
Misconceptions and Concept Inventory Questions for
Binary Search Trees and Hash Tables

Kuba Karpierz
University of British Columbia, CS

Vancouver, BC, Canada
mr.karpierz@gmail.com

Steven A. Wolfman
University of British Columbia CS

Vancouver, BC, Canada
wolf@cs.ubc.ca

ABSTRACT
In this paper, we triangulate evidence for five misconcep-
tions concerning binary search trees and hash tables. In
addition, we design and validate multiple-choice concept in-
ventory questions to measure the prevalence of four of these
misconceptions. We support our conclusions with quantita-
tive analysis of grade data and closed-ended problems, and
qualitative analysis of interview data and open-ended prob-
lems. Instructors and researchers can inexpensively measure
the impact of pedagogical changes on these misconceptions
by using these questions in a larger concept inventory.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science
Education

General Terms
Human Factors

Keywords
data structures, misconceptions, concept inventory

1. INTRODUCTION
Concept inventories (CIs)—inspired by the Force Concept

Inventory (FCI) [7]—have changed pedagogy across many
disciplines [6, pp. 20–43]. CIs are “cheap” but powerful
tools for probing student misconceptions and the longitudi-
nal impact of pedagogical changes [5].

In this paper, we present several novel data structures CI
questions and the research process that led to their design.
We focus on Binary Search Trees (BSTs) and Hash Tables—
important data structures course topics [11, 12] that were
also identified as important during interviews with faculty
at our institution. Critically, we triangulate evidence for
misconceptions and CI question design from a broad data
set using quantitative and qualitative methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’14 Atlanta, Georgia USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

CIs exist for some computing subjects, e.g., digital logic [6]
and intro programming [13]. For data structures, researchers
have identified misconceptions [4, 9] and developed CI ques-
tions targeting misconceptions [3, 10]. Our work contributes
both results—new misconceptions and questions—and a thor-
ough account of our approach.

2. METHODS
Our process adapts from Adams and Wieman [1] and Alm-

strum et al. [2]. Focusing on three courses—our data struc-
tures course and its pre- and post-requisites—we (1) identi-
fied key concepts from instructor interviews and aggregate
analysis of course artifacts, (2) identified misconceptions
from student interviews and deeper analysis of artifacts,
and (3) formulated, piloted, and validated multiple-choice
CI questions. Specifically, our data sources include:

Instructor Interviews: interviews with 9 instructors of
the three courses, focused on sample exam responses and
“when students don’t get something important, which an
expert should get.”

Exam Statistics: per-student marks on 200+ exam prob-
lems taken by 1000+ students from 15 offerings of the courses
and reviewed for common yet difficult problems.

Exam Analysis: open coding—qualitative analysis with it-
eratively developed codes—of responses to a final exam prob-
lem from data structures offerings in Jan–Apr and Jul–Aug
2012 (all 67 exams from one section of the former and all 59
exams from the latter). On the Aug exam, this problem was
the third most difficult in our Exam Statistics. (The two
harder problems’ topics are outside this paper’s scope.) The
problem’s format echoed a project given in Jan–Apr but not
in Jul–Aug [8].

Project Analysis: open coding of reports from the project
in Exam Analysis (all 68 reports from one section of data
structures in Jan–Apr 2011 and all 87 from Jan–Apr 2012).

Think-Aloud Interviews: 25 one-hour student interviews,
drawing problems from the data sources above. Students
gave informed consent and received $15 for participation.
We helped them learn to think aloud with two practice
problems but subsequently interjected minimally. We audio-
recorded, partially transcribed, and open coded interviews.
We ran 4 further interviews using multiple-choice CI ques-
tions. These aimed particularly to validate that students
select answers for our intended reasons.

