"Dictionary Wars™. An Inverted, Leaderboard-Driven
Project for Learning Dictionary Data Structures

Kuba Karpierz*®, Joel Kitching*, Brendan Shillingford*®, Elizabeth Patitsast, Steven A. Wolfman*®
Contact Authors: mr.karpierz@gmail.com, wolf@cs.ubc.ca

* University of British Columbia

Project Setup_ _ _ _ _ _ _ o L ___
: /) :
chosen dictionaries, e.g.: :
2 Linked list (allow duplicates) class list |
I« Linked list (reject dupes) \ / _ |
| | - Hash table (linear probing) > setup scripts | |
|| * BST (tombstones) I
1| °* AVL tree (tombstones) I
* AVL tree (true deletion)
| |
|__ _________ _/ ___________ -
per-student
Per-student permuted executables yermutations

“global”

— — — A_ _ Per Student Workflow executable
|
: ‘..."" | |] I ‘NU"
|| executable gelnneprlejltc—ing ! | submission
(unlabeled, - fen o
| permuted. S programs | | |> system > controller
! dictionaries) R
I ~\\\\\\\‘___’,,,,////’//////”’——_____
| A | formatting/compilation
l | feedback
|
| i : timing data,
| Imin analysis
| data v
|
I (14 - 7
| graphs, scores, pass;;/ ©
| v ming data | _"©
I (final &
I checkpoint) ig ranks,
| "@ scores,
| gg ete.
e — R — v
semi-
automated <

grading

Assignment Writeup

Look in ~course/assigns/dictwars. There's an executable with your
name on it. (Well, login ID, actually.) Looks like a mystery to me. Solve it!

"Full” Assignment Writeup

We expand on that a bit to tell students:

* That each executable is different.

* How to copy, run, and get help from the executable.
* What the input language for the executable is.

* A simple sample input generator.

* Required format for their auto-graded permutation.
* Looser required format for their report.

* Afull rubric for grading their submission.

* Tips on generating graphs.

* How to access the web server.

Plus 1-2 milestone submissions in which students find the “easy” diction-
aries, practice submission and writing reports, and receive interim feedback.

T University of Toronto

CPSC 221: Dictionary Wars

Overall User Rankings
Rank User

[B O

(o= TR I e)]

10
11
12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30

15y7
i4y7
gly7
ele?
X2w7
roy’r
vapT7
glr?
nau7
kOc8
x4u7
m7s7
vaq7
6p7
m7f8
1805
g3r7
t5o7
i8r7
yOt7
n7ty
fag7
k6y7
g2p7
mey7
vaw7
Mt7
u2y7
z3u7
qix7

10
10
10
10
10
10
10
10
7

10
10
8

9

10
9

10
10
10
4

8

10
10
10
10
10
10

9
7

Number of Generators

Total Points
27 060680
27.018345
26821222
25.596236
25002207
24760418
24 589655
24 568993
24 506465
24 258946
24.095900
24061190
24.017995
23928820
23.899875
23881523
23.336447
23286914
23282008
23.190179
23170915
22983612
22 933901
22756143
22708707
22705322
22 699973
22.665277
22568308
22 ABTTT3

The Motivation

Show overall rankings bl

Average Confidence
96 6%
96.5%
95 8%
91.4%
89 3%
88.4%
87 8%
87 7%
87.5%
86 6%
86.1%
85.9%
85.8%
85.5%
85.4%
85 3%
83.3%
83 2%
83 2%
82.8%
82 8%
82.1%
819%
81.3%
81.1%
81.1%
81.1%
80.9%
80.7%
80 2%

0.8 F

Computing time

0.4

0,2 p

0

175608., 0.719382

0.6 F

mys0S Insert Increasing Order

‘data_j.dat' using 1:2

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 50000

Number of Elements

mys0S Insert and Immediately Remove (1-100000) then Insert (1-100000)

Computing time per operation
5

221101. .

