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Abstract

Compilation to boolean satisfiability has become a powerful paradigm
for solving AI problems. However, domains that require metric reason-
ing cannot be compiled efficiently to SAT even if they would otherwise
benefit from compilation. We address this problem by introducing the
LCNF representation that combines propositional logic with metric
constraints. We present LPSAT, an engine that solves LCNF prob-
lems by interleaving calls to an incremental Simplex algorithm with
systematic satisfaction methods and benefits from both Artificial In-
telligence and Operations Research techniques. We describe a compiler
that converts metric resource planning problems into LCNF for pro-
cessing by LPSAT. The experimental section of the paper explores
several optimizations to LPSAT, including learning from constraint
failure and randomized cutoffs.

1 Introduction

Recent advances in boolean satisfiability (SAT) solving technology have ren-
dered large, previously intractable problems quickly solvable [Crawford and
Auton, 1993; Selman et al., 1996; Cook and Mitchell, 1997; Bayardo and
Schrag, 1997; Li and Anbulagan, 1997; Gomes et al., 1998]. SAT solving
has become so successful that many other difficult tasks are being compiled
into propositional form to be solved as SAT problems. For example, SAT-
encoded solutions to graph coloring, planning, and circuit verification are
among the fastest approaches to these problems [Kautz and Selman, 1996;
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Figure 1: Data flow in the demonstration resource planning system; space pre-
cludes discussion of the grey components.

Selman et al., 1997]. These SAT encodings succeed because they compile to
a simple yet expressive target language and take advantage of rapidly progress-
ing solution techniques.

However, many real-world tasks have a metric aspect. For instance, resource
planning, temporal planning, scheduling, and analog circuit verification prob-
lems all require reasoning about real-valued quantities. Unfortunately, metric
constraints are difficult and in some cases impossible to express in SAT encod-
ings. Hence, a target language and solution system that could efficiently handle
both metric constraints and propositional formulas would yield a powerful sub-
strate for handling AI problems.

This paper introduces a new language, LCNF, which combines the expressive
power of propositional logic with that of linear equalities and inequalities. This
combination is still less expressive than an Integer Linear Programming (ILP)
encoding, but it encourages a careful division of logical and metric reasoning and
combines the strengths of constraint satisfaction and Linear Programming (LP).
We argue that LCNF provides an ideal target language into which a compiler
might translate tasks that combine logical and metric reasoning.

Moreover, we present an architecture for solving LCNF problems that takes
advantage of the powerful existing technologies in both of these areas. We
describe the LPSAT LCNF solver, which implements this architecture. We also
present a number of enhancements and alternatives to the architecture. These
include incremental updates to the constraint set, speedup learning via conflict
set (nogood) construction in the LP engine, and an optimizing (as opposed to
satisficing) variant of LPSAT.

Finally, to demonstrate the utility of the LCNF approach in a concrete do-
main, we present a fully implemented compiler for resource planning problems.
Figure 1 shows how the components fit together: a compiler translates the
planning problem into LCNF, the LPSAT system solves the LCNF problem,
and a decoder translates the truth/real-value assignment into a plan. The per-
formance of the system is impressive: LPSAT solves large resource planning
problems (encoded in a variant of the pddl language [McDermott, 1998] based
on the metric constructs used by metric ipp [Koehler, 1998]), including a metric
version of the ATT Logistics domain [Kautz and Selman, 1996].

2 The LCNF Formalism

The LCNF representation combines a propositional logic formula with a set of
metric constraints in a style similar to that proposed by Hooker et al. [Hooker et
al., 1999]. Truth assignments to the boolean satisfiability portion of the problem
define the metric constraint set, and both the satisfiability and metric portions



MaxLoad ⇒ (load ≤ 30) ; Statements
MaxFuel ⇒ (fuel ≤ 15) ; defining
MinFuel ⇒ (fuel ≥ 7 + load / 2) ; triggered
AllLoaded ⇒ (load = 45) ; constraints

MaxLoad ; Triggers for load and
MaxFuel ; fuel limits are unit
Deliver ; The goal is unit
¬Move ∨ MinFuel ; Moving requires fuel
¬Move ∨ Deliver ; Moving implies delivery
¬GoodTrip ∨Deliver ; A good trip requires
¬GoodTrip ∨AllLoaded ; a full delivery

