
Professor of Teaching Promotion Portfolio:

Educational Leadership, Teaching, Curriculum

Development, and Service Statement

Steven Wolfman

Department of Computer Science

UBC

September 11, 2013

1



Contents

1 Introduction 3
1.1 Useful Terms and De�nitions . . . . . . . . . . . . . . . . . . 3

2 Educational Leadership 5
2.1 Leadership in the Int'l CS Education Community . . . . . . . 5
2.2 Bachelor of Computer Science Program Director . . . . . . . 7
2.3 TA Assignment Coordinator . . . . . . . . . . . . . . . . . . . 8

3 Teaching 11
3.1 Teaching Philosophy . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Student Mentoring . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Pedagogical Training for Colleagues . . . . . . . . . . . . . . . 13
3.4 Educational Technology . . . . . . . . . . . . . . . . . . . . . 14
3.5 Contextualizing Computer Science . . . . . . . . . . . . . . . 15
3.6 Teaching Sta� Management . . . . . . . . . . . . . . . . . . . 16

4 Curriculum Development and Pedagogical Innovation 17
4.1 CPSC 121 Curriculum Development . . . . . . . . . . . . . . 17

4.1.1 Inverting the CPSC 121 Lecture . . . . . . . . . . . . 18
4.1.2 Restructured Labs . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Adaptation to CPSC 110 . . . . . . . . . . . . . . . . 22

4.2 Parallelism in CS Education . . . . . . . . . . . . . . . . . . . 23
4.3 CPSC 221 Curriculum Development . . . . . . . . . . . . . . 23
4.4 Foundations of Computing Concept Inventory . . . . . . . . . 24
4.5 Computing and Democracy . . . . . . . . . . . . . . . . . . . 25

5 Service 26

2



1 Introduction

This statement describes my teaching, educational leadership, curriculum
development and pedagogical innovation, and service in support of my pro-
motion to the Professor of Teaching. I organized the document according
to the Guidelines for Promotion to Professor of Teaching1. I include the
Guideline's four recommended sections below and reference a set of linked
appendices as relevant. I focus generally on contributions that have occurred
since my promotion to Senior Instructor on 1 July 2009.

Each section begins with my summary of the Guideline's suggestions for
its contents. Where the Guideline indicates multiple locations for a single
type of contribution, I brie�y indicate which section I chose for the contri-
butions.

Finally, some notes on terminology will be helpful throughout.

1.1 Useful Terms and De�nitions

� The word �instructor� means �the instructor-of-record for a course�, not
the rank of Instructor at UBC.

� Several frequent abbreviations merit an early introduction: CS (Com-
puter Science), CPSC (course code for the UBC CS department), TA
(teaching assistant, where UTA and GTA are undergraduate and grad-
uate TAs), and URA (undergraduate research assistant).

� For brevity, I will later refer to the following courses by number:

CPSC 101: Connecting with Computer Science Primarily a non-
majors introductory course.

CPSC 110: Computation, Programs, and Programming Introductory
course, a co-requisite for (must be taken before or concurrently
with) CPSC 121. Replaced our old introductory course in Septem-
ber 2010. Required for majors.

CPSC 121: Models of Computation Introduction to discrete math-
ematics and hardware. First course of the Foundations of Com-
puting sequence and also of the Computing Systems sequence.
Required for majors.

1See: http://www.hr.ubc.ca/faculty-relations/files/Guidelines-for-

Promotion-to-Professor-of-Teaching.pdf.

3

http://www.hr.ubc.ca/faculty-relations/files/Guidelines-for-Promotion-to-Professor-of-Teaching.pdf
http://www.hr.ubc.ca/faculty-relations/files/Guidelines-for-Promotion-to-Professor-of-Teaching.pdf
http://www.hr.ubc.ca/faculty-relations/files/Guidelines-for-Promotion-to-Professor-of-Teaching.pdf


CPSC 221: Basic Algorithms and Data Structures Introduction
to algorithms, data structures, algorithm analysis, and counting.
Second course of the Foundations of Computing sequence. Re-
quired for majors.

CPSC 311: De�nition of Programming Languages Exploration
of key programming language building blocks, primarily through
construction of successive interpreters. Elective for majors (ex-
cept for a few specialized streams).

CPSC 313: Computer Hardware and Operating Systems Continued
exploration of the system- and hardware-level features of comput-
ers that enable e�ective and e�cient program execution. Third
course in the Computing Systems sequence (and last one re-
quired). Required for majors.

CPSC 320: Intermediate Algorithm Design and Analysis Exploration
of families of algorithms and their application, with advanced al-
gorithm analysis techniques. Third course in the Foundations of
Computing Sequence (and last one required). Required for ma-
jors.

CPSC 448/CPSC 449 Generic course codes for directed studies/thesis
courses for undergraduates.

CPSC 490 Generic course code for student-directed seminars, courses
proposed by and for undergraduate students. Each course has a
faculty sponsor to mentor the proposer and assign o�cial grades.

4



2 Educational Leadership

This section focuses on formal leadership roles and promotion of teaching
and learning where I did not necessarily develop new pedagogy and curricu-
lum. I have excluded the Guideline's suggested �teaching, mentorship and
inspiration of colleagues�, putting it instead in Teaching, where the Guide-
line includes the element �participation in the pedagogical training of other
faculty and graduate students.�

2.1 Leadership in the Int'l CS Education Community

One of my professional goals has been to foster and shape the CS educa-
tion community, particularly through SIGCSE. SIGCSE is the �agship CS
education conference2: the Technical Symposium on Computer Science Ed-
ucation, named for the �Special Interest Group� that runs it. It's an annual
conference with roughly 1200 attendees, 100 papers, and 3�4 days of content
in about 7 parallel tracks. The work described in this section has been in
collaboration with many others in the CS education community.

Since my �rst SIGCSE in 2002, I have bene�ted from mentorship, train-
ing, and networking within the community. I volunteered for years as a
student, led the volunteer program in 2006, organized the 30+ workshops in
2008, led the entire technical program in 2009, and the whole symposium in
2010. After a few years' �vacation�, I am back leading the volunteer program
and as Associate Program Chair.

