the local confi-
dence estimate is a reliable way to notice when a measured triple does not lie on the required
surface. This supports the local detection of interreflection and cast shadows. Experimental
measurements verify that this is indeed the case. Local detection of interreflection can be
used to prevent erroneous surface reconstruction in regions so detected. Should accurate
surface reconstruction be the goal, this becomes useful input to schemes intended to reason
more globally, such as the one described in [24].

This paper moves photometric stereo closer to practical viability in two ways. First,
an experimental setting is described in which the multiple images required for photometric
are acquired simultaneously at video rates. No light sources need to be turned on and off.
Instead, spectral multiplexing is used. Three spectrally distinct light sources illuminate the
work space from different directions and a suitable RGB color camera acquires three-channel
video images that subsequently are treated as three separate B&W images, one corresponding
to each condition of illumination. Second, commercially available image processing hardware
is used to pass the three-channel video data through a lookup table of length 218. Lookup
table output includes both the gradient and the local confidence estimate. Overall, processing
of full frame video data occurs at near video frame rates (i.e., 15Hz).

Section 2 provides the background and theory. Section 3 describes the particular imple-
mentation and reports on the experiments performed. Section 4 provides a brief discussion
and summary of the conclusions following from the work reported. Finally, Appendix A
derives the results cited in Section 2 that are unique to the Lambertian case.
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2 Background and Theory

A given spatial arrangement of objects, made of a given set of materials, illuminated in a
given way, and viewed from a given vantage point, determine an image according to the laws
of optics. Geometric equations determine where each point on a visible surface appears in
the image and corresponding radiometric equations determine its brightness and color.

Reflectance modeling is difficult, in general, because complexities arise at several levels.
Local reflectance depends not only on the intrinsic optical properties of a material but also,
for example, on its surface roughness. Geometric ray analysis of surface microstructure
can be complex. At finer scales, one also needs to take into account the wave nature of
light, adding even more complexity. In scenes consisting of multiple objects, geometric
analysis at the macroscale also becomes complex, making it difficult to deal effectively with
interreflections and cast shadows. Despite this, there is considerable work on reflectance
models for computer vision. The edited collection [25] provides a good introduction to the
relevant literature.

A key observation, first made by Horn [21], is that image irradiance can be written as
a function only of surface orientation, for many imaging situations of practical importance.
Horn’s work, formulated for the problem of shape from shading, introduced the idea of the
reflectance map. Reflectance maps can be derived from formal reflectance models, when they
are available, or, as is the case here, when they can be measured empirically.

2.1 Shape from Shading and the Reflectance Map

The standard geometry of shape from shading is assumed. That is, let the object surface
be given explicitly by z = f(x, y) in a left-handed Euclidean coordinate system, where the
viewer is looking in the positive Z direction, image projection is orthographic, and the image
XY axes coincide with the object XY axes. The surface gradient, (p, q), is defined by

p =
∂f(x, y)

∂x
and q =

∂f(x, y)

∂y

so that a surface normal vector is [p, q,−1]. Thus, the gradient, (p, q), is one way to represent
surface orientation. An image irradiance equation can be written as

E(x, y) = R(p, q) (1)

where E(x, y) is the image irradiance and R(p, q) is called the reflectance map. A reflectance
map combines information about surface material, scene illumination and viewing geome-
try into a single representation that determines image brightness as a function of surface
orientation.

Given an image, E(x, y), and the corresponding reflectance map, R(p, q), shape from
shading typically is defined to be the problem of determining a smooth surface, z = f(x, y),
that satisfies the image irradiance equation over some domain, Ω, including any initial con-
ditions that may be specified on the boundary, ∂Ω, or elsewhere. It should not be assumed,
however, that reconstruction of the surface height function, z = f(x, y), always is the goal in
shape from shading. For example, orientation-based representations of surface shape can be
used for object recognition and localization tasks [4, 5, 6, 9]. These representations use sur-
face orientation directly, without computing the explicit representation of the object surface,
z = f(x, y).

Since Horn’s original work, a substantial, but scattered literature on shape from shading
has developed. Two essential references are Horn’s text [26] and a collection of papers edited
by Horn and Brooks [27]. With a single image, shape from shading problems typically are
solved by exploiting a priori constraints on the reflectance map, R(p, q), a priori constraints
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on surface curvature, or global smoothness constraints. Photometric stereo, on the other
hand, makes use of additional images.

2.2 Photometric Stereo

Photometric stereo uses multiple images obtained under the identical geometry but under
different conditions of illumination. Three image irradiance equations

E1(x, y) = R1(p, q)

E2(x, y) = R2(p, q) (2)

E3(x, y) = R3(p, q)

in general overdetermine the solution at each point, (x, y), because three intensity measure-
ments, E1(x, y), E2(x, y), and E3(x, y), are used to estimate two unknowns, p and q.

Conceptually, the implementation of photometric stereo is straightforward. Using a cal-
ibration object of known shape, one can build a lookup table mapping triples of measured
brightness values, [E1, E2, E3], to the corresponding gradient, (p, q). Suppose each image is
accurate to 28 = 256 gray values. Then a full table would have 28 × 28 × 28 = 224 entries.
Despite advances in commercial hardware, a lookup table of this size still is prohibitive in
terms of memory and real-time throughput capacity. The implementation described in Sec-
tion 3 uses 26 gray values from each image as input to a lookup table with 218 entries to
achieve near real-time throughput at 15Hz.

2.2.1 Albedo Variation

A reflectance map determines measured intensity as a function of the surface gradient for
a particular surface material, scene illumination and viewing geometry. If the material’s
bidirectional reflectance factor (i.e., albedo) also varies spatially, independent of the gradient,
one would obtain

E1(x, y) = ρ(x, y) R1(p, q)

E2(x, y) = ρ(x, y) R2(p, q) (3)

E3(x, y) = ρ(x, y) R3(p, q)

where ρ(x, y) is the albedo, a function of (x, y). Thus, Equations (2) are a special case of
Equations (3) in which the albedo is constant (and normalized to one). Equations (3) are
three equations in the three unknowns, ρ, p and q. The equations generally are non linear
so that a unique solution can not be guaranteed. For the Lambertian case, Equations (3)
become linear when unit surface normals are used instead of the gradient to represent sur-
face orientation, as shown in [2]. In this case, every triple of measured brightness values,
[E1, E2, E3], determines a unique albedo, ρ, and gradient, (p, q).