Figure 2: Portion of a tiny LCNF logistics problem (greatly simplified from
compiler output). A truck with load and fuel limits makes a delivery but is too
small to carry all load available (the AllLoaded constraint). Italicized variables
are boolean-valued; typeface are real.

must be solved to solve the entire LCNF problem1.
The key to the encoding is the simple but expressive concept of triggers —

each propositional variable may trigger a constraint; this constraint is then
enforced whenever the variable’s truth assignment is true. A variable with
an associated constraint is called a trigger variable. Using this framework, we
can construct logical clauses that simulate constraints triggered by false as-
signments, multiple constraints triggered by a single variable, and other more
complex triggering schemes.

Formally, an LCNF problem is a five-tuple 〈R,V , ∆, Σ, T 〉 in which R is a set
of real-valued variables, V is a set of propositional variables, ∆ is a set of linear
equality and inequality constraints over variables in R, Σ is a propositional
formula in CNF over variables in V , and T is a function from V to ∆ which
establishes the constraint triggered by each propositional variable. We require
that ∆ contain a special null constraint that is vacuously true, and this is
used as the T -value for a variable in V to denote that it triggers no constraint.
Moreover, for each variable v we define T (¬v) = null.

Under this definition, an assignment to an LCNF problem is a mapping, ϕ,
from the variables in R to real values and from the variables in V to truth values.
Given an LCNF problem and an assignment, the set of active constraints is
{c ∈ ∆|∃v ∈ V ϕ(v) = true∧ T (v) = c}. We say that an assignment satisfies
the LCNF problem if and only if it makes at least one literal true in each
clause of Σ and satisfies the set of active constraints. A partial assignment to
an LCNF problem is a mapping from variables in V to values in the domain
{true, false, unassigned}. We say that a partial assignment ϑ is inconsistent
with respect to an LCNF problem if there is no assignment ϕ that satisfies
the problem such that for all v ∈ V either ϕ(v) = ϑ(v) or ϑ(v) = unassigned.
Intuitively then, an assignment is satisfying if it makes each propositional clause
true and triggers a consistent constraint set; a partial assignment is inconsistent
if it cannot be extended to form a satisfying assignment.

1Our current LCNF specification does not define any function for measuring the
quality of the solution; so, an LCNF solver need not be optimizing.



Figure 2 shows a fragment of a very simple LCNF problem: a truck, which
carries a maximum load of 30 and fuel level of 15, can make a Delivery by
executing the Move action. We discuss later why it cannot have a GoodTrip.

3 The LPSAT Solver

The LPSAT architecture uses a systematic SAT solver as the controlling com-
ponent of the engine and makes calls to an LP system. The LPSAT algorithm
is very similar to the DPLL algorithm for solving boolean satisfiability prob-
lems [Davis et al., 1962]. The key difference is in the definitions of “satisfying
assignment” and “inconsistent partial assignment”. As described in the previ-
ous section, each of these concepts in an LCNF problem refers to the active
constraint set; however, in a boolean satisfiability problem, the solver considers
only the CNF formula when checking for satisfiability. We now describe how we
alter LPSAT’s SAT component to conform to LCNF’s definitions of satisfying
and inconsistent.

An assignment to an LCNF statement is satisfying only if its activated con-
straint set is consistent. So, to handle LCNF problems, the SAT solver’s check
for satisfaction of its LCNF statement must be modified. The solver still checks
if the boolean portion of the problem is satisfied; however, if the boolean portion
is satisfied, the solver constructs the active constraint set (according to the truth
values of the trigger variables) and checks for consistency with the LP solver.
Only if the constraint set is consistent does the solver report satisfaction; oth-
erwise, the assignment is inconsistent. In addition, when actually reporting a
solution (as opposed to simply reporting satisfiability), the SAT solver must re-
turn values for its propositional variables and query the LP engine for consistent
values for the metric variables.