My most signi�cant contributions to SIGCSE were in 2009 and 2010.
The appendix On SIGCSE Leadership includes links to the websites and
programs for these two conferences.

As Program Chair for SIGCSE 2009, my co-chair Gary Lewandowski and
I focused on improving reviewing, responding to growing discontent from
authors. SIGCSE solicits 6 reviews per paper but only 3 per reviewer, which
means recruiting roughly 800 reviewers. Gary and I wanted to maintain this
odd arrangement as a service to the community, particularly reviewers from
teaching-oriented institutions where reviewing is a primary scholarly activity.
However, the arrangement produces reviews that are often ill-calibrated.

2CS conferences not journals are the primary venues for dissemination of
high-quality work. For one view on this, see the Computing Research Asso-
ciation memo Evaluating Computer Scientists and Engineers For Promotion and
Tenure (http://cra.org/resources/bp-view/evaluating_computer_scientists_and_
engineers_for_promotion_and_tenure/).

5

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#sigcse
http://cra.org/resources/bp-view/evaluating_computer_scientists_and_engineers_for_promotion_and_tenure/
http://cra.org/resources/bp-view/evaluating_computer_scientists_and_engineers_for_promotion_and_tenure/
http://cra.org/resources/bp-view/evaluating_computer_scientists_and_engineers_for_promotion_and_tenure/
http://cra.org/resources/bp-view/evaluating_computer_scientists_and_engineers_for_promotion_and_tenure/
http://cra.org/resources/bp-view/evaluating_computer_scientists_and_engineers_for_promotion_and_tenure/


We designed a system to balance high-quality, transparent, scalable re-
viewing with the community's unique requirements. The Program Chairs
recruit roughly ten Associate Program Chairs (APCs), each expert in some
commonly published areas. Each APC writes meta-reviews for about 30
papers that summarize key points from the reviews and provide a recom-
mendation to accept or reject along with clear, concise reasoning. APCs'
place reviews in a larger context, focusing on papers with inconsistent or
weakly justi�ed reviews. The system also allows Program Chairs to support
work in burgeoning and di�cult-to-assess areas, e.g., Gary's and my choice
to emphasize parallelism and CS education research.

The APC system was a success in its �rst year, judging by positive evalu-
ation results and a lack of complaints at the business meeting (a rare event!).
The new system has since become standard; indeed, I've rejoined as an APC
for SIGCSE 2014.

I also provided a detailed timeline of tasks�with a library of resources
such as spreadsheets, database queries, and template e-mail messages�to
subsequent years' Program Chairs. Information from my timeline continues
to be used today.

Gary and I collaborated again as General Chairs (AKA Symposium
Chairs) of SIGCSE 2010. We again highlighted parallelism and CS edu-
cation research by recruiting keynote speakers on each topic. However, most
of a SIGCSE General Chair's e�ort is unglamorous. Almost all conference
administration devolves to us, including scheduling dozens of events and
scoping, soliciting, and arbitrating bids on space, A/V, wireless, and cater-
ing. In 2010's economic climate, we also struggled to keep registration fees
low for our often grant-poor attendees. We held to our budget and increased
fees by only $10 to $200, much less than 2010 CS research conference fees,
like $560�$760 for CHI, SPLASH (OOPSLA), and VLDB, and rather less
than the $250 fee in 2013.3

In 2009 and 2010, I also helped connect the BC computing education
community to SIGCSE, consulting with theWestern Canadian Conference on
Computing Education (WCCCE) Chairs as they obtained �in-cooperation�
status with SIGCSE and expanding advertising of WCCCE in particular and
of regional CS education conferences in general.

More recently:

� I led a team of faculty from 7 institutions reporting on the roles of
teaching-oriented faculty at research institutions and advocating for

3All amounts are in US dollars.

6



key practices to improve their contribution. Our report was published
in Communications of the ACM (54(11):35�37, 2011)4, the main com-
puting professional organization's magazine, sent monthly to all mem-
bers.

� I acted as Student Volunteer coordinator for SIGCSE 2013 and
SIGCSE 2014, creating opportunities for the roughly 100 volunteers
to network with each other and SIGCSE �bigwigs�, in response to feed-
back from previous surveys of student volunteers.

2.2 Bachelor of Computer Science Program Director

In my �rst year at UBC, I taught the �BCS� (Bachelor of Computer Science)
section of our introductory course. The roughly 15-person class was tiny
compared to my other sections but, as I told the 2013 BCS cohort at their
orientation, that class was also louder, more demanding, more intense, more
collegial, and more exciting than the huge general sections. In the years since
then, I've taught the BCS group and worked with BCS students as often as I
could. When I got the chance, stepping up to be BCS Director was a natural
move!

I directed the BCS program from 2011�2012 and am resuming the role
now after a sabbatical hiatus. The program serves students with a previous
Bachelor's degree in another �eld. It has expanded over four years from
admitting 30 students annually to 100. As BCS Director, I am working
to reinforce the intense, positive culture that drew me to the program. The
work described in this section is in collaboration with Giuliana Villegas, BCS
sta� lead, and other faculty, students, and TAs involved in the program.

My largest project for BCS is an interactive digital media program en-
tering its second year, a collaboration with Kimberly Voll at the Centre for
Digital Media (a UBC-, SFU-, BCIT-, and Emily Carr-sponsored institute).
CPSC has no plans to o�er digital media coursework, but BCS students fre-
quently express interest in the area. I also observed at a high school career
fair that most of the students believe CS is digital media. This program �lls
that gap.

In the 6-credit program, BCS students gain hands-on experience building
industry-sponsored interactive media projects with large, multi-disciplinary
teams. So far, students and their mentors stress the bene�ts of the program
in terms of technical skills (e.g., web development and version control) and

4See: http://cacm.acm.org/magazines/2011/11/138214-teaching-oriented-

faculty-at-research-universities/abstract.