We achieved a balanced sample of interview subjects across
course level and grades. We classify students by the high-
est of the three courses in progress or completed as“CS1xx”
(first-year discrete math), “CS2xx”(second-year data struc-
tures), and“CS3xx”(third-year algorithms). 9 were CS1xx,
10 were CS2xx, and 10 were CS3xx. Subjects covered a
wide grade range. The CS3xx group earned 4 As, 2 Bs, 2
Cs, and 2 Ds in CS3xx. The CS2xx and CS3xx groups
earned 9 As, 4 Bs, and 7 Cs in CS2xx. The CS2xx and
CS3xx persistors skew CS1xx grades high, but the CS1xx
group alone earned 3 As, 4 Bs, and 2 Cs. However, 59% of in-
terviewees were women, over-representing their the roughly
24% women in our major.

CI Pilot: an optional quiz of draft multiple-choice CI ques-
tions given on the last day of the May–Jun 2013 data struc-
tures offering. All attending students chose to participate
(77 of 98 enrolled, plus one auditor).

3. MISCONCEPTIONS
In this section, we report on three categories of miscon-

ceptions. We begin by identifying the misconceptions, work
through their elaboration in the data, and conclude with
design and initial validation of targeted CI questions.

3.1 Duplicates in BSTs
We found that students struggled the possibility of du-

plicates in BSTs—keys already present in the structure—
through Exam Analysis and explored further with other
data sources. Through iterative coding, we identified two
major, recurring misconceptions:

• SeparateOperation: The misconception that, when in-
serting a potentially duplicate key, the BST must perform
two separate find operations: one to ensure the key isn’t
already present, and one to find where to insert it.

• FullSearch: The misconception that, when inserting a
potentially duplicate key, the BST must inspect every key
in the tree.

Although we document both misconceptions, we focus on
the more prevalent SeparateOperation.

3.1.1 Identifying the Misconceptions
The problem in Exam Analysis was not designed to fo-

cus on duplicates. However, of the 126 exams analyzed, 8
exhibited duplicate-related misconceptions:

• Four students erroneously attribute worst-case BST per-
formance to duplicates, but with little explanation. For
example, one reasoned “since we are not inserting any du-
plicates we see normal lgn behavior.”

• Two students hinted at SeparateOperation. One wrote
that a BST “would run in [worst-case] linear time because
it has to check for duplicates on every insert.” The other
states that “[a BST] should be O(lgn) time for insertion
[as it] must check for duplicates when inserting.”

• The final two students clearly articulate SeparateOper-
ation. One wrote that “[the BST] search for duplicate
first (lgn) and insert if not there (lgn).” The other stated
that a“BST shows O(n) behavior in [worst-case insertion]
because it has to find a duplicate before inserting.”

When we insert a key into a binary search tree (BST), the key may be
a duplicate: a key that is already present somewhere in the tree.

Imagine a BST implementation that assumes that no duplicate key is
ever inserted and that is used in a way that guarantees this
assumption is correct. Which of these best describes this
assumption’s effect on insertion of new keys?

a. We no longer need to search for duplicates, and the rest of the
work is very fast (takes a constant number of steps).

b. We still need search for where to add the key, but we no longer
need to test as we go whether the key is equal to each other key
we access during the search.

c. We can now do only one rather than two searches in the tree: we
still search for where to add the key, but we do not search for
duplicates.

d. There is not enough information to tell.

Figure 1: CI question targeting SeparateOperation.
This version is from the first interview. We re-
worded after each interview and the CI Pilot.

We had yet to identify FullSearch, but, in retrospect,
this misconception would account for three students’ beliefs
that duplicates caused linear asymptotic bounds.

We next turned to the richer data in the Project Anal-
ysis. Unfortunately, few reports mention duplicates. How-
ever, three did offer insight into duplicate misconceptions.

One report demonstrates SeparateOperation, stating
for an AVL Tree that “[reinserting previously deleted ele-
ments] is the same as inserting the elements for the first
time due to the lack of tombstones, and therefore involves
searching the tree for duplicates.”