A partial assignment to an LCNF statement is inconsistent if it activates an
inconsistent constraint set. To accomodate this definition, the SAT system’s
check for inconsistency must — if the boolean portion of the problem is found
consistent — construct the activated constraint set, check for inconsistency with
the LP solver, and return the result. If a trigger variable is unassigned, its
constraint should not be added to the active constraint set (since an extension
of the partial assignment may or may not activate that constraint).

We implemented the LPSAT engine by modifying the RelSAT satisfiability
solver [Bayardo and Schrag, 1997] as described above and combining it with
the Cassowary constraint solver [Borning et al., 1997; Badros and Borning,
1998]. We chose RelSAT because it was the best available systematic satisfia-
bility solver, and its code was well-structured. RelSAT — like all DPLL-style
solvers — performs a systematic, depth-first search through the space of partial
truth assignments. It also incorporates powerful learning optimizations which
make it competitive with the best of the non-systematic SAT solvers. We chose
Cassowary for its efficiency and because it implements incremental Simplex and
so supports and quickly responds to small changes in its constraint set.

In addition to modifying RelSAT’s check for satisfying and inconsistent as-
signments, we also had to weaken the pure literal elimination rule. In a CNF
problem, pure literal elimination may eliminate certain solutions, but it pre-
serves satisfiability. However, in an LCNF problem, pure literal elimination
may not preserve satisfiability because a pure positive trigger variable may trig-
ger an inconsistent constraint; so, setting that variable to true would make the



Procedure LPSAT(LCNF problem: 〈R,V, ∆, Σ, T 〉)
1 If ∃ an empty clause in Σ or inc?(∆), return {⊥}.
2 Else if Σ is empty, return solve(∆).
3 Else if ∃ a pure literal u in Σ and T (u) = null,
4 return {u} ∪ LPSAT(〈R,V, ∆, Σ(u), T 〉).
5 Else if ∃ a unit clause {u} in Σ,
6 return {u} ∪ LPSAT(〈R,V, ∆ ∪ T (u), Σ(u), T 〉).
7 Else
8 Choose a variable, v, mentioned in Σ.
9 Let A = LPSAT(〈R,V, ∆ ∪ T (v), Σ(v), T 〉).
10 If ⊥ /∈ A, return {v} ∪ A.
11 Else, return {¬v} ∪ LPSAT(〈R,V, ∆, Σ(¬v), T 〉).

Figure 3: Core LPSAT algorithm (without learning). inc? denotes a check for
constraint inconsistency; solve returns constraint variable values. T (u) returns
the constraint triggered by u (possibly null). Σ(u) denotes the result of setting
literal u true in Σ and simplifying. The DPLL algorithm is similar but makes no
reference to R, ∆, trigger variables, inconsistency checks, or metric constraint
solves.

problem unsatisfiable. In order to maintain the satisfiability-preserving prop-
erty of pure literal elimination, we never consider trigger variables to be pure
positive2.

In general, any heuristic which, like the pure literal elimination rule, pre-
serves satisfiability but not individual solutions may need to be modified to work
with LCNF problems. However, heuristics which, like unit propagation, prune
only inconsistent assignments from the search space will be applicable to LCNF
problems without change3. Heuristics which do not prune the search space but
merely guide search do not need to be modified, but the heuristic may benefit
from considering the constraints. For example, we altered RelSAT’s variable
scoring heuristic for choosing splitting variables at branch points to consider
whether a potential split variable is a trigger.

Figure 3 displays pseudocode for our LPSAT algorithm. The algorithm is
based on DPLL [Davis et al., 1962]; it performs a depth first search through
the space of partial truth assignments. The search backtracks if it reaches an
inconsistent partial assignment and succeeds if it finds a satisfying assignment.
The pure literal and unit propagation heuristics guide search. Although our
discussion and this pseudocode are targeted at systematic solvers, we feel that
other kinds of SAT solvers (e.g., stochastic solvers) could be similarly adapted
for use in an LCNF solver.

These simple changes will result in a functional LCNF engine; however, more
elaborate communication between the SAT and LP modules can exploit the
strengths of each module and dramatically improve the performance and ca-

2This restriction falls in line with the pure literal elimination rule if we form implicit
clauses describing the triggering action. For instance, the implicit clause for the trigger
MaxLoad ⇒ (load ≤ 30) from Figure 2 would be ¬MaxLoad ∨ (load ≤ 30) and
would introduce a negated instance of the trigger variable, MaxLoad.