It is useful to compare the formulation of photometric stereo given in Equations (2) with
that used in Nayar et. al. [24]. Both use three light sources. Equations (2) are not restricted
to the Lambertian case. Constant albedo is assumed and, as a consequence, the problem is
overdetermined locally. Nayar’s work is restricted to the Lambertian case. Albedo is allowed
to vary since it is determined locally, in addition to the gradient. But, as Nayar et. al. point
out, this determination is erroneous in the presence of interreflection. Errors can not be
detected locally. Instead, the “pseudo shape” is defined to be the (possibly erroneous) shape
and albedo determined by pointwise solution of the linearized version of Equations (3). They
further show that this pseudo shape is unique for a given actual shape, independent of the
illumination and viewpoint. Finally, they demonstrate an iterative algorithm to reconstruct
a possible actual shape and albedo from the measured pseudo shape. This iterative algorithm
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is non local, requiring explicit reconstruction of the surface height function, z = f(x, y), at
each iteration step.

The comparison now is clear. Both local solutions are subject to error in the presence
of interreflection and cast shadows. When the problem is not overdetermined, as with
Nayar et. al., there is little one can do locally to detect errors. Their approach necessarily
requires global analysis. On the other hand, when the problem is overdetermined, as is the
case with Equations (2), it becomes possible also to locally detect inconsistencies.

A key benefit of using multiple light sources is the ability to overdetermine the problem
locally. If one needs to account for spatially varying albedo, as in Equations (3), it is possible
to use a fourth light source, as suggested early on [28]. The idea is to define three ratio images

Êi = Ei/E4, with associated reflectance maps R̂i = Ri/R4, using the fourth image, E4, as
reference. Using ratios, the four light source case becomes equivalent to the constant albedo
three light source case, given by Equations (2), because the spatially varying albedo terms
cancel when the ratios are formed. Once the gradient is determined locally, the albedo also
can be determined. (In practice, it is preferable to define Êi = (Ei − E4)/(Ei + E4) so that

R̂i = (Ri − R4)/(Ri + R4) but the idea is the same).
In this paper, constant albedo is assumed so that three light source photometric stereo

is characterized by Equations (2). When albedo varies, as in Equations (3), the problem
can be reduced to the form of Equations (2) by using a fourth light source and ratioed
images, as indicated. If the albedo also depends on imaging geometry, then the image
irradiance equations become Ei(x, y) = Ri(p, q, ρ), i = 1, 2, 3, 4. Ratioing no longer suffices.
Nevertheless, measured intensities are constrained to lie on a 3D manifold in the 4D space
of possibilities, demonstrating that the solution still is overdetermined locally.

2.3 2D Surfaces in the 3D Space of Measured Intensities

Equations (2) define the parametric equations, in parameters p and q, of a 2D surface in
the 3D coordinate space whose axes are E1, E2 and E3. Thus, with constant albedo and
no interreflection nor cast shadows, triples of measured intensity values, [E1, E2, E3], are
constrained to lie on a 2D surface in any three light source photometric stereo situation.
This 2D surface exists independent of the particular parameterization. When parameterized
in terms of the gradient, (p, q), the equations take on the form given by Equations (2).

2.3.1 Example: Lambertian Reflectance

When an ideal Lambertian material is illuminated by a single distant light source, image
irradiance is proportional to cos(i), where i is the incident angle (i.e., the angle between the
surface normal and a vector in the direction to the light source).

Figure 1 shows the scatterplot obtained for Lambertian reflectance corresponding to three
different directions of equal strength distant point source illumination. The gradients corre-
sponding to the light source directions for E1(x, y), E2(x, y) and E3(x, y) are, respectively,
(0.7, 0.3), (−0.7, 0.3) and (0, 0).

In Figure 1 and in all the scatterplots that follow, the 2D surface is shown as an empir-
ical point plot of measured intensity triples, [E1, E2, E3]. E1, E2 and E3 define the axes of
a right-handed Euclidean coordinate system. One can think of the E1-axis as pointing east,
the E2-axis as pointing north and the E3-axis as pointing up. Scatterplots are displayed
as orthographic projections from a given viewing direction. The viewing direction is spec-
ified by an elevation and azimuth. Elevation is the angle above the ground (i.e., E1 E2)
plane and azimuth is measured clockwise from north (i.e., clockwise from the E2-axis).
Throughout, two particular viewing directions are used: (a) elevation=10.0 azimuth=225.0
and (b) elevation=0.0 and azimuth=0.0. (All angles are in degrees). View (a) corresponds
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to a low “altitude” view from the southwest and view (b) corresponds to a projection onto
the E1 E3 plane. (The E2-axis points directly at the viewer).

The 2D surface depicted in Figure 1 is a six degree of freedom ellipsoid. The particular
ellipsoid is determined by the relative strength and configuration of the three light sources.
(Appendix A derives this result). The ellipsoid does not depend on the shape of the object
in view nor on the relative orientation between object and viewer.

2.3.2 Example: Phong Reflectance

The reflectance of many materials is modeled as a combination of a diffuse component and
a specular component. In recent years, considerable progress has been made to formulate
models based on principles of optics [25]. One early model, well-known in both computer
vision and graphics, is Phong shading. Phong shading is a purely phenomenological model
that now is considered inadequate since, for example, it fails to satisfy Helmholtz’s law of
reciprocity [29]. A variant of Phong shading described in [30, Section XXXIX]) does satisfy
reciprocity. Image irradiance is proportional to

cos(i) [(1 − α) + αcosn(s/2)]

cos(g/2)

where i, as before, is the incident angle, g is the phase angle (i.e., the angle between the
vector pointing to the light source and the vector pointing to the viewer), s is the off-
specular angle (i.e., the angle between the vector pointing to the viewer and the vector that
defines, relative to the light source direction and the surface normal, the direction of perfect
specular reflection), α is a fraction, 0 ≤ α ≤ 1, that models how much of the incident
light is reflected specularly and n is a number that models how compact the specular patch
is about the direction of perfect specular reflection. Parameters α and n vary according
to the properties of the material modeled. Phong shading is used here only for illustrative
purposes.

Figure 2 shows the scatterplot obtained for Phong reflectance (α = 0.75 and n = 20)
in the same three light source configuration used for the Lambertian case, Figure 1. The 2D
surface defined still is smooth but clearly it no longer is an ellipsoid. Similar results would
be noted for other non-Lambertian reflectance models [25].

2.4 Surface Curvature

The principal curvatures, and measures derived from principal curvature, are viewpoint
invariant and therefore play a potentially valuable role in shape representation for tasks
including surface segmentation, object recognition, attitude determination and surface re-
construction. In differential geometry, there are a variety of representations from which
principal curvatures can be determined. Many are derived from the explicit surface height
representation, z = f(x, y). Here, we develop representations for surface curvature based on
the gradient, (p, q), the reflectance map, R(p, q), and image intensity, E(x, y). In particu-
lar, the goal is to determine what independent information about surface curvature can be
extracted from the image irradiance equation.

