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Abstract

A new method is described to compute a dense, local
representation of optical flow. The idea is to use the
intensity values recorded from multiple images of moving
objects acquired simultaneously under different conditions
of illumination. Each image is assumed to satisfy the
standard optical flow constraint equation. Multiple
images give rise to multiple constraint equations. When
the optical flow and the 2D motion field coincide, these
multiple equations are in the same unknowns. Two light
source directions are sufficient, in principle, to determine
the motion field. Three (or more) light source directions
overdetermine the solution, avoid local degeneracies, and
help to make the computation more robust.

This paper describes the basic theory and illustrates
the theory on a real image motion sequence. All compu-
tations are local, independent and relatively simple. No
iteration steps are required. It is suggested that the
requirement to obtain simultaneous images under
different conditions of illumination be satisfied by using
spectrally distinct illumination and sensing.

1. Introduction

In general, a point on a moving object induces
motion at the corresponding image point. The relation
between scene motion and image motion is determined
entirely by the geometry of image projection. The 2D
motion field is the 2D velocity vector at each point in an
image.

Object motion typically also induces change in the
brightness values measured in an image. The relationship
between object motion and brightness change is not
purely geometric because it also depends on radiometric
factors, including the illumination and the reflectance
properties of the objects in view. The optical flow is the
2D velocity vector of the brightness values themselves.

It is not possible to recover optical flow locally due
to the well-known aperture problem. Additional informa-
tion is required. Horn and Schunck[l] imposed a global
smoothness constraint on optical flow in their now classic
treatment. Their computed optical flow can vary locally,
provided the variation is smooth. In some circumstances,
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discontinuities in the motion field also are detected.
Other approaches impose local constraint. For example,
Kearney et al.[2] require that optical flow be constant in
a selected region while both Mailloux et al[3] and
Verri et al.[8] model optical flow as locally satisfying a
general affine transformation. Ohta[4] uses multispectral
images to obtain additional local constraint.

This paper reconsiders the possibility of computing a
dense, local representation of optical flow. The novel idea
is to use the intensity values recorded from multiple
images of moving objects acquired simultaneously under
different conditions of illumination. @ Photometric
stereo[10] exploits multiple conditions of illumination to
determine shape from shading. Here, the same idea is
applied to moving objects to determine optical flow.
Each image is assumed to satisfy the standard optical
flow constraint equation. Where the optical flow and the
2D motion field coincide, these multiple equations can be
solved together to determine the 2D motion field. The
method can be applied to every point in an image. Typi-
cally, the result is well-defined except at a sparse set of
features. The method imposes no smoothness condition
on optical flow and requires no a priori assumptions
about how the image ought to be segmented.

Section 2 develops the theory of multiple light source
optical flow in more detail. Section 3 discusses a particu-
lar implementation. Section 4 presents an example of the
method applied to a simple toy object. Section 5
discusses the possibility of practical realization. Finally,
conclusions are summarized in Section 6.

2. Background and Theory

2.1 The Optical Flow Constraint Equation
Let E = Kz,y,t) denote image brightness at image
point (z,y) as a function of time, & Then, by a chain rule

for differentiation, the total derivative of E with respect
to time, dE/dt, can be written as

dE/dt = Eq+ Ep + E, 1)

where E, = OE/0Oz, E,= OE/0y and E; = OE/3t are the
partial derivatives of E with respect to z, y and ¢ and
where v = dz/dt and v = dy/dt determines the instan-
taneous flow at (z,y). If the brightness of an object point
does not change as a consequence of motion, then
dE/dt = 0. Under this assumption, the optical flow con-
straint equation is given by



Eu+Ep+ E =0 (2)

From (1), it is clear that (2) is satisfied if and only if the
total derivative dE/dt is zero. Much has been said con-
cerning imaging situations that satisfy, approximately
satisfy, or fail to satisfy the optical flow constraint equa-
tion (2). Some essential elements of the discussion are
summarized in section 2.2.