3This is because the set of satisfying assignments for an LCNF problem is a subset
of the set of satisfying assignments to its CNF portion



pabilities of the whole system. In the next sections, we describe incrementally
updating the constraint set, constructing propositional conflict sets (nogoods)
from the constraint set, and altering the satisficing SAT system to form an
optimizing LPSAT variant.

4 Incremental Updates to the Constraint Set

Incremental Simplex systems, including Cassowary, are capable of maintaining
and incrementally modifying a constraint set, often much faster than the entire
set could be constructed and solved from scratch. In order to take advantage
of this behavior in an LCNF engine, the SAT module’s procedures for setting
(and possibly unsetting) variable values must be modified to notify the LP
system of changes in the active constraint set. In particular, when a trigger
variable’s value becomes true, its associated constraint should be added to the
LP constraint set; when its value ceases to be true, the associated constraint
should be removed from the LP constraint set.

However, for current SAT and LP systems, it is generally much faster to set or
unset a single propositional variable’s value than it is to add or remove a single
constraint (even for incremental LP systems). Therefore, it can be valuable to
delay commitment of constraints to the constraint set.

With delayed commitment, rather than adding constraints directly to the
LP system, the SAT system adds and removes constraints from a cache that
maintains the difference between the current constraint set and the set active
in the LP system. The LP system never contains constraints that are not part
of the active constraint set, but some constraints that are part of the active
constraint set will be kept in the cache and not put in the LP system. LPSAT
maintains this invariant by actually removing from the LP system any constraint
which is deactivated but was in the LP system (and not just the cache). Since
the active constraint set is always at least as constrained as the constraint set in
the LP system, satisfiability checks are complete but not sound and, conversely,
inconsistency checks are incomplete but sound. When the SAT system requires a
complete inconsistency check or a sound satisfiability check, the cache is entirely
added to the LP system. Making a sound (empty cache) satisfiability check
before committing to a solution allows the solver to reestablish soundness. By
designating the other events that add the cache’s constraints to the LP system,
an LCNF engine can strike a balance between boolean and metric reasoning
time.

These techniques — both incremental updates and delayed commitment —
are implemented in the LPSAT system. LPSAT dumps its cache each time it
reaches a branch point.

5 Learning from Metric Constraint Conflicts

LPSAT inherits methods for speedup learning from RelSAT [Bayardo and
Schrag, 1997]. LPSAT’s depth-first search of the propositional search space
creates a partial assignment to the boolean variables. When the search is forced
to backtrack, it is because the partial assignment is inconsistent with the LCNF
problem. LPSAT identifies an inconsistent subset of the truth assignments in
the partial assignment, a conflict set, and uses this subset to enhance its rea-
soning in two ways. First, since making the truth assignments represented in
the conflict set leads inevitably to failure, LPSAT can learn a clause disallowing
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Figure 4: Graphical depiction of the constraints from Figure 2. The shaded area
represents solutions to the set of solid-line constraints. The dashed AllLoaded
constraint causes an inconsistency.
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Figure 5: Possible search tree for the constraints from Figure 2. Each node is
labeled with the variable set at that node; branchpoints have true (T) and false
(F) branches. ⊥ indicates an inconsistent constraint set. The bold variables are
members of the conflict set.

those particular assignments. For example, in the problem from Figure 2 the
constraints triggered by setting MinFuel, MaxFuel, MaxLoad, and AllLoaded to
true are inconsistent, and MinFuel, MaxFuel, and AllLoaded form a conflict set.
So, LPSAT can learn the clause (¬MinFuel ∨ ¬MaxFuel ∨ ¬AllLoaded). Sec-
ond, because continuing the search is futile until at least one of the variables in
the conflict set has its truth assignment changed, LPSAT can backjump in its
search to the deepest branch point from which a conflict set variable received
its assignment, ignoring any deeper branch points. Figure 5 shows a search tree
in which MinFuel, MaxFuel, MaxLoad, and AllLoaded have all been set to true.
Using the conflict set containing MinFuel, MaxFuel, and AllLoaded, LPSAT can
backjump past the branchpoint for MaxLoad to the branchpoint for MinFuel,
the deepest branchpoint at which a member of the conflict set can be changed.