There are three degrees of freedom to the curvature at a point on a smooth surface.
Consequently, three parameters are required to specify curvature. One representation is
in terms of the 2 × 2 matrix of second partial derivatives of the surface z = f(x, y). For
notational convenience, let

px =
∂2f(x, y)

∂x2
, py =

∂2f(x, y)

∂x∂y
, qx =

∂2f(x, y)

∂y∂x
and qy =

∂2f(x, y)

∂y2
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Now, let H be the matrix,

H =
[

px

qx

py

qy

]

H is called the Hessian matrix of z = f(x, y). It may appear that four parameters are re-
quired to specify H. But, for smooth surfaces, H is symmetric. That is, py = qx. Therefore,
only three parameters are required after all. H is a viewer-centered representation of sur-
face curvature because its definition depends on the explicit form of the surface function,
z = f(x, y), and on the fact that the viewer is looking in the positive Z direction.

From the Hessian, H, and the gradient, (p, q), one can determine a viewpoint invariant
representation of surface curvature. Let C be the matrix,

C = (1 + p2 + q2)
−

3

2

[

q2 + 1
−pq

−pq
p2 + 1

]

H (4)

Now, let k1 and k2 be the two eigenvalues of C, with associated eigenvectors ω1 and ω2.
Then, k1 and k2 are the principal curvatures, with directions ω1 and ω2, at z = f(x, y). The
principal curvatures, k1 and k2, are viewpoint invariant surface properties since they do not
depend on the viewer-centered XYZ coordinate system. Equation (4) determines principal
curvatures from the Hessian matrix, H, and the gradient, (p, q). The terms in Equation (4)
involving the gradient, (p, q), can be interpreted as the corrections required to account for
the geometric foreshortening associated with viewing a surface element obliquely.

The directions ω1 and ω2 are viewpoint dependent. Although the directions of principal
curvature are orthogonal in the object-centered coordinate system defined by the local surface
normal and tangent plane, they are not, in general, orthogonal when projected onto the image
plane. Thus, k1, k2, ω1 and ω2 together constitute four independent parameters that can
be exploited. (Because they are viewpoint dependent, the directions ω1 and ω2 are not
typically used in surface representations proposed for object recognition. Note, however,
that Brady et. al. [31] argue that, in many cases, the lines of curvature form a natural
parameterization of a surface).

Besl and Jain [32, 33] classify sections of a smooth surface into one of eight basic types
based on the sign and zeros of Gaussian and mean curvature. The Gaussian curvature, K,
also called the total curvature, is the product, K = k1k2, of the principal curvatures. The
mean curvature, H, is the average, H = (k1 + k2)/2, of the principal curvatures. It follows
from elementary matrix theory that

K = det (C) and H =
1

2
trace (C) (5)

The expression for K further simplifies to

K =
1

(1 + p2 + q2)2
det (H) (6)

Thus, the sign of det (H) is the sign of the Gaussian curvature.
Other local curvature measures can be defined, as well. If k is a principal curvature

then r = 1/k is the associated radius of principal curvature. For a smooth surface, the first
and second curvature functions are defined, respectively, as the sum of the principal radii of
curvature and the product of the principal radii of curvature. For smooth surfaces, the second
curvature function is equivalent to what’s been called the Extended Gaussian Image (EGI)
in computer vision [34]. These curvature functions possess desirable mathematical properties
that can be exploited for object recognition and attitude determination [9, 35]. Koenderink
also proposes two new curvature measures called curvedness and shape index [36].

Clearly, if one could locally determine the Hessian, H, then one could locally compute
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the curvature matrix, C, using the gradient, (p, q), obtained from photometric stereo and
Equation (4). Given C, one could examine its eigenvalue/eigenvector structure to deter-
mine any local curvature representation involving the principal curvatures, k1 and k2, and
their associated directions, ω1 and ω2, including Gaussian curvature, K, mean curvature, H,
curvedness and shape index.

2.5 Determining the Hessian

It would seem that determining the Hessian, H, in photometric stereo requires nothing
more than numerical differentiation of the gradient estimate, (p, q). While this may seem
adequate, differentiating the gradient without prior global smoothing is unstable, especially
if the gradient itself is inaccurate or if it has been quantized into too small a set of discrete
values. Therefore, it is useful to determine what independent information about surface
curvature can be extracted from the image irradiance equation.

By taking partial derivatives of the image irradiance Equation (1) with respect to x and
y, two equations are obtained which can be written as the single matrix equation [10]

[

Ex

Ey

]

= H
[

Rp

Rq

]

(7)

Subscripts x, y, p and q denote partial differentiation and the dependence of E on (x, y)
and of R on (p, q) has been omitted for clarity. The vector [Ex, Ey] is normal to the contour
of constant brightness in the image at the given point (x, y). The vector [Rp, Rq] is normal
to the contour of constant brightness in the reflectance map at the given gradient (p, q).
Equation (7) alone is not enough to determine the Hessian, H. But, with photometric
stereo, one such equation is obtained for each image. In a two light source case, one obtains

H =
[

E1x

E1y

E2x

E2y

] [

R1p

R1q

R2p

R2q

]

−1

(8)

provided the required matrix inverse exists. In the three light source case, the problem once
again is overdetermined. One can write

H =
[

E1x

E1y

E2x

E2y

E3x

E3y

]

R (9)

where
R = M (MTM)

−1

(T denotes matrix transpose) and

M =





R1p

R2p

R3p

R1q

R2q

R3q





provided the required matrix inverse exists. Equation (9) is the standard least squares
estimate of the solution to an overdetermined set of linear equations. It can be extended, in
the obvious way, to situations in which more than three light sources are used.

The matrices M and R are matrix functions of the gradient, (p, q). They depend only on
the three reflectance maps, Ri(p, q), i = 1, 2, 3. The matrix function R can be determined
at the time of gradient lookup table calibration. It too can be thought of as a (large)
lookup table, indexed by the gradient, (p, q). The matrix MTM, whose inverse is required, is
independent of the three images, Ei(x, y), i = 1, 2, 3, and hence independent of the particular
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surface in view. Thus, for a particular surface material, the principal factor that determines
the existence and robustness of the computation is the nature and the distribution of the
light sources. No useful local information is obtained when [Rp, Rq] is zero. This occurs
at local extrema of R(p, q) and at gradients, (p, q), shadowed from the light source. There
also may be gradients, (p, q), where two of the three [Rp, Rq] vectors are nearly parallel.
Local degeneracies in the two light source configuration can be eliminated (and the effects
of shadows minimized) when three, rather than two, light source photometric stereo is used.

In Equation (9) the magnitude of [Rp, Rq] plays the role of a “weight” that pulls the three
source solution towards an image irradiance equation for which the magnitude of [Rp, Rq] is
large (and consequently away from an image irradiance equation for which the magnitude
of [Rp, Rq] is small). This has a desirable effect because locations in an image at which the
magnitude of [Rp, Rq] is small will contribute minimal information, and it is good that they
are discounted. Because of this, points that are shadowed with respect to one of the light
sources need not be considered as a special case. Indeed, when one of the [Rp, Rq] vectors is
zero, the three light source solution, given by Equation (9), reduces to the two light source
solution, given by Equation (8).