One other report carefully detailed FullSearch with an
example: “when we inserted . . . a middle value and alter-
nating smaller and larger values . . . 50, 49, 51, 48, 52, . . .
we were making two singly linked list[s] . . . Each insertion
would supposedly take half as much time as insertion using
an ascending list, but since the ADT would have to check
for duplicates in the other branch, it took a longer time.”
Another showed FullSearch in the context of vectors, not
BSTs: “This corresponds with a sorted vector: . . . random
numbers are inserted in linear time due to checking the en-
tire list for many values for duplicates.”

Our first 25 Think-Aloud Interviews posed no prob-
lems aimed at these misconceptions. Yet, two students still
exhibited FullSearch on this problem about a small BST:
“In the worst case, how many nodes would we need to look
at to find a key in this tree? Which ones?” One was half-
way through data structures, the other finishing its post-
requisite. The former said, “[in the worst case, we] need to
look for 3 . . . That means we need to go through everything
else.” The latter student said “you would need to look at all
of the nodes above the bottom layer to find a specific key”,
and gave a formula for the search cost: ≈ 1/2 · 2depth.

3.1.2 Concept Inventory Question Design
We then designed a multiple-choice CI question targeting

SeparateOperation, shown in Figure 1.
We put (a)–(c) in order by the number of searches they

describe (0, 1, and 2). (a) targets a misconception where stu-
dents attribute no search cost to insertion operations. Since
we found this misconception only in Project Analysis, we
discuss it no further. (b) is the intended correct answer,
envisioning removing an “equals” case and the resolution it
performs for duplicates. (c) targets SeparateOperation.

When we insert a key into a binary search tree (BST), the key may be
a duplicate: a key that is already present somewhere in the tree.

Imagine a BST implementation that assumes (as a precondition) that
no duplicate key is ever inserted. Which of these best describes
this assumption’s effect on insertion of new keys compared to a
normal BST implementation?

a. We no longer search the tree at all. We just add the key
directly where it belongs.

b. We search the tree once either way. We still search for where to
add the key, but we no longer check for duplicates as we go.

c. We search the tree once rather than twice. We still search for
where to add the key, but we no longer search first for
duplicates.

Figure 2: Final revision of CI question targeted at
SeparateOperation.

Answer (d) was only present to camouflage for other ques-
tions where it was correct (e.g., see Section 3.2.3). After the
first interview, we changed it to “This assumption has no ef-
fect.” Either way, as indicated below, (d) exposed our early
wording of (b) as a weak fit for students with a clear under-
standing of the problem.

In the CI Pilot, 44.9% correctly answered (b), but the
bulk of the 24.4% answering (d) may have had a correct
model of BST insertion. 24.4% selected (c), suggesting they
believe SeparateOperation.

We asked this question of three students in Think-Aloud
Interviews. Two gave correct reasoning. One was con-
cerned about not “search[ing] through the tree at all” on
(a) and that “you wouldn’t do two searches, you would just
continue on” on (c). The student agreed with (b) and pre-
liminarily circled it, saying “That’s true. You can stop when
you find it.” However, the student switched to (d), con-
cluding “I’m feeling like [the absence of duplicates] really
actually doesn’t have an effect in a BST. . . ” The other stu-
dent quickly concluded “you wouldn’t really need to search
for [a duplicate] anyways because it would be where you’re
inserting [the new key]” and then selected (d).

The third student illustrated SeparateOperation and
the need for carefully crafted CI questions. While reading
(a) but before reading (c), the student said, “. . . if there were
duplicates, you’re going to need an extra step to basically
search through the tree to see if the same key exists some-
where else. So that would pretty much double our work.”
The student’s final selection was based on how “vague” or
“explicit” the answers were. (a) “[is] a little ambiguous” and
“doesn’t mention anything about adding a key to the tree”.
Compared to answer (c), answer (b) has “a very nice way of
saying ‘but we do not search for duplicates’ . . . [and] a nice
way usually involves being more explicit.” Thus, the student
selected (b) “despite it having the longest answer”.