However, while LPSAT inherits methods to use conflict sets from RelSAT,
LPSAT must produce those conflict sets for both propositional and constraint
failures while RelSAT produces them only for propositional failures. Given a
propositional failure LPSAT uses RelSAT’s conflict set discovery mechanism
unchanged, learning a set based on two of the clauses that led to the contradic-
tion [Bayardo and Schrag, 1997]. However, discovering constraint conflict sets
requires a new mechanism.

While LPSAT could return the entire partial assignment as a conflict set upon
discovering an inconsistency in the active constraint set, paring this set down



to a smaller set of assignments yields greater pruning action. Since only the
trigger variables with true values in the partial assignment add to the active
constraint set, only those variables need to be included in the conflict set. We
call the resulting set a global conflict set. To construct this conflict set, the
SAT system queries the LP system to get the constraint set; then, it maps the
constraints back to the variables that triggered them.

Just as using the triggers of a global conflict set was an improvement over
using the entire partial assignment, using any subset of the global conflict set
would be an improvement over using the entire set. The logical extension of
this idea is to create a conflict set which itself comprises a set of inconsistent
constraints but of which every strict subset is consistent. We call such a set
a minimal conflict set. Discovery of both global and minimal conflict sets is
implemented in LPSAT; Section 8.1 presents experimental results which show
the effectiveness of conflict sets in speedup learning.

Informally, LPSAT finds a minimal conflict set by identifying only those con-
straints that are, together, in greatest conflict — causing the most error —
with the new constraint. In Figure 4, the constraints MaxLoad, MaxFuel, and
MinFuel and the implicit constraints that fuel and load be non-negative are
all consistent; however, with the introduction of the dashed constraint marked
AllLoaded the constraint set becomes inconsistent. We now discuss how LPSAT
discovers the conflicting constraints in this figure and which set it discovers.

When LPSAT adds the AllLoaded constraint to Cassowary’s constraint set,
Cassowary initially adds a “slack” version of the constraint that allows error and
is thus trivially consistent with the current constraint set. This error is then
minimized by the same routine used to minimize the overall objective func-
tion [Badros and Borning, 1998]. In Figure 4, we show the minimization as a
move from the initial solution at the upper left corner point to the solution at
the upper right corner point of the shaded region. The error in the solution is
the horizontal distance from the solution point to the new constraint AllLoaded.
Since no further progress within the shaded region can be made toward All-
Loaded, the error has been minimized; however, since the error is non-zero, the
strict constraint is inconsistent.

At this point, LPSAT constructs a minimal conflict set using marker vari-
ables (which Cassowary adds to each original constraint). A marker variable is
a variable that was added by exactly one of the original constraints and thus
identifies the constraint in any derived equations. LPSAT examines the derived
equation that gives the error for the new constraint, and notes that each con-
straint with a marker variable in this equation contributes to keeping the error
non-zero. Thus, all the constraints identified by this equation, plus the new
constraint itself, compose a conflict set. The LPSAT technical report [Wolfman
and Weld, 1999] proves that this technique returns a minimal conflict set.

In Figure 4 the MinFuel and MaxFuel constraints restrain the solution point
from coming closer to the AllLoaded line. If the entire active constraint set
were any two of those three constraints, the intersection of the two constraints’
lines would be a valid solution; however, there is no valid solution with all three
constraints.

Note that another conflict set — AllLoaded plus MaxLoad — exists. In general,
there may be many minimal conflict sets, but our conflict discovery technique
can discover only one of these per solve. Using careful modifications to the
active constraint set and multiple Cassowary solves, we can find many or all of



Procedure best-conflict-set(∆: constraints {1, . . . , |∆|})
1 Let M = rev-sort(min-conflict-set(∆)).
2 Return bcs-helper(∆, M, 1).