The lookup table for gradient estimation, the reflectance maps, Ri(p, q), i = 1, 2, 3, and
the matrix R all are determined during calibration. Subsequently, on a pixel-by-pixel basis,
the three local measurements of intensity, [E1, E2, E3], are used to estimate the gradient,
(p, q). The six partial spatial derivatives of intensity, Eix, Eiy, i = 1, 2, 3, together with the
gradient, (p, q), are used to estimate the three parameters of the Hessian, px, qy and py = qx.
Thus, a total of nine independent local measurements are used to estimate a total of five
local parameters. The estimate of the Hessian, Ĥ, is not strictly independent of the estimate
of the gradient, (p, q), since the gradient is required to determine the appropriate value of
the matrix R for Equation (9). Nevertheless, the matrix R tends to be robust with respect
to errors in the gradient, (p, q), since, except in regions of highlight or specularity, the error
in [Rp, Rq] tends to be small for a given error in (p, q).

Given that estimation of the Hessian is overdetermined, it also becomes possible locally to
detect when curvature estimation is unreliable. In previous work [15], two approaches were
described. First, recall that symmetry of the Hessian, H, corresponds to the smoothness
(i.e., integrability) of the underlying surface, z = f(x, y). When Equation (9) is applied, it

is unlikely that the resulting estimate of the Hessian, Ĥ, is exactly symmetric. Symmetry is
forced by projecting Ĥ onto the so-called symmetric part of Ĥ, given by

Ĥ + Ĥ
T

2
(10)

prior to estimating the curvature matrix, C, with Equation (4). The assumption that the
surface locally is integrable can be tested by comparing the norm of the symmetric part of
Ĥ to that of the anti-symmetric part given by

Ĥ − Ĥ
T

2

Second, one can determine how well the estimated Hessian, Ĥ, accounts for the measured
intensity gradients, [Eix, Eiy], i = 1, 2, 3, based on the error matrix, E = [eij], defined by

E =
[

E1x

E1y

E2x

E2y

E3x

E3y

]

− Ĥ
[

R1p

R1q

R2p

R2q

R3p

R3q

]
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3 Implementation and Experimental Results

3.1 Experimental Setting

A calibrated imaging facility (CIF) has been built to control both scene parameters and
conditions of imaging. It is based on a 4’ × 8’ optical bench with mounting hardware for
controlled positioning and motion of cameras, light sources and test objects. Specialized
equipment includes: a Sony DXC-755 3 CCD 24-bit RGB camera with Fujicon 10–120mm
(manual) zoom lens; three Newport MP-1000 Moire (white light) projectors with associated
Nikon lenses and spectral filters; two Daedal rail tables (one 36” and the other 6”) and one
Daedal rotary table (6”); and associated controllers, motors, mounting hardware and power
supplies. The facility is well integrated with the other vision and robotics equipment in
the UBC Laboratory for Computational Intelligence, including a Datacube image processing
system consisting of DigiColor and MaxVideo-200 subsystems.

Work on photometric stereo and related work on multiple light source optical flow [37]
requires multiple images of a scene acquired simultaneously under different conditions of
illumination. This is achieved by multiplexing the spectral dimension. With appropriate
filtration, the three projectors become spectrally distinct lights sources, one red, one green
and one blue. The three color separation filters used are the Newport FS-225 set. The
filters are manufactured by Corion, Corp., Holliston, MA, and carry Corion part numbers
CA500 (blue), CA550 (green) and CA600 (red). The projectors illuminate the work space
from different directions. The Sony 3 CCD RGB camera is used to simultaneously acquire
three separate B&W images, one corresponding to each condition of illumination.

Care has been taken to ensure that the equipment achieves its intended functionality.
The light sources and associated lenses are rated to produce an illumination field uniform
to within ±10% over half the spot diameter and uniform to within ±15% over the full spot
diameter. The light sources also are DC powered to eliminate the effects of 60Hz AC line
flicker. When experiments are in progress, the CIF is enclosed by floor to ceiling black
curtains thus isolating it from other light sources in the laboratory.

The precise spectral response of each of the filters has been measured by the manufacturer.
There is negligible overlap in the visible spectrum between the red light source and either
the green light source or the blue light source. There is a small overlap between the green
and the blue light sources for wavelengths in the 500–520nm range. Clearly, if either the
camera’s green channel or its blue channel is sensitive to this common region, there will be
some overlap between the images acquired. Indeed, if the camera’s spectral responses are
quite broad, overlap is possible even if the light sources themselves do not overlap spectrally.
Unfortunately, the precise spectral response of camera is not provided by manufacturer nor
has it been measured. Instead, a simple test was performed to estimate the response of
the RGB camera channels in the given experimental setting. Three RGB video frames were
acquired for a test scene consisting of a simple white object. In frame 1, only the red light
source was on. In frame 2 only the green light source was on and in frame 3 only the blue
light source was on. The correlation coefficient between the illuminated channel and the
other two channels was determined for each frame. The correlation coefficient is a measure
of the linear relationship between the two channels. One useful interpretation is that the
square of the correlation coefficient is the proportion of the variance accounted for by linear
regression. Let X → Y denote the influence of light source X on camera channel Y . In four
cases, R → G, R → B, B → R and G → B, the variance accounted for was less than 1%
indicating excellent spectral separation. In the remaining two cases, the variance accounted
for was higher indicating some spectral overlap. The result was 3.5% for G → R and 6.5%
for B → G. The slight effect of this overlap is noted in the examples that follow.

Two objects are used in the experiments reported. One is a pottery sphere, used for
calibration purposes, and the other is a pottery doll face. In this case, both objects are
made of the same material with the same reflectance properties. Pottery, in bisque form,
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is a reasonably diffuse reflector although no particular assumption is made (or required)
concerning the underlying surface reflectance function. Other objects made of other materials
have been used in experiments too. For each material, a different calibration sphere is
required. In some cases, paint was used to achieve the effect of having a calibration sphere
and object made of the same material. Although many different objects have been tested
and many experiments run, the examples used here, following calibration, all come from an
eleven frame sequence during which the doll face was rotated exactly 3 degrees (about the
vertical axis) between successive frames.