Given (d)’s appeal to students whose reasoning matches
(b) and the accidental lack of parallel structure exploited by
the last student, we rephrased to eliminate (d) and normalize
the other answers, as shown in Figure 2.

Based on our data, we believe this question effectively
targets SeparateOperation, and that a substantial mi-
nority of our students hold this misconception. We believe
FullSearch is less prevalent but worth exploring further.

3.2 Conflation of Heaps and BSTs
We explored misconceptions related to BSTs and binary

heaps because of previous work suggesting some students

Figure 3: Our rendering of the trees from the
heap/BST question [3]. The trees were shown in a
column, each prefaced by the options: binary min-
heap (only), BST (only), both, or neither.

believe that a heap is also a BST [3, 10]. We attempted to
replicate Danielsiek et al.’s results on their multiple-choice
CI question targeted at heap/BST misconceptions [3]. We
later investigated these misconceptions unintentionally in
Think-Aloud Interviews. Our results do suggest stu-
dents conflate these data structures, but not in response to
the initial multiple-choice question. Specifically, we found
evidence of the following recurring misconception:

• DefaultBalanced: The misconception that, absent con-
crete information, a BST tends to have a balanced shape,
particularly left-complete (binary heap-shaped).

3.2.1 Initial Multiple-Choice Results
We offered the question in Figure 3 on the Apr 2012 data

structures final exam Paul and Vahrenhold highlight two
misconceptions the question exposes: (1) overlooking left-
completeness, with most respondents indicating that the
first tree is a heap, and (2) conflating heaps and BSTs, with
15.6% indicating the third tree is both heap and BST while
correctly answering the remaining parts [10].

Consistent with previous work, most students overlooked
the left-completeness requirement. Of 67 students, 59.7%
indicated that the tree was a binary heap. Only 34.3% cor-
rectly answered that the tree was neither heap nor BST.
17.9% believed this tree was a BST, suggesting they checked
the order invariant only between nodes and their immediate
children, a misconception identified by Fekete [4]. Although
the quantitative results support the presence of both miscon-
ceptions, we were unable to gather triangulating evidence
and so address them no further here.

Surprisingly, we found little evidence that students con-
flated BSTs and heaps. Of the 20 students who answered all
three other parts correctly, only 5% (one) believed the third
tree was both BST and heap. The rest correctly identified
it as only a BST. Overall, 92.5% of students selected only
a BST, while just 6% believed it was also a heap and none
believed it was only a heap. The vast majority also correctly
responded to the second and fourth prompts.

We therefore concluded preliminarily that this heap/BST
conflation did not occur in our student population.

3.2.2 BST Think-Alouds
We posed five problems about BSTs—none mentioning

heaps—in Think-Aloud Interviews. 16 subjects solved
at least one of these problems; of these, 11 had completed at
least two-thirds of the data structures course.1 Of these 11,

1The two other students who had at least started data struc-
tures both showed evidence of confusing BSTs and heaps.

Figure 4: A student’s heap-shaped guide and final
result on the BST post-order traversal problem.

five showed clear evidence of confusing heaps and BSTs. Of-
ten, when uncertain about the shape of a BST, they reached
for a balanced, left-complete tree—a binary heap-shaped
tree—as a sort of “default” shape for a BST, leading us to
postulate DefaultBalanced as their misconception.

The two most striking examples responded to the prompt:
“Draw a binary search tree whose keys printed in post-order
traversal are: 20 15 30 25 75 90 80 65 50”. Both sketched
empty, heap-shaped trees to get started. Figure 4 shows
one student’s sketches. This student then performed a post-
order traversal on the sketch and lined the result up under
the given numbers to solve the problem. The other student
used the rule that the root is always last to line up keys with
nodes. Both students noticed that what they had created
was not a BST. One gave up: “Well, this is not a binary
tree . . . It’s a nothing. I’m done.” The other reached a
nearly-correct answer by patching a series of problems, such
as: “There’s four [keys larger than 50], I’ve only drawn three
[nodes right of the root]. So that’s a serious problem.” One
such moment strongly suggests DefaultBalanced: “Well,
let’s just assume we have a properly balanced search tree in
search of part marks.”

