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Assignment Writeup

Look in ~course/assigns/dictwars. There's an executable with your
name on it. (Well, login ID, actually.) Looks like a mystery to me. Solve it!

"Full” Assignment Writeup

We expand on that a bit to tell students:

* That each executable is different.

* How to copy, run, and get help from the executable.
* What the input language for the executable is.

* A simple sample input generator.

* Required format for their auto-graded permutation.
* Looser required format for their report.

* Afull rubric for grading their submission.

* Tips on generating graphs.

* How to access the web server.

Plus 1-2 milestone submissions in which students find the “easy” diction-
aries, practice submission and writing reports, and receive interim feedback.
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The Motivation
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The Goal
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Feedback-Based Learning

Misconceptions Addressed

Methodology: Two terms of data structures courses with
the same question on final exams: graphing data structure
performance for inputs. 1st term used DictWars; 2nd did
not. We identified patterns in a sample from each term and
coded all exams for presence/absence of key patterns.

Attention to context: Ignoring details, relying on general
knowledge, e.g., insert 100000, 99999, ..., 3,2, 1in BST:

| time
' per op
E ’ | | "\r'f I
_\ / Dict lgnornign
o N ) () il Wars  curve
| 4 ops "‘\ No 52.5% (31/59)
A e s LR - (] Yes 31.3% (21/67)

“Because only checks tree for ha(F”bF n at
every split, it is g n complexity”

Practical knowledge of performance: Overlooking key
or exaggerating minor performance issues, e.g.,
collision/resize costs in hash table w/linear probing:

“After ... the array doubles in size, will make
probing slightly better for a while and then
rapidly start to clutter and go towards O(n) ...”’
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Conclusions

Dictionary Wars is a reusable project about asymptotic
and practical behaviour of dictionary data structures in
which each student receives a custom puzzle to solve.
Students enjoy the puzzle nature, quick feedback, and
mild competition. Initial results suggest the project
iImproves students’ understanding of data structures’
practical performance and behavior in context. Potential
adopters should e-mail the contact authors.

Current requirements:

* Assignment management server: C++0x/C++11
compiler, bash for setup/grading scripts, distribution of
student exes. (e.g., by web or file system access)

* Student submission analysis server: C++0x/C++11
compiler, bash, unzip, recent python, account safe for
running student code (e.g., a slightly mod’d Amazon
Web Services Linux micro instance)

* Web-based leaderboard server: sftp access via ssh-
keys, basic web serving capabillities

* Students: run exes. produced by assn. mgmt. server

Data structures: unsorted linked list (optionally “move
to front”, various semantics for duplicates), sorted vector,
binary search tree (optionally w/tombstones), AVL tree
(optionally w/tombstones), hash table (non-resizing
chaining or open addressing w/linear or quadratic
probing), splay tree, binary min-heap (not a dictionary;
ignores find/remove parameter).

We gratefully acknowledge advice and support from the Carl
Wieman Science Education Initiative and its members. Special
thanks to students and staff of UBC CPSC 221 2010W2,
2011S, 2011W2, & 2012S for trying the assignment!




	Slide 1