3.2 Calibration

Calibration measures reflectance data using an object of known shape. These measurements
support the analysis of other objects provided the other objects are made of the same material
and are illuminated and viewed under the same imaging conditions. Empirical calibration
has the added benefit of automatically compensating for the transfer characteristics of the
sensor. Ideally, the calibration object is convex, to eliminate interreflection, and has visible
surface points spanning the full range of gradients, (p, q). A sphere is a good choice and is the
calibration shape used here. For a sphere, it is straightforward to determine the gradient,
(p, q), and the Hessian matrix, H, at each visible surface point by geometric analysis of
the object’s boundary contour. Figure 3(a–c) shows the three images of the calibration
sphere obtained from the three different light source directions. The sphere appears as an
ellipse because camera calibration, and in particular aspect ratio correction, has not been
applied. Nevertheless, the object’s boundary contour is easily determined (and becomes part
of camera geometric calibration). Let λ denote the relative scaling (i.e., the aspect ratio) of
y compared to x. Then, the equation of the sphere centered at the origin with radius r is

x2 + (λ y)2 + z2 = r2

Again, the standard geometry of shape from shading is assumed. That is, the object is
defined in a left-handed Euclidean coordinate system where the viewer is looking in the
positive Z direction, image projection is orthographic, and the image XY axes coincide with
the object XY axes. Then, the gradient and Hessian at point (x, y) are respectively

p = −x

z
and q = −λ2 y

z

H = − 1

z3

[

r2 − λ2y2

λ2xy
λ2xy

λ2(r2 − x2)

]

Processing the calibration images involves three steps. First, the three images are
summed. This is done to make sure that no part of the object’s boundary is missed be-
cause it lies in shadow. Second, an intensity histogram of the sum image is computed and
a threshold is selected to separate object from background. Simple thresholding is sufficient
since, by design, the object is distinct from the black background (i.e., the histogram is
clearly bimodal). Third, a simple least squares method is used to estimate the equation of
the ellipse which best fits the object boundary. The equation of the ellipse establishes the
relation between (x, y) and (p, q) for all points on the calibration object (and, as a side-effect,
determines λ).

Estimation of the ellipse is robust because all boundary points contribute. Figure 3(d)
shows the fitted ellipse overlayed on the sum image. (A small portion near the bottom of
the ellipse does not figure in the calculation since it corresponds to a region of the sphere
obscured by the fixture used to hold the object). Figure 3 represents a 256× 256 subwindow
of the full 512×480 video frame. A total of 566 boundary points contribute to estimation of
the ellipse. As a measure of the goodness of fit, the perpendicular distance of each boundary
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point from the ellipse was calculated. The mean perpendicular distance was 0.429 pixels and
the standard deviation was 0.367.

Figure 4 shows the scatterplot obtained for the calibration sphere. The intensity triples,
[E1, E2, E3], lie on a single 2D surface. (For comparison purposes, see Figure 5, the scatterplot
for frame 5 of the doll face sequence. The comparison is discussed in Section 3.6). If one chose
to force a constant albedo Lambertian model onto this example, one could fit an ellipsoid
to the data shown in Figure 4. This has been done, as an exercise, and, while the details
are not reported here, it is fair to conclude that the result is inferior to the non-parametric
approach (that makes no Lambertian assumption and requires no radiometric correction for
the transfer characteristics of the sensor).

3.3 Lookup Tables for Real-Time Photometric Stereo

Lookup table construction consists of three parts. First, the initial mapping between triples
of measured intensity values, [E1, E2, E3], and surface orientation is established. Second,
table interpolation is used to ensure that the 2D surface defined in the 3D space of measured
intensity triples is simply connected. Third, morphological dilation (i.e., expansion) of the
table is used to generate surface orientation estimates for intensity triples, [E1, E2, E3], that
do not fall directly on the 2D calibration surface. As part of lookup table expansion, a
distance measure is recorded that determines how far each new point is from a direct table
hit. This distance measure, in turn, is used to define the local confidence estimate.

For real-time implementation, the lookup table is of dimension 26 × 26 × 26 = 218. During
calibration, surface orientation is represented by a unit surface normal rather than by the
gradient. Each pixel location on the calibration object is sampled. The intensity triple,
[E1, E2, E3], is constructed by taking the high order 6 bits from each of the 8-bit values for
E1(x, y), E2(x, y) and E3(x, y). The result defines an 18-bit lookup table index. The unit
surface normal corresponding to [E1, E2, E3] is calculated using the equation of the fitted
ellipse. The unit surface normal is arithmetically added to the table. Summing unit surface
normals averages the triples, [E1, E2, E3], that occur more than once on the calibration
object. (As a post-processing step, the summed surface normal vectors are renormalized to
unit vectors). This completes part one of lookup table construction.

It also is likely that there are “gaps” in the lookup table. This happens, for example, when
intensity varies rapidly enough that the distance between neighboring triples, [E1, E2, E3],
is greater than one in either the E1, E2 or E3 dimension. In part two of lookup table
construction, these gaps are detected and intermediate table entries are interpolated by sub-
pixel resampling of the calibration images. At the end of part two, the 2D calibration surface
is simply connected and all table entries are deemed distance d = 0 (i.e., direct hit) entries.

In part three, the lookup table is iteratively expanded n times to extrapolate entries at
distances d = 1, 2, . . . , n from the 2D calibration surface. Let [i, j, k] be a table index at the
dth iteration that has no current entry (i.e., no surface normal assigned). The six neighboring
points, [i ± 1, j ± 1, k ± 1] are examined. If exactly one of the six neighbors is a table entry
then [i, j, k] is added to the table as a new distance d entry with surface orientation equal
to that of the neighbor. (If more than one of the neighbors are table entries then [i, j, k] is
added to the table as a new distance d entry with surface orientation a weighted average of
the surface normals of those neighbors where the weights are inversely proportional to the
distances assigned to those neighbors).

If iterative expansion were allowed to run to completion, then every table entry would
record a unit surface normal and a distance, d, corresponding to the iteration at which
the surface normal was assigned. In the experiments that follow, n = 10 iterations were
performed. Intensity triples that have no table entry become points at which photometric
stereo assigns no gradient. A bitmap file can be produced to mark those points at which no
gradient, (p, q), was assigned.

Figure 6 is a conceptual diagram of how the near real-time implementation is achieved on
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the Datacube system. The 24-bit RGB camera output is converted to a 26 × 26 × 26 = 218

table index by combining the high-order 6 bits of R, G and B. The lookup table supports
two independent 8-bit output streams. In the mode of operation depicted in Figure 6, one
8-bit stream is an index to a colormap used to render the gradient, (p, q), and the other
8-bit stream is the gray value representing the distance, d. If things were indeed this simple,
the implementation would be straightforward. Unfortunately, the Datacube MaxVideo-200
does not have a lookup table of length 218, as depicted. It does, however, have four lookup
tables of length 216. In the actual implementation, the high-order 2 bits of the R image
are used as a selector to determine which of the four lookup tables of length 216 to use.
The MaxVideo-200 operates internally at field rates (i.e., 60Hz). It is possible to split the
incoming video stream, pass it through the four lookup tables and recombine it in a total of
four field times leading to an overall throughput (on a 512 × 480 video frame) of 15Hz.