7

http://cacm.acm.org/magazines/2011/11/138214-teaching-oriented-faculty-at-research-universities/abstract
http://cacm.acm.org/magazines/2011/11/138214-teaching-oriented-faculty-at-research-universities/abstract
http://cacm.acm.org/magazines/2011/11/138214-teaching-oriented-faculty-at-research-universities/abstract


technical communication with non-technical audiences, as well as exposure
to project work�ows speci�c to interactive digital media. (The appendix On
the BCS/CDM Collaboration links to the two students' projects.) In the
long run, we hope to provide valuable experience to BCS students, create
showcase materials for the BCS program and computing education in general,
and improve ties with the Centre for Digital Media.

I have also continued the basic services of the BCS leadership, including
adding weekly o�ce hours in the BCS room to simplify advising appoint-
ments and foster community, improving the application process for interna-
tional students by gaining Faculty support for an English Exemption Test,
supporting a student-organized BCS Club, and consulting with students and
the steering committee to understand future directions for the program. A
few necessary e�orts have had negative results, including: exploring col-
laborative advertising with aligned UBC programs, �nding alternatives to
the �Technical Writing� requirement (oft-maligned by BCS students), and
addressing a requirement BCS students take an extra course (versus B.Sc.
students) for �nancial aid eligibility.

2.3 TA Assignment Coordinator

I was TA assignment coordinator for the CS department from 2010�2012 and
am presently resuming the role after a sabbatical hiatus. I took the role as a
natural extension of my interest in e�ective Teaching Sta� Management. The
coordinator manages the assignment process for undergraduate courses in-
cluding determining the number of available positions, advertising positions,
accepting applications, vetting candidates, making o�ers, managing changes,
and collecting feedback from TAs and instructors on the assignments. In a
large department like ours, this is an intense workload�in the fall term of
2013, for example, we eventually hired 68 graduate and 97 undergraduate
TAs. The work described in this section has been in collaboration with sta�,
students, and faculty involved in TA assignment and Renée Stephen, the
department's webmaster.

I made important improvements to the �matching� process that asso-
ciates TAs with courses. In consultation with stakeholders, I redesigned the
TA applications for undergraduate and graduate TAs (UTAs and GTAs).
The new system increases the information available to the TA assignment
team, clari�es the application process for potential TAs, reduces di�erences
in work�ow between UTA and GTA assignment, and simpli�es processing of
application data.

For example, the application (shown below) makes the course content and

8

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#bcs-cdm
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#bcs-cdm


TA quali�cations clear to TAs. The department already allowed instructors
to update course information via editing web account pro�les; we added
TA quali�cations to this area and seeded with quali�cations adapted from
another committee's survey of instructors.

Figure 1: A screenshot of part of the GTA application illustrates the extra
information available to students. With nothing but the course title before,
grads would likely have no idea that CPSC 189 requires knowledge of the
How to Design Programs approach or the Eclipse development environment.

The new application pulls course descriptions and quali�cations from
this site and exposes it in the application form where applicants self-rate
their quali�cations and interest in each course. (Applicants previously saw
no quali�cation information and indicated only rough interest levels�UTAs
by coarse year-level ratings and GTAs by listing a few favorite courses.)
Applicants also provide a detailed justi�cation for their �favorite� courses.

The information available from this application has radically altered the
TA assignment process. Applicant self-ratings quickly enable initial assign-
ments that are likely to be satisfactory and successful. The TA assignment
team still often verify self-assessed quali�cations, but this �digging for infor-
mation� is rarer and more focused, often guided by the �favorites� informa-
tion.

The work�ow's track record has been good so far. Of well over 100 as-
signed TAs per term, we typically assign fewer than 10 to courses for which

9



they are unenthusiastic (and none to courses for which they are unquali�ed).
In those rare cases, we explain to the TAs and instructors involved why the
assignment occurred. Negative feedback from instructors about the assign-
ment seems to have decreased, particularly from courses with unusual TA
quali�cations.

I've also made many smaller improvements to TAing in the department:
establishing a regular request for instructors to encourage students to TA;
organizing panels and social lunches for TAs to help establish a teaching
community; increasing transparency by reporting details of the assignment
process to stakeholders; and so forth.

Before I left the position for my sabbatical year, I created an annotated
standard-of-practice document with a substantial archive of related docu-
ments, spreadsheets, and scripts. I supported the new TA assignment team
through the hando� process with these documents. With a little help from
me during sabbatical, they have maintained the new work�ow and a high
quality of matching between TAs and courses.

10



3 Teaching

This section focuses on my teaching, including a brief teaching philosophy
statement. However, I generally exclude long-term curricular and pedagog-
ical innovations, which are discussed in Curriculum Development and Ped-
agogical Innovation instead. I have therefore deemphasized the Guideline's
suggested elements �information on new courses, pedagogies, and course con-
tent� and �development of new and innovative approaches to education�.

Student and peer evaluations of my teaching supplied by the UBC CPSC
department are available in the Teaching Evaluations appendix.

3.1 Teaching Philosophy

My �rst task as teacher is to help students �nd their motivation to learn
by making CS exciting and contextualizing it, e.g., through connections to
research, everyday problems, and intriguing puzzles. Once motivated, stu-
dents learn best when they are active, re�ective, and social. They actively

engage: solving problems, discussing ideas, and otherwise exercising their
skills. They re�ect by investigating what and how they have learned and
how to learn more e�ectively. They rely on social support (peers, mentors)
to facilitate and give context to their learning. I cultivate these traits through
pedagogical techniques (such as novel active learning methods for large lec-
tures), technologies (such as new presentation tools for dynamic lectures),
and community activism (such as CS student discussion groups).