Two of the remaining students facing other BST problems
fell back on heap shape properties. Asked why a small binary
tree was not a BST, one explained “it’s not a binary search
tree because it’s not a complete and full tree.” The other
simulated a sequence of insertions in decreasing order into a
“standard BST”, saying “I think the standard [BST] means
. . . a complete tree. . . . [9999] can stay on the bottom for
now, but [9998] is going to have to go and complete the tree.
. . . When we get to the next full complete bottom, there
will be some numbers there that won’t work; so, we have to
rearrange again.”

3.2.3 Concept Inventory Question Design
We then designed a multiple-choice CI question targeting

DefaultBalanced, as shown in Figure 5.
We ordered answers randomly, but ensured that (b) and

(c) appeared together and (e) remained last. (e) is correct.
(b) and (c) are targeted at DefaultBalanced. (d) is tar-
geted at students who do not read the question carefully.
After this answer proved very attractive in our Pilot CI,
we added the parenthetical “. . . not necessarily . . . in that
order” but have not yet piloted or validated this phrase.
(a) targets students who do not read carefully and hold a
misconception noted occasionally in Think-Aloud Inter-
views where students insert keys at the top of the tree rather
than the bottom. Due to a lack of triangulating evidence,
we do not discuss this misconception further.

In the CI Pilot, 42.3% of students chose the correct re-
sponse. 20.5% chose (d) and so perhaps did not read care-
fully. However, 35.9% chose (b) or (c)—most choosing (b)—
which suggests they believe DefaultBalanced.

What shape is a binary search tree that contains the keys 1, 2, 3,
4, 5, 6, and 7? (Keys were not necessarily inserted in that order.)

a. Exactly this shape: 7
6
5

4
3

2
1

b. Exactly this shape: 4
2 6

1 3 5 7

c. This shape with either 1 or 7 at *
the root and the other keys * *
arranged appropriately: * * * *

d. Exactly this shape: 1
2
3
4
5
6
7

e. There is not enough information to tell.

Figure 5: Final version of CI question targeted at
DefaultBalanced.

Think-Aloud Interviews with three students added ev-
idence for DefaultBalanced and for the question’s validity.

One student did not exhibit the misconception and picked
the correct answer for the right reasons. This student began
by saying, “Which order were [the keys] inserted? I’m not
sure.” The student then quickly eliminated each distractor
with comments like “We don’t know that.”

Two students exhibited DefaultBalanced and picked the
balanced BST distractor because of it. One eliminated the
non-BST distractor, saying“I just want to pick [the balanced
BST] because it looks the nicest.” The student discarded the
other distractors with a skeptical “If it’s not technically bal-
anced, then I guess [the two list-shaped trees] would techni-
cally uphold the properties.” The other student also selected
the balanced BST as a matter of taste, e.g., discarding a dis-
tractor with: “I don’t like [this list-shaped tree] because that
seems like how I would insert keys into a BST back when
I didn’t know how BSTs worked.” The deciding factor was
that “[the problem] doesn’t exactly tell you the order items
inserted. So, I’m going to assume they’re looking for the
perfect BST that contains said keys.”

Our research provides strong evidence that our CI ques-
tion effectively targets DefaultBalanced and that the mis-
conception’s prevalence merits broader investigation.

3.3 Hash Table Resizing
As with the duplicate issues, we observed hash table resiz-

ing misconceptions in Exam Analysis and explored further
through other data sources. We found substantial evidence
for two misconceptions:

• NoRehash: The misconception that, when resizing, the
hash table leaves keys at their existing indexes.

• ResizeInPlace: The misconception that, when resizing,
the table is extended in place by appending slots.