3.4 Determining the Reflectance Maps

Gradient estimation, via table lookup, does not determine the reflectance maps explicitly.
But, curvature estimation needs their partial derivatives, with respect to p and q, to deter-
mine the matrix R of Equation (9). It is a simple matter to invert the calibration object
gradient equations to determine the image point, (x, y), at which to obtain intensity measure-
ments for any particular (p, q). In this way, the three reflectance maps, Ri(p, q), i = 1, 2, 3,
are interpolated from the calibration images. In the implementation, the reflectance maps
are stored explicitly as arrays for a given domain of p and q and for a given grid spacing.
The partial derivatives are computed from the interpolated reflectances maps, on demand.
Figure 7 shows the three reflectance maps (with iso-brightness contours superimposed for
illustration purposes). Tick marks on the (horizontal) p-axis and on the (vertical) q-axis are
plotted one unit apart. Thus, the domain covered is approximately −2.0 ≤ p ≤ 2.0 and
−2.0 ≤ q ≤ 2.0. Since the distance from the origin in gradient space,

√
p2 + q2, is the

tangent of the slope angle, the domain covered includes all visible object points with slope
relative to the image plane less than tan−1(2.0) = 63.4 degrees. (Again, a small region is
missing that corresponds to the region of the sphere obscured by the fixture used to mount
it for viewing).

3.5 Determining Surface Curvature

To determine surface curvature at a point, (x, y), we need to measure the six partial spatial
derivatives, Eix, Eiy, i = 1, 2, 3, and we need to estimate the gradient, (p, q). Reference data
are the six partial derivatives, Rip, Riq, i = 1, 2, 3. The gradient, (p, q), is obtained via lookup
table, as described in Section 3.3. The reflectance maps, Ri(p, q), i = 1, 2, 3, are obtained
as described in Section 3.4. In the current implementation, each image and reflectance map
is smoothed with a 2D Gaussian and the required partial derivatives are estimated using
simple local differencing. This computation has not yet been implemented in real-time.

At each object point where the gradient, (p, q), is estimated and where Ri(p, q), i = 1, 2, 3
is defined, Equation (9) is used to estimate the Hessian matrix, H. The resulting estimate,

Ĥ, is made symmetric via Equation (10). The curvature matrix, C, is determined using
Equation (4). From the matrix C, the principal curvatures, k1 and k2, their associated
directions, ω1 and ω2, and other curvature measures are derived, as described in Section 2.4.
Again, none of these curvature computations has yet been implemented in real-time.

3.6 Experimental Results

For experimental and demonstration purposes, a particular color encoding for the gradient
has been adopted. Figure 8 shows the three input images for frame 5 of the doll face sequence.
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The figure shows a 384× 256 subwindow extracted from the full video frame. Light sources
1, 2 and 3 correspond, respectively, to the red, green and blue illuminants. Evidence that the
blue light source some has influence on the green channel, but negligible on the red, is noted
in that the neck shadow region in Figure 8(b) is not as dark as the corresponding shadow
region in Figure 8(a). Figure 9 shows the corresponding color encoded gradient as produced
in the near real-time (15Hz) implementation of photometric stereo. The inset (lower right)
shows the color rosette used to encode the gradient. The white lines in the center row and
center column of the rosette represent, respectively, the p and the q axes. Angular position
about the origin is encoded as color and distance from the origin is encoded as brightness.
The domain of (p, q) covered is −1.5 ≤ p ≤ 1.5 and −1.5 ≤ q ≤ 1.5 so that points
with slope less than or equal to tan−1(1.5) = 56.3 degrees are encoded by distinct colors
and brightnesses. The color encoding demonstrates qualitatively the local effectiveness of
photometric stereo, as can be seen, for example, around the hollow eye sockets. At the
circumference of each eye socket, it is evident that the local surface slope and aspect has
been recovered.

For integration with other vision modules, it is useful to use the two lookup table output
streams to carry 8-bits each of p and q. This is a trivial modification to what has been
described. The necessary information is available from calibration and the change simply
means that a different lookup table is loaded into the MaxVideo-200.

Figure 5, shows the scatterplot obtained for the three images of the doll face (frame 5)
shown in Figure 8. Clearly, it can no longer be said that all intensity triples, [E1, E2, E3],
lie on a single 2D surface. Even though the doll face is made of the same material and is
illuminated in the same way, it is a more complex shape than the calibration sphere. It is
non convex with regions of cast shadow and regions where interreflection is significant.

Figure 10 marks two regions for further scrutiny. The neck region has cast shadows
in the light source 1 and 2 images (see Figure 8(a–b)). The nostril region has significant
local interreflection. Figure 11 shows the scatterplot for the neck region. The outline of the
calibration sphere scatterplot from Figure 4 is overlayed (in bold) for comparison purposes.
It is clear that many of the points in the scatterplot are outliers with respect to the 2D
surface defined by the calibration sphere. In particular, some points are darker in E1 or E2

than is consistent with their E3 value. Similarly, Figure 12 shows the scatterplot for the
nose region. Again, the outline of the calibration sphere scatterplot is overlayed (in bold)
for comparison purposes. Many of the points in the scatterplot are outliers here too. In
particular, many points are brighter than is consistent with the 2D calibration surface.

Figures 13, 14 and 15 show examples of gradient estimation from frames 0, 5 and 10 of
the doll face sequence. In frame 5, the doll face is oriented directly towards the viewer. In
frame 0 it is rotated 3 × 5 = 15 degrees to the left and in frame 10 it is rotated 3 × 5 = 15
degrees to the right. In these figures, the gradient is rendered in B&W. In each case, figure (a)
encodes the slope angle (i.e., tan−1(

√
p2 + q2)) as a gray value and figure (b) plots the aspect

angle (i.e., tan−1(q/p)) as a short line segment. (To avoid clutter, the aspect angle is plotted
for every fourth point in x and y). Slope and aspect are viewpoint dependent measures.
Therefore the values for a given point on the doll face do not remain constant as the object
rotates. Figure (c) encodes the distance measure, d, as a gray value. In particular, one can
note that in Figure 14(c), the d value is large at many points in the neck and in the nostril
region, confirming that these outliers have been detected.

Figures 16, 17 and 18 show examples of principal curvature estimation from frames 0,
5 and 10 of the doll face sequence. In each case, figure (a) encodes the first principal
curvature, k1, the curvature whose magnitude is maximum, and figure (b) encodes the second
principal curvature, k2, the curvature whose magnitude is minimum. Principal curvatures
are viewpoint independent measures. Thus, the values for a given point on the doll face
should remain constant as the object rotates. Figure (c) plots the corresponding principal
directions, ω1 (in bold) and ω2. (To avoid clutter, the principal directions are plotted for
every fifth point in x and y). The principal directions are viewpoint dependent.
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4 Discussion and Conclusions

Multiple images acquired under the identical viewing geometry but different conditions of
illumination are a principled way to obtain additional local constraint in shape from shading.
Three light source photometric stereo is fast and robust. In the implementation described,
surface gradient estimation is achieved on full frame video data at 15Hz using commer-
cially available hardware. Surface curvature estimation also is demonstrated. Although not
yet implemented in real-time, curvature estimation also is simple and direct, requiring no
iteration steps. Overall, the computational requirements for photometric stereo are min-
imal compared to the iterative schemes typically required for shape from shading from a
single image. The main practical limits on system performance are data storage, required
by calibration, and data throughput, required to process multiple images, including spatial
derivatives, simultaneously.