Examples of how this philosophy expresses itself in my teaching can
be found throughout the portfolio. Student evaluations�particularly items
about presenting material interestingly and stimulating students to think�
and peer evaluations of my teaching provide evidence that I successfully
excite students about computing. Contextualizing CS gives a few brief ex-
amples of how I connect course material to other domains. Inverting the
CPSC 121 Lecture focuses on how I've made student learning in CPSC 121
classes more active while the project I developed for CPSC 221 described in
Educational Technology is an example of how I made student learning more
active outside the classroom. Pedagogical Training for Colleagues describes
some of the work that has stemmed from re�ection on my own teaching
while the staged milestones in the CPSC 221 project described above are
an example of how I encourage students to be re�ective learners. Student
Mentoring describes some of the work I've done to encourage socialization
and mentorship around learning for students; Educational Leadership re-
peatedly touches on my e�orts to encourage socialization and mentorship

11

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#evals


among students, TAs, and colleagues.

3.2 Student Mentoring

My success as a student came with the support of an amazing group of
mentors, faculty, sta�, and senior students who gave their time and expertise
to help me succeed. This kind of mentorship, always beyond the classroom
and often informal, is critical to students' success and their development as
professionals. Like my own mentors, I try to form strong relationships with
my own students. When I don't believe I'm the best �t as a student's mentor,
I also play �matchmaker� with my colleagues, recognizing when others have
the technical or soft skills to help a student that I might lack!

Since 2009, I've formally mentored 10 undergraduate students through re-
search assistantships, directed studies, and honours theses; 5 undergraduate
Integrated Science students (as their assigned supervisor); helped supervise
one Ph.D. student's thesis work; acted as second reader for two Master's stu-
dent's theses; acted as teaching mentor to a graduate student teaching for
the �rst time; sponsored two student-directed seminars that explore topics
unavailable in the curriculum (CS Education and �Big Data�); and secured
$4600 of funding for undergraduate researchers, with approximately $3000
additional under review.

Publication is not necessarily the end goal in my mentoring relationships;
however, many of my URAs, directed studies, and thesis students have pub-
lished with me. Tian presented at a UBC research conference; Piam, Lisa,
Elizabeth, and Kuba have all presented posters at an annual UBC Carl
Wieman Science Education Initiative event; Chris and Elizabeth published
papers at SIGCSE; Kuba published a poster and has a paper in submission;
Erica took third place at the World ACM Student Research Competition
�nals; Arianne and I prepared a set of presentations on elections that I've
used at many UBC and Vancouver community venues; Kevin and Caroline's
projects are both getting live use in industry; and Stephanie plans to pub-
lish her thesis. (Most of these appear as publications or annotations in my
CV. Sample election materials and Kevin and Caroline's are linked from the
appendices.)

In 2011-2012, I also organized a weekly lunch session open to anyone in
the department where we �shoot the breeze� about CS topics, usually guided
by a paper or brief presentation by someone in the group. Typically these
draw a mix of 5�10 undergraduate and graduate students. Students learn
CS material and establish social ties that will help them in their studies and
careers. For example, a mathematics graduate student found mentors to

12

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#appendix


help her connect her thesis to related CS topics through the lunches.
Finally, I have an �open door� policy with my students and TAs�that

is, if my door's open, come in and talk to me about anything (and I try to
leave it open as much as possible!)�that has led to a great deal of informal
mentoring, especially since I become an o�cial departmental advisor. I keep
no statistics on these sessions, but an example of their impact was guiding
three of the most dedicated students in my programming languages course
into research in the area after they �nished.

3.3 Pedagogical Training for Colleagues

Since the second class I taught, when I �rst had a co-instructor and a large
teaching sta�, I've tried to maintain a vibrant community of pedagogical
practice around me. Early in my faculty career, that meant founding a
weekly lunch session for our department's teaching-oriented faculty. Since
then, I've continued to encourage and guide my colleagues' pedagogical de-
velopment through e�orts at various scales. Focusing on the time since 2009,
this has included:

� co-organizing and participating in weekly CS education reading groups,

� sponsoring a student-directed seminar on CS education research and
practice aimed at TAs,

� participating and presenting with the Carl Wieman Science Education
Initiative reading group,

� working with UBC's O�ce of Learning Technology to establish online
midterm evaluations for CPSC courses,

� attending and presenting at multiple UBC events on designing learning
goals, adapting Just-in-Time Teaching, and using clickers e�ectively,

� co-founding and participating in the UBC Peer Exchange Network that
matched instructors in di�erent science disciplines to trade formative
peer teaching evaluations (described in a publication at the Interna-
tional Conference on Improving University Teaching in 2009),

� formally and informally mentoring three new instructors in our depart-
ment as well as being a panelist at a mentoring workshop for new CS
educators at SIGCSE 2011,

13



� securing funding for and arranging invited talks from CS education
researchers,

� giving invited talks on education research at several conferences and
at U. Toronto and U. Washington (shown in the appendix On Concept
Inventory Development),

� and publishing and presenting peer-reviewed educational research and
pedagogical insights in local, regional, and international venues, in-
cluding much work since 2009 listed in my CV.

Additionally, colleagues in my department have adopted approaches I've
designed from each of the recent courses I've taught. In CPSC 121 and CPSC
221, this included adoption of my revised approach to the courses and a full
set of curricular materials from lecture slides to weekly TA meeting agendas.
In CPSC 320, subsequent terms have adopted my �rst-week introduction of a
running example that connects almost all the later topics in the course (linked
from the appendices). In CPSC 101, subsequent instructors adopted my lab
updates and roughly a week of lecture materials. In CPSC 311, the only other
instructor since I started work on the course based his exams and overall
approach on the structure I laid out; I am also giving extensive feedback to
the textbook author as he reworks the textbook to a new approach.

3.4 Educational Technology

After my Ph.D. work on pen-based educational presentations, I have con-
tinued to innovate with and adopt educational technology. During my �rst
years at UBC, this included such e�orts as extending my Ph.D. research to
cell phones with a URA, popularizing tablets as teaching tools through a
faculty tablet loaner program, and piloting use of clickers.