3.3.1 Identifying the Misconceptions
In the Exam Analysis problem, students worked with a

hash table using a simple hash function and probing strat-

Figure 6: A student’s correct response to the hash
table insertion problem.

Figure 7: A student’s “scallop-shaped” response to
the hash table insertion problem.

egy. They graphed its performance on a contiguous, de-
creasing sequence of key insertions. Figure 6 shows a cor-
rect answer with linear regions indicating swift performance
without collisions and steep jumps indicating resizes.

Two incorrect answers occurred frequently. Figure 7 shows
the combined result of these errors: a“scallop-shaped”graph
where each point of the scallop shows a transition from ris-
ing per-operation insertion cost back to cheap costs after
resizing, but does not show an upward jump in total cost of
insertions. 22% of students indicated that collisions slowed
down the insertion process as the insertion sequence pro-
gressed toward resizes. 16% recognized that resizes occurred
yet indicated that they had essentially zero cost.

The prompt did not lead many students to explain these
features of their answers, but we found evidence that led
us to create the ResizeInPlace misconception. These stu-
dents suggested For example, one student describes the re-
size as “vector resizing”, which does not require individ-
ual reinsertion. Another blames increased collisions late in
the sequence on “smaller numbers [having] their hash col-
lide with the bigger numbers that was hashed before with a
smaller table size.”

Isolating the misconception(s) leading to increasingly ex-
pensive collision cost proved difficult. Instead, we simply
noted common explanations. Two were applications of“book
knowledge”, statements that are good general guidelines but
ignore the details available in the problem: linear probing
does a poor job of spreading keys through the hash table,
and insertion costs go up with load factor. The last, men-
tioned in a quote above, led us to the NoRehash misconcep-
tion: the idea that collisions occur between newly inserted
keys and keys “. . . hashed before with a smaller table size.”

Which of these best describes the process of resizing a hash table to

increase its size?

a. Create a new, separate table larger than the old table, and

copy the keys from the old table to corresponding slots in the new one.

b. Create a new, separate table larger than the old table, and

individually re-insert each key from the old table into the new one.

c. Add extra slots at the end of the existing hash table, and

leave the old keys in place in their existing slots.

d. Add extra slots at the end of the existing hash table, and

individually re-insert each key from the old table into the new one.

Figure 8: Final version of CI question targeted at
ResizeInPlace and NoRehash.

3.3.2 Elaborating the Misconceptions
To learn more, we added a simplified version of this prob-

lem late in our Think-Aloud Interview process with four
students: one just finishing the data structures course and
three in its post-requisite. Three of these gave insight into
the misconceptions.

One student exhibited NoRehash and ResizeInPlace
in a connected fashion: “When we say the table . . . doubles
in size, are we literally just like adding an extra bunch of
elements at the end or are we rehashing everything? . . .
I’m going to assume that we’re not rehashing everything.”
For this student, rehashing is a way to move keys into a new
memory block, not a necessary adjustment. The student
later describes keys hashing into locations still occupied by
“old” keys that should have been rehashed.

The next student shows evidence of NoRehash, seeing
allocation as the dominant cost of resizing: “The [delays for
resizes] get gradually bigger . . . because it needs to take
more time to make space for the hash table.” Later that
student shows evidence of ResizeInPlace, saying: “with
. . . linear probing . . . you wouldn’t have to rehash, . . . it
resizes at half full, so it would be like the first half, almost
half of it is full and then you would have to move down to
the n-over-2 spot.”

The last student may believe NoRehash. This student
blames slow resizes on copying costs: “When the size of the
array reaches a certain number . . . the performance becomes
really ugly because you have to copy all elements [to the new
table].” Unfortunately, the student’s analysis then ended
with by summarizing that total insertion time would “go up
a little, cause assume that the worst case everything hashes
to zero when you have to look for the next element.”

3.3.3 Concept Inventory Question Design
Based on these students’ discussion of the problem, we

designed a much simplified multiple-choice CI question that
asks directly about hash table resizing, as shown in Figure 8.