For now, assume (2) holds so that its consequences
can be examined in more detail. When (2) holds, optical
flow and the 2D motion field coincide so that the vector
[4,9] is a purely geometric quantity describing the 2D
motion of image point (z,y) as a function of time. The
vector [E,,E,E] is a radiometric quantity describing the
partial derivatives of image brightness with respect to
position and time. Thus, (2) is of value because it relates
something that can be measured, the vector [E,,E,E], to
a geometric quantity of interest, the 2D motion field.
Although (2) is a radiometric equation, it makes no
assumption about the reflectance properties of the objects
in view. In particular, it does not assume Lambertian (or
any other) reflectance function.

Equation (2) cannot be solved locally because it is
one equation in two unknowns, « and v. Given a meas-
ured [E,E,E], equation(2) determines a line in
uv-space, called the flow constraint line.

2.2 Geometric and Radiometric Considerations

One interpretation of equation (2) is that it requires
that the vector [u,w] be the only factor necessary to
account for the temporal variation in image brightness.
Equation (2) holds (equivalently, dE/dt = 0) for purely
translational motion, orthographic projection and
incident illumination that is uniform (i.e., does not vary)
across the scene. Conversely, in any other circumstance,
one can expect dE/dt# 0 so that (2) does not hold
exactly.

With perspective projection or object rotation, there
are geometric “foreshortening’’ effects that cause dE/di to
be non-zero. With rotation, surface normal vectors
change relative to the direction to the light source and to
the viewer. Scene radiance is a function both of the
incident angle and of the view angle. Thus, scene radi-
ance (and therefore image brightness) changes in a way
that cannot be predicted without a priori knowledge of
surface reflectance and scene illumination. Verri and
Poggio[9] have quantified the expected difference between
optical flow and motion for a number of special cases.
Pentland[5] distinguishes brightness changes due to
radiometric factors, which he calls “photometric motion”,
from those due to geometric factors.

Spatial or temporal variation in scene illumination
will cause dE/dt# 0. Moving objects alter the scene
illumination, both because they cast shadows and because
they act as indirect sources of illumination via inter-
reflection.

Finally, at locations where image brightness is
discontinuous, [E,,E,E,] becomes undefined. Schunck|6]
argues that the optical flow constraint equation still is
satisfied across discontinuities, provided the number of
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discontinuities is finite. Subsequently, he developed a
version of his algorithm that could handle textured
regions(7].

2.3 Using Multiple Light Sources

With multiple light sources, we get additional equa-
tions. For the two light source case, one obtains

Eu+ B+ By =0 3)

Eyu+ By + By = 0 (4)

which can be solved for [u,v] as follows

-1
U Elz Ely Elt (5)
L2 I 9 E2y E,,
provided the required matrix inverse exists.

It is useful to distinguish cases when the matrix
inverse in (5) fails to exist. All gradient based methods
for the determination of optical flow, including the one
described here, produce no useful local information at
points where [E,,E,] is zero. It can also happen that the
two brightness gradients, [Ey,,E;,] and (B, By}, are
parallel. Typically, this happens when the brightness
gradient is dominated by a local surface feature, such as a
shape discontinuity or surface marking, independent of
the illumination. This also can happen owing to an
“accidental alignment” between surface shape and illumi-
nation direction(s). Local degeneracies can be resolved if
a third light source image is provided.

For a three light source case, one obtains

Eyu+ By + By = 0 (6)
(M

(®)

Eh'u + Ezy‘v + E2l =0

Eyu+ B3+ B3 = 0
Equations (6-8) can be written as the matrix equation
Ax = b
where x = [4,9]T, b= - [Ey1pEspEsdT and
Elz Ely
EZ: E2y
EBz ESy

©)

A=

In principle, there are many ways in which one could
solve (9) for x. The standard least squares solution, %, is
given by

% = (ATA'ATb (10)
The solution is unique provided that the rank of A is 2.
(Equation (9) can be extended, in the obvious way, to
situations in which more than three light sources are
used). It is important to note that the magnitude of
[E,,E,,E] plays the role of a “weight” that pulls the solu-
tion towards a flow constraint line for which the magni-
tude of [E,,E,,E)) is large (and consequently, away from a
flow constraint line for which the magnitude of [E,,E,E]
is small). This has a desirable effect in multiple light
source optical flow. Locations in an image for which




brightness is nearly constant will have [E,E,E] near
zero. These locations contribute minimal information,
and thus it is good that they are discounted. Because of
this, points that are shadowed with respect to one of the
light sources need not be considered as a special case.