Focusing on the time since 2009, I co-authored a paper with my colleague
Kelly Booth and Ph.D. graduate Joel Lanir on patterns of use of dual-display
technology, using a tool Joel developed and I helped prototype. His software
has been widely deployed across disciplines at UBC, and I regularly use it
in my classes, particularly for guiding students through extended in-class
problem sessions.

With several TAs and two URAs, I led development of an unconventional
programming project used several times at UBC and once at U. Toronto. The
appendix On CPSC 221 includes documents describing the project in de-
tail. Brie�y, students receive an automatically personally tailored program
with �mystery� data structure implementations and develop experimental

14

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#ci
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#ci
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#misc
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-221


methods�test suites and associated documentation�to distinguish the im-
plementations. They submit their performance testing suites to an automatic
grading and leaderboard system. Students can earn an A by completing the
project's basic goals but can also compete to reach the top of the leaderboard,
for fun and a little bonus credit. Our analysis of exam results between terms
that did and did not o�er the project substantiates clear learning gains. We
published this work in a poster at SIGCSE 2013. Equally important, our
analysis of the exams and project reports surfaced crucial misconceptions
about asymptotic analysis and data structures. These analyses led into the
work documented in Foundations of Computing Concept Inventory.

I also continue to develop online quizzes for CPSC 121, participated in
UBC's Blackboard pilot for CPSC 101, adopted Piazza for CPSC 121 and
tried a competing system developed by UBC students (now retargeted to
industry) for CPSC 311, use clickers extensively, develop a variety of web-
based materials (with each of my courses having a website and usually a
public archive of past websites), develop custom scripts to support various
aspects of teaching, and so forth. My reviews for CHI�the premier human-
computer interaction conference�were also solicited because of my expertise
in educational technology.

3.5 Contextualizing Computer Science

I make regular, broad connections between students' course material and
many sub�elds of CS, other disciplines, and key current events. For exam-
ple, I augmented CPSC 221 with research papers and a project on Cuckoo
Hashing, a surprising recent development in hash tables. I connect CPSC
121 material to democracy and elections by discussing Arrow's Impossibility
Theorem (a profound but distressing, Nobel Prize-winning result in eco-
nomics). In CPSC 320, I tied together almost all the topics in the course
with a running example of the stable marriage algorithm, which we con-
nected to Canada's current hospital resident matching system through both
lecture and assignments. The appendices include links to sample CPSC 121
election materials and the CPSC 320 example.

In general, each of my classes makes at least one �connection� each week
(and usually many more), whether it be to advanced research in an area, to
another sub�eld of CS, or to another discipline.

As part of my e�orts to contextualize CS concepts, I keep up on research
in human-computer interaction and programming languages by advising stu-
dent research, reviewing papers, attending reading group meetings, and read-
ing the literature myself. Human-computer interaction was my Ph.D. thesis

15

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#comp-demo
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#comp-demo
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#misc


area and connects to many other areas of CS. I'm familiarizing myself with
programming languages research after becoming the primary instructor for
our programming languages course in the face of a shortage of faculty expert
in the area. (It might even be conceivable by now to say that I have some
expertise in the area!)

3.6 Teaching Sta� Management

In the �rst two courses I taught, I managed a total of 20 teaching assistants.
Their contribution to the courses was tremendous and has inspired me to
strive since then to improve my management of TAs, increasing the TAs'
value to the students and the value the TAs' get out of teaching. Back
in 2002, that meant publishing a paper at SIGCSE that discussed how to
leverage advantages of large TA teams, among other topics. Most recently
in 2013, I presented to roughly 100 TAs at our department TA training on
�How to Go Above and Beyond�, and I kicked o� a new collaboration with
a URA to identify best practices in course sta� meetings.

Throughout this time, I have led management of teaching teams in my
large class o�erings (CPSC 101, 111, 121, and 221, with about 10-15 TAs
each). The duties I take on include: streamlining and improving assign-
ment of TAs to duties through pre-term surveys, focusing sta� meeting time
through pre-posted agendas, and encouraging TA feedback throughout the
term. In large classes, these sta� meetings are like teaching an extra seminar
alongside the course, with just as much learning going on for the �students�
(and for me!) as in the regular course. The appendix on On CPSC 121
includes a sample sta� meeting agenda.

My e�orts with sta� management have had particularly substantial im-
pact in CPSC 121 (described in part in CPSC 121 Curriculum Development),
where I also manage long-term continuity of the TA leadership team. I pub-
lished with Elizabeth Patitsas and Meghan Allen on some of this work at
SIGCSE 2011.

16

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-121


4 Curriculum Development and Pedagogical Inno-

vation

This section focuses on sustained curriculum development and pedagogical
innovation and its broad dissemination. Because all of my publications since
2009 fall under the Guideline's suggested element �contributions to the schol-
arship of teaching and learning and resulting publications�, I refer readers to
my CV for a list of these publications.

4.1 CPSC 121 Curriculum Development

CPSC 121: Models of Computation is one of only three �rst-year CS courses
and one of the two required for majors. The course is an unusual mix of the-
oretical and hardware foundations of computing. When I began teaching it,
it was also a course with a reputation as the �black sheep� of the curriculum.
The department had been concerned enough to use student focus groups to
�debug� the course.

I have been engaged in a long-term e�ort to renovate this course with
research-based educational practices guided by feedback from course sta�
and students. I've disseminated this work through various publications at
SIGCSE, WCCCE, and locally at UBC. The changes have occurred in three
major areas:

� improving student learning and experience in lecture with Just-in-
Time-Teaching [3] and active learning (an �inverted� classroom, al-
though the term didn't exist when this e�ort started),

� restructuring the course's labs, both its materials (to reduce unnec-
essary student confusion, connect with the computer model used in
CPSC 313, and promote authentic inquiry) and its sta�ng (designing
a TA work�ow that incorporates careful preparation and feedback on
labs and establishing TA leadership roles to make the work�ow sus-
tainable),

� and more recently, adapting to signi�cant changes made to our other
required �rst-year course, CPSC 110: Computation, Programs, and
Programming.