One practical benefit of real-time implementation is the ability to integrate photometric
stereo and motion (based on related work on multiple light source optical flow [37]). A
high-speed camera shutter setting ensures that all surfaces points are imaged at essentially
the same instant in time. Real-time implementation of both photometric stereo and optical
flow can then determine the 3D structure and the 3D motion of deforming objects. Another
benefit relates to tasks where it may neither be possible nor appropriate to use alternatives,
such as laser range sensors. For example, photometric stereo is being evaluated for a medical
application involving the acquisition of 3D models of children’s faces (used to plan subsequent
medical procedures). Here, data acquisition must not harm the patient (so that the use of
laser ranging is problematic). Since children typically do not stay stationary, data acquisition
also must be rapid.

Photometric stereo achieves robustness in several ways. The key is to overdetermine the
problem locally. Overdetermination provides noise resilience and protection against local
degeneracies. To specify the local properties of a surface up to curvature requires six param-
eters since there is one degree of freedom for range, two for surface orientation and three for
curvature. If only a single measurement, say range, is available locally, then the problem is
locally underconstrained. The only solution then is to reconstruct a smooth surface globally
by combining measurements obtained over extended regions. In three light source photo-
metric stereo, each image provides three independent pieces of local information, one for
intensity and two for the partial spatial derivatives of intensity. (To be truly independent,
one would need an image sensor that measured partial derivatives directly). Thus, with three
images one obtains nine local measurements to overdetermine the five unknowns associated
with orientation and curvature. At the implementation level, gradient estimation is robust
because 18 bits of RGB input are used to estimate 16 bits (8 bits each for p and q) of output.

Overdetermination also supports local detection of modeling errors and other inconsisten-
cies. A (non parametric) empirical approach to reflectance modeling eliminates errors that
arise when the experimental situation does not satisfy assumptions implicit in parametric
models. It also eliminates the need to estimate the unknown parameters. For example, in the
work described, one need never estimate the directions to the light sources nor their relative
amplitudes. The empirical approach has the added benefit of automatically compensating
for the transfer characteristics of the sensor. It also means that the system is robust to pos-
sible spectral overlap in the three color channels used. Indeed, complete spectral separation
is not essential. At a higher level, robustness is achieved because an attempt is made to
use of all the information available in an image, not just that obtained from a sparse set of
features.

The claim that photometric stereo is accurate has not been dealt with quantitatively. A
careful assessment of accuracy, including comparison with laser range sensors, is an essential
next step. Proper error analysis, however, is non trivial. Issues involved include camera cal-
ibration (geometric and radiometric), method of integration (if comparison is made between
depth values), range sensor calibration (if range data serves as ground truth) and method of
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differentiation (if comparison is made between gradients and differentiated range data).
Photometric stereo appears to be a competitive technique for a variety of tasks. One class

of task is 3D model acquisition as, for example, required for computer graphics, CAD/CAM
analysis and rapid prototyping. For this class of task, the accuracy of the reconstruction of
the surface height function, z = f(x, y), is central. But, surface reconstruction itself begs
important questions. Standard schemes combine a data fit term with a global smoothness
term. Smoothers typically used are viewpoint dependent. (Stevenson and Delp [38] is a
notable exception). Reconstruction also requires specification of initial boundary conditions.
In practice, the results of reconstruction tend to be dominated by the choice of smoother
and by errors in the initial conditions. Given this, it is not clear what is the right approach
to surface reconstruction when dense, accurate local orientation and curvature data are
available.

Another class of task includes 3D object recognition, localization and inspection, as
required, for example, in industrial automation. Photometric stereo has been used for
object recognition and object localization in ways that do not reconstruct surface height,
z = f(x, y). In particular, Li [9] developed a system to determine the 3D attitude of known
objects based on dense orientation and curvature data determined by photometric stereo.
Her test objects were precision machined so that accuracy of attitude determination could
be assessed. In the end, surface reconstruction may not be the sine qua non of shape from
shading methods.

As shapes treated by machine vision and robotics systems become more complex, segmen-
tation based on surface orientation and curvature becomes more important. Segmentation
has always been a “chicken-and-egg” problem in computer vision. Three (or more) light
source photometric stereo allows local surface orientation and curvature to be reliably esti-
mated prior to segmentation. The redundancy in three light source photometric makes it
possible also to detect local inconsistencies that arise, for example, due to cast shadows and
interreflection. Detection is facilitated by expliciting including a local confidence estimate in
the lookup table used for gradient estimation. The effective interaction between local estima-
tion of surface properties, including local error detection, and global surface reconstruction
remains to be explored. The hope is that the present work will allow future segmentation
and integration schemes to be more robust.
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A Appendix: Lambertian Case (Constant Albedo)

This appendix reconsiders the case of three light source photometric stereo under the as-
sumption of Lambertian reflectance and constant albedo. It is shown that, in the absence of
interreflection and cast shadows, triples of measured intensity values determine a six degree
of freedom ellipsoid. The ellipsoid characterizes the strengths and relative positions of the
light sources.

The equation characterizing image irradiance for Lambertian reflectance, distant point
source illumination, orthographic projection and transmittance through an intervening scat-
terless medium is,

E(x, y) =
E0

π
ρ(x, y) cos(θi) (11)

where E(x, y) is the measured irradiance at image point (x, y), ρ(x, y) is the associated
bidirectional reflectance factor (i.e., albedo), E0 is the irradiance of the light source, and θi

is the incident angle.
The original paper on photometric stereo [2] included a formulation to recover both sur-

face gradient, (p, q), and surface reflectance, ρ(x, y), under the assumptions of orthographic
projection, three distant point sources of illumination and Lambertian reflectance. This is
the basis for pseudo-shape recovery, as defined in [24]. To apply this result, however, it is
necessary that the three light sources be in a known configuration and be of known strength.

Here, it is assumed that the directions to and the relative strengths of the light sources
are not known. Estimation of these parameters becomes part of the problem formulation.
Instead, it is assumed that ρ(x, y) is constant at all object points of interest so that the
dependence of ρ on (x, y) can be ignored. It follows, without loss of generality, that the
scale factor in Equation (11) can be taken equal to 1 so that the image irradiance equation
becomes the more familiar

E(x, y) = cos(θi)

But, we want the relative strengths of the light sources to be distinct. Therefore, we write

E(x, y) = E cos(θi) (12)

where scalar parameter E characterizes the relative strength of the light source.
Directions can be represented by unit vectors so that the cosine of the angle between

any two directions is the dot product of the corresponding two unit vectors. This allows the
Lambertian case to be formulated as a linear problem. For three light source photometric
stereo, let ai = [ai1, ai2, ai3], i = 1, 2, 3, be the 1×3 (row) vectors that point in the direction
of light source i with magnitude equal to the relative strength, Ei, of light source i. Let A
be the 3 × 3 matrix

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





Assume that the three light source directions, given by ai, i = 1, 2, 3, are not coplanar so
that the matrix A is nonsingular.