Procedure bcs-helper( ∆: remaining constraints in increasing order,
M: best conflict set so far in decreasing order,
i: integer)

1 If i = |M|, return M.
2 Else
3 Let ∆′ = ∆ − {Mi+1, . . . ,Mi − 1}.
4 Let M′ = rev-sort(min-conflict-set(∆′)).
5 If M′ = ∅,
6 return bcs-helper(∆′ ∪ {Mi+1},M, i + 1).
7 Else
8 return bcs-helper(∆,M′, i).

Figure 6: Pseudocode for finding the “best” conflict set for the set ∆. The
best set is a minimal conflict set, and its worst element is better than the worst
element of all other min. conflict sets, ties broken by comparing successively
better pairs of elements. Constraints are numbered from best, 1, to worst, |∆|.
We assume that the constraint |∆| caused the inconsistency and so is a member
of every minimal conflict set. rev-sort sorts a set into decreasing order; min-

conflict-set finds a minimal conflict set or returns ∅ if the set is consistent;
the set M is made up of the elements {M1, . . . ,M|M|}

the minimal conflict sets. In order to differentiate between these, we may need
to use a different metric from the one that led us to use minimal conflict sets
over global conflict sets. Using the size of the sets is still an option, but since
none of these sets is a subset of any of the others, a smaller set is no longer
guaranteed to result in better (or even equally good) pruning of the search.

In order to allow the system to refine the choice of minimal conflict set, we can
pass a ranking of the trigger variables (and thus the constraints) from the SAT
system to LP system. Using a linear (in the number of active constraints) num-
ber of calls to the minimal conflict set discovery mechanism described above, the
LP system can construct the minimal conflict set with the highest ranked con-
straints. The algorithm starts from the lowest ranked constraints and removes
them one by one until the set becomes consistent, using the minimal conflict
sets constructed at each resolve to guide the search. Once the lowest ranked
constraint in the minimal conflict set is established, it permanently includes
that constraint and moves on to establishing the next lowest ranked constraint.
Pseudocode for this algorithm appears in Figure 6. Note that this is an anytime
algorithm; it continually improves its solution but always has a solution avail-
able. For RelSAT, a DPLL-style solver, we propose ranking the trigger variables
in order of their depth in the search tree with the highest ranked variables ap-
pearing nearest to the root4. This algorithm has not yet been implemented in
the LPSAT engine.

4Thanks to Rao Kambhampati for this suggestion.



6 LPSAT for Optimization Problems

Since LP systems provide a clear notion of optimality — minimize (or maximize)
the value of an objective function over the variables in the problem — it is
natural to extend this notion to an LCNF system. Given an objective function
over the metric variables, we define an optimal solution to an LCNF problem
to be that satisfying solution which yields the minimal value for the objective
function. However, choosing the optimal values for the LP variables in a given
active constraint set will not necessarily minimize the objective function over all
possible active constraint sets. There may be another satisfying assignment to
the boolean variables in the problem that activates a constraint set with a better
value for the objective function. Therefore, in order to construct an optimizing
LCNF solver, the satisficing SAT system must be modified.

LPSAT’s systematic SAT engine has the capacity to find every possible solu-
tion to a SAT problem by continuing its depth first search even after a solution
is found. Using this capacity and keeping track of the optimal solution so far,
we can construct an optimizing version of LPSAT. Of course, not every solution
needs to be visited; optimizing LPSAT can use a branch and bound strategy
to eliminate unpromising search branches. This is because the objective value
of a partial assignment is always at least as good as the value of its extensions
since, given a constraint set with some value for the objective function, more
constraints can never improve that value.

Implementing this modification to the LCNF system requires enhancing the
communication between the SAT and LP components; in this case, the SAT
component must query the LP component for objective values of each partial
(and total) assignment. Also, the LP system must have an objective function on
which to base its evaluations. In Cassowary, there is a default objective function;
however, in general, an optimizing LCNF system would require support for an
objective function in the LCNF language.

Neither these optimizing extensions nor the enhancements to LCNF have yet
been implemented for the LPSAT system.