The work described in this section has been in collaboration with the
course sta� of several iterations of CPSC 121, particularly Patrice Belleville
and Elizabeth Patitsas.

17



4.1.1 Inverting the CPSC 121 Lecture

I was inspired to �invert�5 the CPSC 121 lectures through the Carl Wieman
Science Education Initiative and my colleague Paul Carter's experimentation
with Just-in-Time Teaching (JiTT). After reviewing my lecture materials, I
felt too much in-class time was spent on basic concepts that could as well (or
better) be learned before class with appropriate resources, particularly in the
�rst half of the term. As a result, class time can focus on critical, high-level
concepts and application of concepts to real problems. The appendix On
CPSC 121 includes a sample of materials from one JiTT unit.

For example, I used to spend a substantial fraction of a lecture giving
the symbols, names, and truth tables for common logical operations. These
are concepts �rmly in the �knowledge� area of Bloom's Taxonomy, which
students are fully capable of learning on their own with some guidance and
practice. Unfortunately, students made little use of the textbook, their pri-
mary tool for preparation. Why should they when lecture recapitulated the
textbook?

Figure 2: A slide from before converting CPSC 121 to Just-in-Time Teaching
(JiTT). A series of slides would introduce truth tables for various operators;
I would �ll them in as we went.

In a nutshell, an instructor using JiTT tells students to read the textbook

5I use �invert� rather than ��ip� since I do not use videos for pre-class instruction.

18

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-121
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-121


Figure 3: After converting to JiTT, this lecture focused on developing a
solution to this open-ended problem.

and means it. The original JiTT formulation encourages student preparation
and has the teacher respond to students' pre-class work on a single broad,
open-ended question requiring synthesis of the readings. The instructor scans
the responses, develops a gestalt of students' progress, and uses the open-
ended question to guide a highly interactive in-class discussion.

Unfortunately, this approach has two major problems. First, as with
the common�and amply refuted�wisdom that an experienced instructor
can just �look for glazed eyes� and gauge how well students are learning, I
suspected I'd have di�culty gauging student progress on low-level learning
goals by quickly reviewing open-ended responses to a synthesis question.
Second, JiTT simply didn't work well enough in practice at encouraging
textbook reading, as the �gure below shows.

Therefore, my adaptation of JiTT included additional features to miti-
gate these problems. In all, the process for a particular unit looks like:

� With the previous unit's lecture slides, I distribute pre-class learning
goals for the current unit, which students achieve outside class. I assign
textbook readings or supplementary materials to help them. Pre-class
goals are �rmly rooted in the �knowledge� and �comprehension� levels
of Bloom's taxonomy.

� At about the same time, I post an online quiz for the unit with a
section of closed-ended, low-level questions automatically marked for
correctness plus one or two high-level synthesis questions marked for

19



Figure 4: Self-reports of textbook usage across four courses indicate that
�normal� courses (the term of CPSC 221 listed) and conventional JiTT
courses (two longstanding JiTT courses at UIUC [4]) have trouble encour-
aging textbook usage. CPSC 121 students make much greater use of their
textbooks with JiTT modi�ed to include pre-class learning goals and pre-
class quizzes with both closed- and open-ended questions.

completeness only. The quiz has no time limit, and I encourage stu-
dents to use it to guide their study. The quiz is due just before the
lecture unit begins. Students see grades and answers (to the closed-
ended questions) shortly after the due time.

� Before lecture, I analyse the closed-ended results, designing mini-
lectures and clicker questions to address problems.

� Also before lecture, I skim open-ended responses and summarize for
use in guiding interactive lecture inspired by the question.

� The current unit then begins with a review of quiz results and one to
three higher-level in-class learning goals that we accomplish through
interactive, clicker- and discussion-driven lecture.

Online quiz and clicker results from previous terms help me tune and
improve the materials each new term. Student feedback has also helped
tune the process. For example, in response to educational research literature
and student requests, I incorporated additional worked examples into lecture
notes, added a �where are we in the big picture� section to each unit, and
shifted slide presentation toward sparse and visual information.

Another key to long-term development has been to �trim back� some
previously added elements. (Our cross-course studies within CS suggested

20



that by 2010 we had made 121 an extremely high-workload course!) As a
result, student workload assessments have returned to reasonable levels.

4.1.2 Restructured Labs

We made radical changes to the labs of the Jan�Apr 2009 CPSC 121 o�ering,
particularly to make inquiry in the labs more authentic: asking students
questions to which they did not already know the answers.

However, along with general polishing of the new materials, there were
two other signi�cant problems. First, the digital logic simulator used in
the labs was unwieldy for the bulk of students unfamiliar with the UNIX
operating system. Second, the work�ow for lab TAs' preparation was unclear
and sometimes ine�ective.

We addressed the �rst problem by researching available digital logic sim-
ulators, settling on Logisim because it supported interface idioms familiar to
most students, gave real-time feedback on changes to the circuits, and made
circuit layout changes quick and easy. The new system also works better
for in-class demonstration and exploration of circuits. We then switched
the old labs to Logisim. We also took the opportunity to shift our old full-
computer simulation to a Logisim implementation of the one used in the
later CPSC 313 course, giving students more opportunities to revisit the
same design. (Although I created an initial draft of the Logisim computer,
Patrice Belleville de�nitely led this implementation e�ort.) My TA and URA
Elizabeth Patitsas documented a large, sustained, positive shift in students'
satisfaction with the digital logic software.

In response to the second issue, I worked with Elizabeth and subsequent
TAs to create and document a standard work�ow for managing the labs and
lab TAs. There are now two de�ned lab TA leadership roles�Manager (day-
to-day operations) and Planner (term-to-term revisions)�and documents
detailing the purpose, content, and revision history of the labs themselves
and of the two positions.