2.4 Validating the Multiple Light Source Method

One would like to exploit the redundancy inherent in
an overdetermined problem in order evaluate the validity
of the solution method. Validating the multiple light
source method requires empirical support for the assump-
tion that the set of linear equations (6-8) is indeed
defined in identical variables « and v, independent of the
conditions of illumination. A good fit of this model to
the measurement data would suggest that the vector [u,v]
is an illumination invariant measure, whatever its
geometric interpretation. Loosely put, one would like to
determine what component of the measurement, b, is
accounted for by % under the model Ax = b. Fit to the
model can be expressed quantitatively by the residual

r = b- A% (11)
A relative error term is given by

o= 12

This error term combines components due to both meas-
urement uncertainty and to systematic modeling error. If
[E,,E,E] is zero at a point in one image, equation (10)
becomes equivalent to the two light source solution, given
by equation (5), applied to the measurements obtained
from the other two images. In this case, the relative
error term will be zero since the measurements no longer
are redundant.

3. Implementation

For a three light source configuration, six images are
required. The first three images are obtained under
different conditions of illumination at time ¢ = #. The
second three images are obtained at time ¢= ¢, respec-
tively under the identical conditions of illumination used
for the three images at t={;. It is essential that the
estimated derivatives all refer to the same point in space
and time. Derivatives of E(z,y,t) are estimated using first
differences in a 2x2x2 cube of brightness values, treating
the z, y and ¢ dimensions symmetrically. (See [1; pp 189-
190] for details). Initial brightness quantization was 8
bits-per-pixel. Even if these values were noise free, this
quantizes first differences into too small a set of discrete
values to permit reliable estimation of derivatives. The
six images are smoothed, using a 2D Gaussian filter, prior
to derivative estimation. Since the 2D Gaussian is separ-
able,. filtering is implemented as the successive convolu-
tion of a 1D Gaussian filter. The filter coefficients of the
1D Gaussian were scaled to sum to 256. No bits were
thrown away in the convolution so that the net effect is
to interpolate 8 bits-per-pixel data to 24 bits-per-pixel
smoothed data. In the example that follows, ¢ = 1.0.

Once the nine partial derivatives, (Ey, E;, E

i=1,2,3), are estimated, computation of optical flow
proceeds point-by-point, according to equation (10). Two
local checks are made to guarantee that the computation
is not degenerate. First, at least two of the spatial
brightness gradients, [E,,E,], must be non-zero. Second,
the rank of the matrix A must be two. Points that fail
either of these two checks are noted and the result set as
v=0and v=0.

4. Example: Stay-Puft Marshmallow Man

The Stay-Puft Marshmallow Man is a commercial
toy. Most of its surface has a white semi-gloss finish.
The eyes and mouth are black, the collar and hat band
are dark blue and the bow, in front, is red. The object
was placed on a small black platform in a small ‘“‘studio”
constructed with matte black walls and ceiling.

Figure 1 shows the three images at &= ¢,
Figures 1(a)-(c) have identical geometry but different
illumination. Figure 1(a) has light source 1l from the
upper right, Figure 1(b) has light source 2 from the upper
left, and Figure 1(c) has light source 3 from almost
directly behind the camera. The toy, but not the back-
ground, was then moved a small amount horizontally
right to left (approximately two pixels). Three additional
images, for t = t;, were then obtained respectively under
the same conditions of illumination as Figures 1(a)-(c).
All images were of dimension 256 x256.

Figure 2 illustrates the computation at a test point
(row:160 column:158). Figure 2(a) marks the test point
on the light source 3 image at ¢ = #,. Figure 2(b) plots
the three flow constraint lines in uv—space. E1, E2 and
E3 are respectively the flow constraint lines corresponding
to the light source 1, 2 and 3 images for the motion from
t=1y to t=1t. The measurements of [E,E,E)], taken
together, provide an accurate and well-conditioned esti-
mate of w and v. (The tick marks on the axes in
Figure 2(b) are spaced one unit apart so that we do
indeed see that the solution is approximately u = —2.0
and » = 0.0).