7 The Resource Planning Application

In order to demonstrate LPSAT’s utility, we implemented a compiler for met-
ric planning domains (starting from a base of ipp’s [Koehler et al., 1997] and
Blackbox’s [Kautz and Selman, 1998] parsers) which translates resource plan-
ning problems into LCNF form. After LPSAT solves the LCNF problem, a
small decoding unit maps the resulting boolean and real-valued assignments
into a solution plan (Figure 1). We believe that this translate/solve/decode
architecture is effective for a wide variety of problems.

7.1 Action Language

Our planning problems are specified in an extension of the PDDL language [Mc-
Dermott, 1998]; we support PDDL typing, equality, quantified goals and effects,
disjunctive preconditions, and conditional effects. In addition, we handle metric
values with two new built-in types: float and fluent. A float’s value may not
change over the course of a plan, whereas a fluent’s value may change from time
step to time step. Moreover, we support fluent- and float-valued functions, such
as ?distance[Seattle,Durham].



Action loop a Action loop b
pre: test fluent1 = 0 pre: test fluent2 = 0
eff: set fluent2 = 1 eff: set fluent1 = 1

Figure 7: Two actions which can execute in parallel, but which cannot be
serialized.

Floats and fluents are manipulated with three special built-in predicates:
test, set, and influence. Test statements are used as predicates in action
preconditions; set and influence are used in effects. As its argument, test
takes a constraint (an equality or inequality between two expressions composed
of floats, fluents, and basic arithmetic operations); it evaluates to true if and
only if the constraint holds. Set and influence each take two arguments: the
object (a float or fluent) and an expression. If an action causes a set to be
asserted, the object’s value after the action is defined to be the expression’s
value before the action. An asserted influence changes an object’s value by
the value of the expression, as in the equation object := object + expression;
multiple simultaneous influences are cumulative in their effect [Falkenhainer
and Forbus, 1988].

7.2 Plan Encoding

The compiler uses a regular action representation with explanatory frame ax-
ioms and conflict exclusion [Ernst et al., 1997]. We adopt a standard fluent
model in which time takes nonnegative integer values. State-fluents occur at
even-numbered times and actions at odd times. The initial state is completely
specified at time zero, including all properties presumed false by the closed-world
assumption.

Each test, set, and influence statement compiles to a propositional vari-
able that triggers the associated constraint. Just as logical preconditions and
effects are implied by their associated actions, the triggers for metric precondi-
tions and effects are implied by their actions.

The compiler must generate frame axioms for constraint variables as well as
for propositional variables, but the axiomatizations are very different. Explana-
tory frames are used for boolean variables, while for real variables, compilation
proceeds in two steps. First, we create a constraint which, if activated, will set
the value of the variable at the next step equal to its current value plus all the
influences that might act on it (untriggered influences are set to zero). Next, we
construct a clause which activates this constraint unless some action actually
sets the variable’s value.

For a parallel encoding, the compiler must consider certain set and
influence statements to be mutually exclusive. For simplicity, we adopt the
following convention: two actions are mutually exclusive if and only if at least
one sets a variable which the other either influences or sets.

This exclusivity policy results in a plan which is correct if actions at each step
are executed strictly in parallel; however, the actions may not be serializable,
as demonstrated in Figure 7. In order to make parallel actions arbitrarily seri-
alizable, we would have to adopt more restrictive exclusivity conditions and a
less expressive format for our test statements.
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8 Experimental Results

There are currently few available metric planners with which to compare
LPSAT. The Zeno system [Penberthy and Weld, 1994] is more expressive than
our system, but Zeno is unable even to complete easy-1, our simplest metric
logistics problem. There are only a few results available for Koehler’s metric
ipp system [Koehler, 1998], and code is not yet available for direct comparisons.

In light of this, this section concentrates on displaying results for LPSAT
in an interesting domain and on displaying our heuristics and the benefits of
communication between the LP and SAT components. We report LPSAT solve
time, running on a Pentium II 450 MHz processor with 128 MB of RAM, aver-
aged over 20 runs per problem, and showing 95 percent confidence intervals. We
do not include compile time for the (unoptimized) compiler since the paper’s
focus is the design and optimization of LPSAT; however, compile time can be
substantial (e.g., twenty minutes on m-log-c) since it is heavily memory-bound.