The new work�ow for a lab runs from two weeks before the lab starts
until a week after it ends, with followup between terms. Two weeks prior
to the lab, the Planner reviews a draft lab with the instructor, advising the
instructor of any prerequisites expected from lecture. The Manager then
runs a prep meeting in which all lab TAs work through the new lab. The
Planner incorporates their feedback into the draft lab. A week before lab, the
Planner posts the lab to students, getting more feedback from keen students.
During the lab week itself, the Manager keeps the TAs posted on any errors
or problems. At the following lab prep meeting, the Manager solicits more

21

http://ozark.hendrix.edu/~burch/logisim/


feedback. At the end of term, the Manager runs a �nal session to get overall
feedback on all labs. The next term's Planner uses all of this plus student
survey in her revisions.

This arrangement has worked smoothly for approximately two years. I
ensure continuity in lab TA leadership by working with the present Lab
Planner and Manager to recruit replacements as they prepare to depart.

4.1.3 Adaptation to CPSC 110

In 2010, the department replaced the �rst course in the Software Develop-
ment stream. The new course (CPSC 110) represented a radical departure
from the old one but became the new co-requisite to CPSC 121. I have
therefore been working to adapt CPSC 121 to CPSC 110.

My experience with CPSC 311, which takes a similar pedagogical and
software design approach to CPSC 110, has helped with this adaptation.
Additionally, I participated in a brief workshop in 2010 introducing the new
course's approach and in the summer of 2012 sat in on the �rst two-thirds
of the course�the most I felt CPSC 121 could rely on from students taking
both the courses together.

I have now adapted CPSC 121 substantially to CPSC 110. In some cases,
new approaches in CPSC 110 o�er serendipitous opportunities we exploit in
CPSC 121. For example, CPSC 110 produce conditional guards and hear
that di�erent guards can result in equivalent programs. I rebuilt CPSC 121's
logical equivalence unit to exploit this point, showing students how CPSC
121 skills can help them understand and modify CPSC 110 programs. I also
adapted the course to timing changes in CPSC 110 (like early availability of
recursive structures) and high-level design changes (particularly the pattern-
driven use of the structure of data to drive the shape of the program). As an
example of both, I used CPSC 110's data de�nition for binary trees to drive
our discussion of induction, refocusing on structural induction. I carried
this structural focus to many other examples, e.g., recasting weak induction
over summation to structural induction with a recursive de�nition of the Σ
operator. I also designed a handout (included in the appendix On CPSC
121) illustrating how the structure of a predicate logic theorem can drive
the structure of its proof. Along with these conceptual changes, I've also
converted a variety of examples from the old course's programming language
(Java) to the new one (Racket).

22

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-121
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-121


4.2 Parallelism in CS Education

Since about 2009, inspired by UBC colleagues Mark Greenstreet and Alan
Hu and by colleagues in the CS education community, I have engaged in a
long-term e�ort to reintroduce parallelism�the simultaneous use and man-
agement of multiple computational resources�into CS education locally and
internationally.

As discussed in Leadership in the International CS Education Commu-
nity, I pushed to incorporate more parallelism into SIGCSE, the premier
annual CS education conference. However, my own technical background in
parallelism was weak; so, I attended workshops at SIGCSE 2011 and 2012 on
incorporating parallelism in data structures courses. I also attended Face-
book's �Facebook in Education� workshop at their headquarters in 2011,
focusing on its parallelism content.

In collaboration with Alan Hu, I adapted material from Dan Grossman's
SIGCSE 2011 parallelism workshop into a three-week unit in the Jan�Apr
2012 term of CPSC 221 (data structures and algorithms). I made two sub-
stantial changes from Dan's materials. First, I switched the language of the
materials�lecture notes, assignments, sample exam questions, and a 64-page
mini-textbook�from Java to C++. This required signi�cant research, writ-
ing, and programming e�ort, such as generating sample programs for the
substantial 2011 revision to the C++ standard.6 Second, I entirely rewrote
the lecture materials to take an active learning approach. My new materi-
als have since been reused in CPSC 221. Also, responding to requests for a
C++ 'port, Dan incorporated my materials into the repository he maintains.
These materials are linked from the appendix On CPSC 221.

4.3 CPSC 221 Curriculum Development

Beyond the parallelism material described above, I have substantially revised
the materials in CPSC 221 to emphasize design tradeo�s in implementation
of abstract data types, revisions that have been adopted by several other
course instructors. I developed a set of new programming projects and ad-
justed them to include progressive milestones, considerably improving stu-
dent success in the programming portion of the course. One of these projects
is described under Educational Technology.

6Although the C++ standard was released in 2011, few courses have begun using it; I
believe our CPSC 221 is the �rst in my department.

23

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#cpsc-221


4.4 Foundations of Computing Concept Inventory

Much of my curriculum development work has been directed at courses in
the core �Foundations of Computing� stream: CPSC 121, CPSC 221, and
CPSC 320. I am naturally curious to assess the work's impact on student
learning; however, assessing learning gains is a tricky business. As Allison
Elliott Tew and Mark Guzdial put it: �[C]omputing lacks valid assessments
for pedagogical or research purposes. Without such valid assessments, it is
di�cult to accurately measure student learning or establish a relationship
between the instructional setting and learning outcomes.� [5]

Inspired by Allison's work and in collaboration with her and fellow in-
structors, TAs, and URAs, I am leading a project to develop a concept
inventory for the Foundations of Computing sequence. My long-term goal is
a sustainable �thermometer� that can track the health of our Foundations of
Computing stream in order to guide changes in curriculum and pedagogy.

Our process adapts from those proposed by Adams and Wieman [1] and
Almstrum et al [2]. In particular, we have so far:

� identi�ed key concepts based on interviews with subject matter
experts�including 9 recent instructors of our Foundations of Com-
puting courses�and analysis of student artifacts from the courses�
including high-level analysis of over 1500 �nal exam papers,

� collected information about student misconceptions through deeper
analysis of course artifacts�including more than 100 exam papers and
project submissions�and 25 one-hour think-aloud interviews with stu-
dents, and

� formulated multiple choice questions to probe misconceptions of inter-
est.