We chose randomly whether the “create a new” or “add
extra slots” answers should go first and, within each group,
whether the “copy” or “re-insert” answers should go first.
(b) is correct. Together, the answer set targets all possible
combinations of NoRehash—(a) and (c)—and ResizeIn-
Place—(c) and (d). The answers include phrases from stu-
dent responses and use line-breaks and consistent wording
to draw attention to the differences among answers.

In the CI Pilot, 62.8% of students chose the correct
response. 33.3% chose (a) or (c), suggesting they believe
NoRehash. ResizeInPlace is rarer in our data, with only
11.5% choosing (c) or (d). The CI Pilot version of the

question said “. . . copy the keys from the old table into the
new one” in (a). We altered the wording for the final ver-
sion shown above based on the Think-Aloud Interviews
described below.

We conducted Think-Aloud Interviews with three stu-
dents over this question, which support both the presence of
both ResizeInPlace and NoRehash.

One student answered correctly with correct reasoning:
“[Creating a new table and individually re-inserting] does
seem like a better way, cause that way you would keep con-
stant your hashing rule . . . and all your collisions will follow
your rules that you set.”

However, this student did show some evidence of Re-
sizeInPlace, e.g., saying of one “add extra slots” answer
“that could work,” and “[it] seems like a bad way of increas-
ing its size cause [it would cause unpredictable collisions]”.
The student saw problems with not re-inserting keys and
with re-inserting some in place while others remain in the
table, but did not recognize that resizing an array in place
is, in general, infeasible. This suggests some students who
believe ResizeInPlace will be able to eliminate its distrac-
tors, which may explain the lower “yield” of students with
this misconception in our CI Pilot. We do not yet have a
more attractive rewording for these students; so, instructors
and researchers interested in array resizing misconceptions
may want to use this CI question as a conservative estimate
of ResizeInPlace and develop more tightly targeted items.

Another student showed clear evidence of ResizeInPlace
and then selected an “add extra slots” distractor. This stu-
dent drew a diagram of a hash table resizing by adding slots
to the end after reading the prompt but before reading the
answers. The student then worked through the answers,
eliminating the “re-inserting” ones because “it just seems re-
ally cost-heavy to individually re-insert anything,” which is
consistent with NoRehash and selecting the distractor tar-
geted at both misconceptions.

However, the problem version given to this student in-
cluded a NoRehash distractor that said to “copy the con-
tents of the old table into the new one.” This wording led
the student to worry about copying pointers versus copying
the referenced data. We therefore rephrased: first replacing
“contents of” with “keys from” and, after the CI Pilot and
our final interview, to the final version shown above.

That final student clearly displayed ResizeInPlace and
NoRehash and selected the answer targeted at both. Con-
sistent with NoRehash, the student eliminated the “re-
insert” answers because “[re-inserting] would take forever”
and “. . . if you’re just adding extra slots . . . [you wouldn’t
need to] re-insert things.” The student had trouble selecting
between the “copy the keys” and “leave the old keys in place”
distractors but eventually chose the latter. The interviewer
made a rare interjection to ask why, and the student gave
reasoning consistent with ResizeInPlace, saying: “It just
didn’t really make sense to me to create a new table instead
of just increasing the size of the one you already have.”

Our quantitative and qualitative data together suggest
this CI question is effective in probing NoRehash and,
perhaps conservatively, probing ResizeInPlace. Each is
present in a substantial minority of our students.

4. CONCLUSIONS AND FUTURE WORK
We presented important new misconceptions about hash

tables and binary search trees. We also created three easily

reusable concept inventory questions, and ensured that they
assess the intended misconceptions. We demonstrated that
students with data structures background harbor these mis-
conceptions, in some cases in much greater numbers than
indicated on the exam questions we analyzed.

In future work, we plan to verify the CI questions’ applica-
bility at other institutions. Other misconceptions that arose
during our study also merit further research, particularly
FullSearch, for which lack a satisfactory CI question.

