
“Dictionary Wars”: An Inverted, Leaderboard-Driven
Project for Learning Dictionary Data Structures

We gratefully acknowledge advice and support from the Carl
Wieman Science Education Initiative and its members. Special
thanks to students and staff of UBC CPSC 221 2010W2,
2011S, 2011W2, & 2012S for trying the assignment!

Kuba Karpierz*, Joel Kitching*, Brendan Shillingford*, Elizabeth Patitsas†, Steven A. Wolfman*
* University of British Columbia † University of Toronto Contact Authors: mr.karpierz@gmail.com, wolf@cs.ubc.ca

chosen dictionaries, e.g.:
• Linked list (allow duplicates)
• Linked list (reject dupes)
• Hash table (linear probing)
• BST (tombstones)
• AVL tree (tombstones)
• AVL tree (true deletion)

class list

setup scripts

Project Setup

Input-
generating
programs

Per Student Workflow

executable
(unlabeled,
permuted

dictionaries)

timing
data

report
(final &

checkpoint)

submission
system

formatting/compilation
feedback

timing data,
analysis

“passive”
web

server

graphs, scores,
timing data

“global”
executable

semi-
automated

grading

per-student
permutations

ranks,
scores,
etc.

Assignment Writeup
Look in ~course/assigns/dictwars. There's an executable with your
name on it. (Well, login ID, actually.) Looks like a mystery to me. Solve it!

“Full” Assignment Writeup
We expand on that a bit to tell students:
• That each executable is different.
• How to copy, run, and get help from the executable.
• What the input language for the executable is.
• A simple sample input generator.
• Required format for their auto-graded permutation.
• Looser required format for their report.
• A full rubric for grading their submission.
• Tips on generating graphs.
• How to access the web server.

Plus 1-2 milestone submissions in which students find the “easy” diction-
aries, practice submission and writing reports, and receive interim feedback.

controller

Misconceptions Addressed
Methodology: Two terms of data structures courses with
the same question on final exams: graphing data structure
performance for inputs. 1st term used DictWars; 2nd did
not. We identified patterns in a sample from each term and
coded all exams for presence/absence of key patterns.

Attention to context: Ignoring details, relying on general
knowledge, e.g., insert 100000, 99999, …, 3, 2, 1 in BST:

Practical knowledge of performance: Overlooking key
or exaggerating minor performance issues, e.g.,
collision/resize costs in hash table w/linear probing:

Conclusions
Dictionary Wars is a reusable project about asymptotic
and practical behaviour of dictionary data structures in
which each student receives a custom puzzle to solve.
Students enjoy the puzzle nature, quick feedback, and
mild competition. Initial results suggest the project
improves students’ understanding of data structures’
practical performance and behavior in context. Potential
adopters should e-mail the contact authors.

Current requirements:
• Assignment management server: C++0x/C++11

compiler, bash for setup/grading scripts, distribution of
student exes. (e.g., by web or file system access)

• Student submission analysis server: C++0x/C++11
compiler, bash, unzip, recent python, account safe for
running student code (e.g., a slightly mod’d Amazon
Web Services Linux micro instance)

• Web-based leaderboard server: sftp access via ssh-
keys, basic web serving capabilities

• Students: run exes. produced by assn. mgmt. server

Data structures: unsorted linked list (optionally “move
to front”, various semantics for duplicates), sorted vector,
binary search tree (optionally w/tombstones), AVL tree
(optionally w/tombstones), hash table (non-resizing
chaining or open addressing w/linear or quadratic
probing), splay tree, binary min-heap (not a dictionary;
ignores find/remove parameter).

“Because only checks tree for half of n at
every split, it is lg n complexity”

Dict
Wars

lg n or n lg n
curve

No 52.5% (31/59)

Yes 31.3% (21/67)

time
per op

ops

cumulative
time

ops

“After … the array doubles in size, will make
probing slightly better for a while and then
rapidly start to clutter and go towards O(n) …”

Dict
Wars

collision cost
exag.

no resize
cost

No 37.3% (22/59) 32.2% (19/59)

Yes 9.0% (6/67) 3.0% (2/67)

Input

GraphAnalysis

generates

Feedback-Based Learning

prompts

refines

Simple tests, e.g.:
• Insert 1 to n, find 1 to n,

remove 1 to n
• Insert 1, n, 2, n-1, 3, n-2, ...

The Motivation The Goal The Problem

Student Process

Dictionary
Theory

Unknown
Dictionary

Figure it
out?

Dictionary specific tests,
e.g.:
• Insert n/2, n/4, 3n/4, ... for a

Binary Search Tree
• Insert 1, find 1 100x, insert 2,

find 2 100x, ...

Not yet

Figure it
out?

Conduct an experiment to
determine the implementation
of the structure (Ex: What is
the hash function?)

Not yet

Refine
Awesome!
Add it to

your report.

Yes!

Yes!

Per-student permuted executables

Example

Example

Student finds and uses hash function to distinguish dictionaries

Repeated insertion and deletion used to distinguish
AVL tree with and without tombstones

	Slide 1