We have also begun validating some multiple choice questions through
think-aloud interviews, ensuring that students choose their answers (correct
or otherwise) for the reasons we expect. Approximately 150 students have
so far written drafts of our multiple choice assessment, including both pre-
and post-tests for one group in CPSC 121 (the �rst-year Foundations of
Computing course).

The appendix On Concept Inventory Development includes a paper de-
tailing this work for �ve misconceptions related to CPSC 221 and a presen-
tation discussing work-in-progress overall.

24

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#ci


4.5 Computing and Democracy

My use of connections between computing and democracy is a good example
of how I contextualize computing. I �rst looked at the topic when British
Columbia almost adopted the Single Transferable Vote in 2005. At the time,
I worked details of the voting system into course assignments in CPSC 221.
Since then, particularly while working with URA Arianne Dee, I've explored
the topic much more thoroughly. Arianne and I developed an annotated
bibliography and participated in the annual �Workshop on Technology in
Elections� in 2011.

I've created approximately 10 hours worth of lecture material (with
clicker exercises) targeted at connections between elections and the areas
of algorithms and game theory, cryptography, and human-computer interac-
tion plus associated learning goals, assignments, and exam problems. I've
used these materials frequently in my own courses and guest lecturing in
others' courses as well as in invited presentations to upper-level honours
CS students, prospective undergraduates and their parents, and a group of
concerned activists at a Vancouver community event. The appendix On
Computation and Democracy includes some of these materials.

25

https://www.cs.ubc.ca/~wolf/pot-packet/index.html#comp-demo
https://www.cs.ubc.ca/~wolf/pot-packet/index.html#comp-demo


5 Service

This section focuses on service that is not directly related to teaching and
pedagogy or not explicitly described in other sections. Because my CV
brie�y lists my service contributions, I try here to provide context for the
contributions since 2009.

Besides the activities listed above (particularly my work as Bachelor of
Computer Science Program Director, TA Assignment Coordinator, and var-
ious roles with SIGCSE organization described in Leadership in the Interna-
tional CS Education Community), I've engaged in a variety of service with
the CS department, UBC, and the community:

� I frequently lead and participate in activities to build connections be-
tween students and faculty (town halls, orientation events, etc.), such
as leading several hour-long orientation day events to �demystify� uni-
versity faculty for new students, the most recent in 2013.

� I've served in a variety of departmental and Faculty committees, in-
cluding the following:

� The CS department Student Development committee, where I
focused on establishing a series of TA panels and lunches to build
community among TAs. (Survey results showed that these events
were successful in helping junior TAs �nd mentorship.)

� The CS department Science Education Initiative committee,
where I helped to recruit Fellows to work with the program and
organize invited talks on topics involving CS education.

� The CS department Outreach committee, which I've recently
joined with the intention of polishing roughly 12 hours of materials
for early K�12 math/CS education I developed and presented at
a local elementary school with my colleague (and spouse) Rachel
Pottinger.

� The CS department Merit committee and Undergraduate Student
Service's Working Group, where I led no projects but supported
the work of the committees

� The TA Operations Working Group, ex o�cio as TA assignment
coordinator.

� The Faculty of Science Killam Teaching Award selection com-
mittee, for which I've observed lectures and reviewed nomination

26



packets for dozens of faculty across Science disciplines. Work
on this committee also improves my own teaching by giving me
insight into the techniques used by superb teachers from many
di�erent disciplines.

� Along with copious advising as BCS Director, I have also been a drop-
in advisor for the general pool of CS undergraduate students and a
1-1 advisor for several Integrated Sciences students interested in CS. I
provide career and course selection guidance, check program require-
ments, suggest extracurricular opportunities, and the like. BCS and
Integrated Sciences students require extensive support because of their
diverse backgrounds and customized programs. (For example, in one
of my BCS o�ce hours, I worked with a BCS student to clear 12 cred-
its of fourth year music research project courses with the Faculty of
Science and another trying to decide between upper-level Physics and
Economics courses for his program.)

� I reviewed for various CS Education and Human Computer Interaction
venues, including serving on the editorial board of the CS Education
Journal, devoted to publishing high-quality CS education research.

27



References

[1] Wendy K. Adams and Carl E. Wieman. Development and validation of
instruments to measure learning of expert-like thinking. International

Journal of Science Education, 33(9):1289�1312, 2011.

[2] Vicki L. Almstrum, Peter B. Henderson, Valerie Harvey, Cinda Heeren,
William Marion, Charles Riedesel, Leen-Kiat Soh, and Allison Elliott
Tew. Concept inventories in computer science for the topic discrete math-
ematics. SIGCSE Bull., 38(4):132�145, June 2006.

[3] Gregor M. Novak, E. T. Patterson, A. D. Gavrin, and W. Christian.
Just-In-Time-Teaching: Blending Active Learning with Web Technology.
Prentice Hall, 1999.

[4] Timothy Stelzer, Gary Gladding, Jose P. Mestre, and David T. Brookes.
Comparing the e�cacy of multimedia modules with traditional textbooks
for learning introductory physics content. American Journal of Physics,
77(2):184�190, 2009.

[5] Allison Elliott Tew and Mark Guzdial. The fcs1: a language independent
assessment of cs1 knowledge. In Proceedings of the 42nd ACM technical

symposium on Computer science education, SIGCSE '11, pages 111�116,
New York, NY, USA, 2011. ACM.

28


	Introduction
	Useful Terms and Definitions

	Educational Leadership
	Leadership in the Int'l CS Education Community
	Bachelor of Computer Science Program Director
	TA Assignment Coordinator

	Teaching
	Teaching Philosophy
	Student Mentoring
	Pedagogical Training for Colleagues
	Educational Technology
	Contextualizing Computer Science
	Teaching Staff Management

	Curriculum Development and Pedagogical Innovation
	CPSC 121 Curriculum Development
	Inverting the CPSC 121 Lecture
	Restructured Labs
	Adaptation to CPSC 110

	Parallelism in CS Education
	CPSC 221 Curriculum Development
	Foundations of Computing Concept Inventory
	Computing and Democracy

	Service