Figure 3 shows the results for the entire image. Opt-
ical flow is computed at every point. To prevent clutter,
Figure 3 plots results at every second point. Thus, if
each estimate was exact (i.e., v = —2.0 and v = 0.0), the
vectors would form a connected set of parallel lines run-
ning horizontally right to left. The estimates are good at
points where the object surface is smoothly shaded.
Some points on the collar fail to produce a result because
they are too dark. The estimates are inaccurate at sur-
face discontinuities and at surface reflectance boundaries
because there changes in image brightness due to scene
features dominate changes due to smooth shading,.

Optical flow vectors also are estimated for many
points on the background gray wedge and on the registra-
tion dots. Of course, there is no corresponding motion
since the background was stationary. Nevertheless, there
is non-zero optical flow owing to shadows and inter-
reflection.




Figure 4 displays the relative error term computed
according to equation (12). (The larger the error the
darker the point). The error computation suggests that
any attempt to assign a unique motion, [u,v], to points on
the gray wedge or on the registration dots is suspect.
Similar error values occur at points on the toy’s collar
and, to a lesser extent, at points on the toy’s body
oriented towards the viewer. Points on the toy’s collar
are very dark with minimal brightness variation. Points
on the toy’s body oriented towards the viewer, while
bright, also have minimal brightness variation. It is
likely that in both these latter cases the local measure-
ments are dominated by sensor noise (rather than lack of
fit to the model). When the model is good and there is
measurement uncertainty, the inherent redundancy in the
data allows more robust estimate of the motion. Cer-
tainly, more work needs to be done to develop measures
that distinguish measurement uncertainty from modeling
error. Both are essential.

5. Discussion

Current experimental work requires that the objects
be stationary while the multiple images are acquired.
Once a set of images is obtained, ome for each light
source, the object is allowed to move slightly and the
cycle is repeated. While this constitutes a valid demons-
tration of the method, it fails as a methodology for prac-
tical realization since light sources cannot easily be
turned on and off rapidly enough to support the tracking
of continuously moving objects.

The paradox of requiring simultaneous images of a
continuously moving object under different conditions of
illumination can be resolved by multiplexing the spectral
dimension. Suppose three narrow-band collimated light
sources, say red, green and blue, continuously illuminate
a work space from three different directions. Many color
cameras employ three distinct internal imaging systems,
each producing a separate black and white image
corresponding to a different spectral channel. Suppose
these three images are acquired simultaneously and sup-
pose there is minimal overlap in their spectral response.
Then this color camera and light source configuration
would support multiple light source optical flow, as
described above, for objects moving continuously in the
work space. Further, there is no requirement that the
spectral channels chosen be in the visible portion of the
spectrum. Channels in the near (i.e., reflective) infrared
also are a possibility and can be chosen not to interfere
with other vision algorithms working in the visible por-
tion of the spectrum. Future work will exploit these
ideas.

6. Conclusions

Multiple light source optical flow is a principled way
to obtain additional local constraint. At points where the
optical flow constraint equations (6-8) are satisfied
exactly, three light source optical flow supports the fast,
accurate and robust estimation of geometric motion. The
inherent redundancy in the measurements can be
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exploited to validate the computation locally, including
the ability to determine locations where optical flow and
the 2D motion field do not coincide.

Multiple light source optical flow is complementary
to techniques based on contour analysis or sparse feature
matching because it works best where those techniques
fail (and vice versa). Multiple light source optical flow
works best on smoothly curved surfaces, without distinct
surface markings, because local brightness then depends
primarily on local shading. This makes it possible to
obtain dense, non-redundant, local information by vary-
ing the direction of illumination. The method will be
unreliable at surface discontinuities and surface markings
because then local brightness change is dominated by
scene features largely independent of the direction of
illumination.
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Figure 1. Three images of the Stay-Puft Marshmallow Man. Figures (a), (b) and (c) show images of the toy
under three different conditions of illumination at ¢t = #,. Motion from ¢ = #, to ¢ = t, was a small translation
from right to left. The object moved, but not the background.
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Figure 2. Multiple light source optical flow computation at one point on the Stay-Puft Marshmallow Man
example. Figure (a) marks the point. Figure (b) shows the three flow constraint lines.
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Figure 3. Optical flow computed for the Stay-Puft Marshmal- Figure 4. Error result for the Stay-Puft Marshmallow Man
low Man. example.




