
“Dictionary Wars”: An Inverted, Leaderboard-Driven
Project for Learning Dictionary Data Structures

Kuba Karpierz
University of British Columbia

201-2366 Main Mall
Vancouver, BC, Canada

mr.karpierz@gmail.com

Joel Kitching
University of British Columbia

201-2366 Main Mall
Vancouver, BC, Canada

joel@jkweb.ca

Brendan Shillingford
University of British Columbia

201-2366 Main Mall
Vancouver, BC, Canada

br2609@interchange.ubc.ca

Elizabeth Patitsas
University of Toronto

40 St George St.
Toronto, ON, Canada

Ph: 416-978-3610
Fax: 416-978-4765

patitsas@cs.toronto.edu

Steven A. Wolfman
University of British Columbia

201-2366 Main Mall
Vancouver, BC, Canada

Ph: 604-822-0407
Fax: 604-822-5485
wolf@cs.ubc.ca



ABSTRACT
We present a highly reusable “inverted” project in which
students learn asymptotic and practical behaviour of dic-
tionary data structures—linked-lists, arrays, balanced trees,
and hash tables—in an atmosphere of mild competition.
Much like David Levine’s Nifty Assignment “Sort Detec-
tive” [2], rather than implementing the dictionaries, stu-
dents’ programs generate input to our (unlabeled) imple-
mentations, and students use timing data to label the imple-
mentations. Much like Bryant and O’Halloran’s computer
architecture labs [1], students also compete to “convince” a
web-based, automated system that their input generators
distinguish the dictionaries based on trend-line behaviour.
UBC has used the project in three terms, and we plan to
use it at UBC and U Toronto in coming terms.

1. SIGNIFICANCE AND RELEVANCE
Dictionary data structures (also known as maps) are com-

monly used in a wide variety of computing applications as
well as being an important topic in algorithms and data
structures courses in the ACM CS2008 curriculum (e.g., un-
der AL/FundamentalAlgorithms, PF/DataStructures, and
various places for analysis of performance and tradeoffs).
Modern languages generally support them either as built-in
structures (as in Python) or as part of the core libraries (as
in Java).

A long-running issue in computing education has been to
find ways to help students learn to understand these data
structures from above the implementation level [3]. Our
project builds on the inverted assignment style of Levine [2]
and Bryant and O’Hallaron [1] to provide a learning experi-
ence for students where they use these data structures from
the outside, yet exercise deep and thorough understanding of
the crucial idiosyncracies of each implementation’s function.

Using a simple command syntax—one command per line
where each command is composed of an ‘I’ for insert, ‘F’
for find, or ‘R’ for remove plus a numeric key1—students
craft experiments to distinguish the dictionary implementa-
tions from each other. To do so student must understand
best-, average-, and worst-case behaviours of the structures,
the form of inputs that produce those behaviours, the per-
formance curves these varied inputs produce, and various
practical ramifications of the structures’ function (e.g., the
relatively large delays generated by rehashing vs. resizing of
arrays).

To excel in the competition, students also make educated
guesses augmented by further experiments into the structure
of implementations. (For example, to force a hash table to
generate a “clean” n2-shaped curve for a series of n inser-
tions, students might first reverse engineer the hash table’s
initial size and resizing strategy.)

Finally, this project forces our Computer Science students
to coherently describe an experimental plan and use its re-
sults to justify their choices, a lamentably rare occurrence
in CS projects!

2. POSTER CONTENT
We anticipate dividing the poster into 4 parts:

1Technically, this syntax is an interface to sets rather than
dictionaries. Conflating these is common in data structures
courses. Whether it’s also problematic is outside the scope
of this poster!

1. A brief description of the assignment itself.

The core of this is: “Each student group gets an exe-
cutable that (1) accepts command-line flags to choose
among a set of ‘mystery’ dictionary implementations,
(2) parses simple commands—one per line, each com-
mand composed of an ‘I’ (insert), ‘F’ (find), or ‘R’
(remove) plus a numeric key—and (3) feeds the oper-
ations into the dictionary implementation. The exe-
cutable outputs performance (timing) data which stu-
dents use to match the mystery to actual implemen-
tations and justify that matching. With high prob-
ability, the permutation between mystery and actual
implementations is unique to each group.”

2. Examples of (real) student strategies for solving the
problem, illustrating the experiment design and rea-
soning students employ.

We anticipate showing a handful of examples from stu-
dents’ submissions such as Figures 1 and 2, which show
two steps of one student team’s2 reasoning. Note: the
team preprocessed to show per-operation (really, per-
block) rather than cumulative performance.

3. Description of the automated scoring system. We will
briefly describe the technique used for curve-fitting;
the technologies used to build the submission, auto-
scoring, and web interface components of the leader-
board; and screenshots and description of the leader-
board interface, e.g., the ranking screen, overall dic-
tionary vs. dictionary comparison screen, individual
student’s overall summary screen, and individual stu-
dent’s report for a single input generator. Due to space
restrictions, we show here only the leaderboard and de-
tail view in Figure 3.

4. Closing comments. We will close with discussion of
student participation rates over the terms in the op-
tional bonus component of the project; known issues
and future work (including, e.g., increased automation
in grading and security issues with running student
code); the URL for a sample leaderboard (http://
www.ugrad.cs.ubc.ca/~cs221/2011W2/fun/) and for
code download (in progress).

3. REFERENCES
[1] R. E. Bryant and D. R. O’Hallaron. Computer Systems:

A Programmer’s Perspective. Addison-Wesley, 2/e
edition, 2010.

[2] N. Parlante, J. K. Estell, D. Reed, D. Levine,
D. Garcia, and J. Zelenski. Nifty assignments. In
Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, SIGCSE ’02, pages
319–320, New York, NY, USA, 2002. ACM.

[3] B. Simon, M. Clancy, R. McCartney, B. Morrison,
B. Richards, and K. Sanders. Making sense of data
structures exams. In Proceedings of the Sixth
international workshop on Computing education
research, ICER ’10, pages 97–106, New York, NY, USA,
2010. ACM.

2The first author’s team from when he was assigned the
project as a student is Spring 2012.

http://www.ugrad.cs.ubc.ca/~cs221/2011W2/fun/
http://www.ugrad.cs.ubc.ca/~cs221/2011W2/fun/


Figure 1: Two figures the students used to illustrate that the third mystery dictionary is not an unsorted
linked list. From their report: “Since the list is not sorted, this implementation will give the same performance
(for insertions) regardless of the order of inputs. This ruled out . . . mys03.”

Figure 2: Two figures the students used to illustrate that the seventh and eigth mystery dictionaries are not
the unsorted linked list. From their report: “Since there is no resizing needed for a linked list, there should
be no jumps (or random, scattered dots) in the graphs. This ruled out . . . mys07, and mys08. . . ”

Figure 3: A snapshot of the web-based leaderboard at the end of spring of 2012 (left). Clicking a row accesses
a group’s detailed results (right), giving access to cumulative time taken vs. number of operations performed
for each input generator/dictionary pairing from that group. Another display uses an upper-triangular matrix
to show the best results so far comparing each pair of dictionaries. Students track the leaderboard both to
see how they’re doing and to deduce and recreate other students’ successful strategies.


	Significance and Relevance
	Poster Content
	References