In the long run, with our CI questions and others’, we hope
to produce a modest-sized inventory that may not cover the
breadth of data structures, but—as with the tightly-focused
Force Concept Inventory [7]—still provides a valuable bomb
calorimeter2 to measure student understanding.

5. ACKNOWLEDGMENTS
Thanks to many students and faculty who consented to

participate in these studies and to colleagues who advised
us on our work. Special thanks to Allison Elliott Tew, Kim-
berly Voll, and Elizabeth Patitsas for feedback and guid-
ance. This work was funded by the Carl Wieman Science
Education Initiative at the University of British Columbia.

6. REFERENCES
[1] W. K. Adams and C. E. Wieman. Development and

validation of instruments to measure learning of
expert-like thinking. Int’l. J. of Science Ed.,
33(9):1289–1312, 2011.

[2] V. L. Almstrum, P. B. Henderson, V. Harvey,
C. Heeren, W. Marion, C. Riedesel, L.-K. Soh, and
A. E. Tew. Concept inventories in computer science
for the topic discrete mathematics. In Working Group
Reports on Innov. and Tech. in CS Ed., pages
132–145, 2006.

[3] H. Danielsiek, W. Paul, and J. Vahrenhold. Detecting
and understanding students’ misconceptions related to
algorithms and data structures. In Proc. of the Tech.
Symp. on CS Ed., pages 21–26, 2012.

[4] A. Fekete. Using counter-examples in the data
structures course. In Proc. of the Australasian Conf.
on Comp. Ed., pages 179–186, 2003.

[5] R. R. Hake. Interactive-engagement versus traditional
methods: A six-thousand-student survey of mechanics
test data for introductory physics courses. American
Journal of Physics, 66(1):64–74, 1998.

[6] G. L. Herman. The development of a digital logic
concept inventory. PhD thesis, UIUC, 2011.

[7] D. Hestenes, M. Wells, and G. Swackhamer. Force
concept inventory. The Physics Teacher,
30(3):141–158, March 1992.

[8] K. Karpierz, J. Kitching, B. Shillingford, E. Patitsas,
and S. A. Wolfman. ”Dictionary Wars”: an inverted,
leaderboard-driven project for learning dictionary data
structures. In Proc. of the Tech. Symp. on CS Ed.,
pages 740–740, 2013.

[9] E. Patitsas, M. Craig, and S. Easterbrook. On the
countably many misconceptions about #hashtables. In
Proc. of the Tech. Symp. on CS Ed., page 739, 2013.

[10] W. Paul and J. Vahrenhold. Hunting high and low:
instruments to detect misconceptions related to

2Or maybe thermometer.

algorithms and data structures. In Proc. of the Tech.
Symp. on CS Ed., pages 29–34, 2013.

[11] B. Simon, M. Clancy, R. McCartney, B. Morrison,
B. Richards, and K. Sanders. Making sense of data
structures exams. In Proc. of the Int’l. Wkshp. on
Comp. Ed. Research, pages 97–106, 2010.

[12] J. Tenenberg and L. Murphy. Knowing what I know:
An investigation of undergraduate knowledge and
self-knowledge of data structures. CS Ed.,
15(4):297–315, 2005.

[13] A. E. Tew and M. Guzdial. Developing a validated
assessment of fundamental CS1 concepts. In Proc. of
the Tech. Symp. on CS Ed., pages 97–101, 2010.

	Introduction
	Methods
	Misconceptions
	Duplicates in BSTs
	Identifying the Misconceptions
	Concept Inventory Question Design

	Conflation of Heaps and BSTs
	Initial Multiple-Choice Results
	BST Think-Alouds
	Concept Inventory Question Design

	Hash Table Resizing
	Identifying the Misconceptions
	Elaborating the Misconceptions
	Concept Inventory Question Design

	Conclusions and Future Work
	Acknowledgments
	References