Let x = [x1, x2, x3]
T be the unit (column) surface normal vector at some object point

of interest. Let y = [y1, y2, y3]
T be the associated triple of intensity values given by

Equation (12), applied once for each light source direction. Then, we obtain

y = A x (13)

Equation (13) establishes a linear relation between surface shape, given by the unit surface
normal vector, x, and measured intensity values, y.
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Of course, if we knew A then we could determine x as

x = B y (14)

where B = A−1. Here, however, we do not assume that A is known. Fortunately, there is
more that we can say simply based on the observation that Equation (13) is linear.

Consider each unit vector, x, to be positioned at the origin. We can then associate all
vectors, x, with points on the unit sphere centered at the origin. In this way, we can think

of Equation (13) as specifying a linear transformation of the sphere ‖ x ‖
2

= (xTx)
1

2 = 1.
It is reasonable to ask what is the corresponding shape defined by the vectors y = A x.

Substitution, using Equation (14), shows that xT x = 1 implies

(By)T By = yT BTBy = yT Cy = 1

where C = BTB is the 3 × 3 symmetric, positive definite matrix

C =





c11 c12 c13

c21 c22 c23

c31 c32 c33



 =







b1
Tb1 b1

Tb2 b1
Tb3

b2

Tb1 b2

Tb2 b2

Tb3

b3

Tb1 b3

Tb2 b3

Tb3







and where the bi = [b1i, b2i, b3i]
T , i = 1, 2, 3, are the three 3 × 1 column vectors of B.

Suppose we now measure intensity triples, y, from points on an object of unknown shape.
Then, these intensity triples are constrained to lie on the quadric surface yT Cy = 1. That
is, the intensity triples, y, satisfy the equation

c11 y1
2 + c22 y2

2 + c33 y3
2 + 2 c12 y1 y2 + 2 c13 y1 y3 + 2 c23 y2 y3 − 1 = 0 (15)

This equation has six unknown coefficients. This follows, of course, from the fact that the
matrix C, being symmetric, has only six degrees of freedom. Equation (15) necessarily defines
an ellipsoid because the matrix C is positive definite. In particular, cii > 0, i = 1, 2, 3.

In [39], a simple least squares method is used to estimate the six unknown coefficients of
matrix C from scatterplots of measured intensity triples, even when the matrix A is unknown
and even when the object shape also is unknown. The constraint that C, in turn, imposes
on A is easiest to interpret when expressed in terms of C−1. Let D = C−1 so that

D = C−1 = (BTB)
−1

= B−1(BT )
−1

= B−1(B−1)
T

= AAT

Therefore,

D =





d11 d12 d13

d21 d22 d23

d31 d32 d33



 =







a1a1
T a1a2

T a1a3
T

a2a1
T a2a2

T a2a3
T

a3a1
T a3a2

T a3a3
T







The matrix D, like the matrix C, is a 3 × 3 symmetric, positive definite matrix. From D,
one can determine the relative strengths of the light sources i, i = 1, 2, 3, and the angle
between the vectors to light sources i and j, i 6= j, i = 1, 2, 3 , j = 1, 2, 3. Specifically, the
relative strength of light source i, Ei, is given by

Ei = (aiai
T )

1

2 =
√

dii (16)
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and the cosine of the angle, αij, i 6= j, between ai and aj is given by

cos(αij) =
aiaj

T

√
aiai

T
√

ajaj
T

=
dij√

dii

√

djj

(17)

Equations (16) and (17) together represent six constraints on the matrix A. These six
constraints can be interpreted geometrically. Let the vectors ai, i = 1, 2, 3, share a common
origin. The vectors, ai, form a triad whose shape, specified by the lengths of the vectors and
the angles between them, is known. Any rotation of this triad will not change the shape
of the triad and therefore will not violate any of the six constraints. A 3D rotation has
three degrees of freedom. To absolutely fix the triad in a given 3D coordinate system, three
additional constraints would be required.

A simple mathematical argument demonstrates that the ellipsoid yT Cy = 1 is, indeed,
invariant under a rotation of the coordinate system used to represent x. Let R be an
arbitrary 3 × 3 rotation matrix. Consider rotating the unit surface normals by R. That is,
let x̂ = Rx Clearly, the constraint x̂T x̂ = 1 is preserved since

x̂T x̂ = (Rx)TRx = xT (RTR)x = xTx = 1

Therefore, the corresponding constraint yT Cy = 1 also is preserved. It should not be
surprising that the ellipsoid yT Cy = 1 is invariant under a rotation of the object being
viewed since the brightness of a Lambertian reflector is independent of viewpoint.

Finally, there is a generalization to the derivation given here that merits attention. The
matrix A characterizes the directions to and the relative strengths of three distant point
light sources. It is natural, therefore, to assume that the derivation is valid only when there
literally are three distant point light sources. In fact, the result holds more generally as a
consequence of another property of Lambertian reflectance. For any Lambertian surface and
any spatial distribution of distant illumination, there exists a single distant point source that
produces the same reflectance map for that region of the gradient space not self-shadowed
with respect to any part of the illuminant. Silver [3, pp 104–105] provides a formal derivation
of this property. The derivation is not repeated here.

Lambertian shading from surface points not shadowed with respect to any part of a
spatially distributed distant illuminant is equivalent to that obtained from a single distant
point source illuminant. Silver’s derivation is constructive. Given any spatially distributed
distant illuminant, one can determine the equivalent point source direction and strength.
Thus, for Lambertian reflectance, triples of measured intensity values determine a six degree
of freedom ellipsoid, even if one or more of the three images arises from a spatially distributed
illuminant. The ellipsoid then characterizes the strengths and relative positions of the three
equivalent distant point light sources. Recently, Drew [40] has used this idea to demonstrate
that it is possible to recover surface shape from color images of Lambertian surfaces given
that a spatially distributed distant illuminant also varies spectrally. Drew also argues that
the underlying ellipsoid arising from Lambertian reflectance can be recovered in the presence
of specularities provided that specular points can reliably be detected as outliers. But, it
is not clear, given the example of Phong reflectance shown in Figure 2, that specularities
always can be effectively treated as outliers to an underlying ellipsoid shape.
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Figure 9: Example of color encoded gradient, (p, q), as produced in the near real-time (15Hz)
implementation of photometric stereo. The inset (lower right) shows the color rosette used
to encode the gradient.
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