0,113555

Repeated insertion and deletion used to distinguish

AVL tree with and without tombstones

23014,6,

Student finds and uses hash function to distinguish dictionaries

40

0
)]

mys0E (Insert 1-20000 before) Find 120000-150000

(x)
'data.dat’ using 1:2

55,5145

5 |:’ 0':'

10000 15000 2
150000 = (Number searched for)

[number of elements from the end of the prim

ary clustering)]

The Goal

CPSC 221: Dictionary Wars
o] 0 ig1 192 193 1g4 195 1g6 i

mmmmm

The Problem

CPSC 221: Dictionary Wars
Overall g0 g1 g2 ig3 g4 195 ics ig7l g8 igo el
RRRRRR

3 ® Chart
4 ® Chart

mmmmm
mmmmm
mmmmm
mmmmm
mmmmm
mmmmm
mmmmm
mmmmm

[m o e = — -
| ™ !
| I:L)Jlnltgnown 7 ~N
| | Pictionary Simple tests, e.g. '
| |—> * Insert 1ton, find 1 to n, I
I H HE B B B B E R E B BE B B B nm remOve 1 tO n I
I . * Insert1,n, 2,n-1, 3, n-2, ... |
! i - A
| * Dictionary :
| | Theory ||
| : - v '

. l
l : .
| . Notyet | Figure it |
| : out? Yes! :

<l l H B B B B © I
| Example
! \" :
N N N
| | Dictionary specific tests, |
| e.g.. . . |
I * Insert n/2, n/4, 3n/4, ... for a _> F|gure It |

Binary Search Tree out? I
I'| < Insert 1, find 1 100x, insert 2, Yes!
| find 2 100x, ...
1 A / :
| n
| : . v I
Example® Refine I
<1=::i| Il E E EEER l‘x(\/Nf(EEEE;(:)|r]r](53 ! I
: 4 N Additto | |
Conduct an experiment to our report.
_1 | determine the implementation Not yet y P |
= | of the structure (Ex: What is I
" | | the hash function?) |
1 / '
L T T T T I
T T T T T T T T T T T T T T T T 1
. |
: 4 R l
" | refines generates |
. Input |
.| N J :
| |
. | \
.| ,

< | ,
l \/ |
| : A prompts : 1o
| Analysis < Graph I
I - J - J !
' |

Feedback-Based Learning

Misconceptions Addressed

Methodology: Two terms of data structures courses with
the same question on final exams: graphing data structure
performance for inputs. 1st term used DictWars; 2nd did
not. We identified patterns in a sample from each term and
coded all exams for presence/absence of key patterns.

Attention to context: Ignoring details, relying on general
knowledge, e.g., insert 100000, 99999, ..., 3,2, 1in BST:

| time
' per op
E ’ | | "\r'f I
_\ / Dict lgnornign
o N) () il Wars curve
| 4 ops "‘\ No 52.5% (31/59)
A e s LR - (] Yes 31.3% (21/67)

“Because only checks tree for ha(F”bF n at
every split, it is g n complexity”

Practical knowledge of performance: Overlooking key
or exaggerating minor performance issues, e.g.,
collision/resize costs in hash table w/linear probing:

“After ... the array doubles in size, will make
probing slightly better for a while and then
rapidly start to clutter and go towards O(n) ...”’

cumulative
time

Dict
Wars

no resize
cost

32.2% (19/59)
3.0% (2/67)

collision cost
exag.

No 37.3% (22/59)
9.0% (6/67)

Yes

! # ops

Conclusions

Dictionary Wars is a reusable project about asymptotic
and practical behaviour of dictionary data structures in
which each student receives a custom puzzle to solve.
Students enjoy the puzzle nature, quick feedback, and
mild competition. Initial results suggest the project
iImproves students’ understanding of data structures’
practical performance and behavior in context. Potential
adopters should e-mail the contact authors.

Current requirements:

* Assignment management server: C++0x/C++11
compiler, bash for setup/grading scripts, distribution of
student exes. (e.g., by web or file system access)

* Student submission analysis server: C++0x/C++11
compiler, bash, unzip, recent python, account safe for
running student code (e.g., a slightly mod’d Amazon
Web Services Linux micro instance)

* Web-based leaderboard server: sftp access via ssh-
keys, basic web serving capabillities

* Students: run exes. produced by assn. mgmt. server

Data structures: unsorted linked list (optionally “move
to front”, various semantics for duplicates), sorted vector,
binary search tree (optionally w/tombstones), AVL tree
(optionally w/tombstones), hash table (non-resizing
chaining or open addressing w/linear or quadratic
probing), splay tree, binary min-heap (not a dictionary;
ignores find/remove parameter).

We gratefully acknowledge advice and support from the Carl
Wieman Science Education Initiative and its members. Special
thanks to students and staff of UBC CPSC 221 2010W2,
2011S, 2011W2, & 2012S for trying the assignment!

	Slide 1