We report on a sequence of problems in the metric logistics domain, which
includes all the features of the ATT logistics domain [Kautz and Selman, 1996]:
airplanes and trucks moving packages among cities and sites within cities. How-
ever, our metric version adds fuel and distances between cities; airplanes and
trucks both have individual maximum fuel capacities, consume fuel to move (the
amount is per trip for trucks and based on distance between cities for airplanes),
and can refuel at depots. m-log-a through m-log-d are the same as the ATT
problems log-a through log-d except for the metric component. easy-1 through
easy-4 are simplifications of m-log-a with more elements retained in the higher
numbered problems. We report on experiments with learning as well as two
other interesting optimizations.

8.1 Learning

The results in Figure 8 demonstrate the improvement in solving times resulting
from activating the learning and backjumping facilities which were described
in Section 5. Runs were cut off after one hour of solve time (the minimal
conflict set technique ran over an hour only twice on m-log-c and not at all on
easier problems). Without learning or backjumping LPSAT quickly exceeds the
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Figure 9: Solution times for LPSAT with minimal conflict sets. The dashed
line is the time to find a solution for each problem compiled with the minimum
number of steps. The solid line is the time to find that no solution exists for each
problem compiled with one fewer steps. LPSAT quickly finds that no solution
exists with fewer than the minimum number of steps.

maximum time allotted to it. With learning and backjumping activated using
global conflict sets, the solver handles larger problems and runs faster. Our best
method, minimal conflict sets, quickly solves even some of the harder problems in
the metric logistics domain. Figure 9 shows that the minimal conflict technique
runs particularly well when verifying the absence of a solution.

8.2 Splitting Heuristic

Line 7 of the LPSAT pseudocode (Figure 3) makes a choice of variable v — called
the splitting variable — before the recursive call; although we do not need to
backtrack over this choice (i.e., the choice is not nondeterministic), a good choice
of splitting variable can speed search. We expected the existing RelSAT splitting
heuristic to perform poorly because it could not take into account whether a
variable is a trigger. This blindness is particularly important since each time the
solver modifies a trigger variable, it may call Cassowary, and these calls often
dominate runtime. We tried several methods of including information about the
trigger variables in the splitting heuristic, including adding and multiplying the
score of trigger variables by a user-settable preference value. To our surprise,
modifying the score of trigger variables resulted in no significant improvement.
These results are inconclusive but may indicate that our compilation of metric
planning domains already encodes some information about trigger variables in
the structure of the problem which the current heuristic already uses. Further
experiments will decide the issue.

8.3 Random Restarts

Because LPSAT uses a randomized backtracking algorithm and because early
experimental results showed a small percentage of runs far exceeded the median
runtime, we experimented with random restarts using a process similar to the
one described in [Gomes et al., 1998]. We cut off solving at a deadline — which
can be either fixed beforehand or geometrically increasing — and restart the
solver with a new random seed.

Figure 10 shows the results of these experiments. We first ran the algorithm
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Figure 10: Solution times for two types of random restarts. Tuned cutoff uses
raw experimental data to select a constant cutoff. Cutoff doubling starts with
a cutoff of one second and doubles it on each run.

twenty times on each problem to produce the “Raw” entries5. Then, we calcu-
lated the cutoff time that minimized the expected runtime of the system based
on these twenty runs. Finally, we reran the problems with this tuned cutoff time
to produce the “Tuned Cutoff” data.

While this technique provides some speedup on m-log-b and impressive
speedup on m-log-c, it requires substantial, preliminary research into the diffi-
culty of the problem (in order to determine the appropriate cutoff time). Unless
LPSAT is being used repeatedly to solve a single problem or several very sim-
ilar problems, the process of finding good restart times will dominate overall
runtime.

Therefore, we also experimented with a restart system which requires no prior
analysis. This “Cutoff doubling” approach sets an initial restart limit of one
second and increases that limit by a factor of two on each restart until reaching
a solution. We have not yet performed any theoretical analysis of the effective-
ness of this technique, but Figure 10 demonstrates a small improvement. More
interesting than the average improvement, however, is the fact that this method
improved the consistency of the runtimes on the harder problems; indeed, on
m-log-c five of the twenty “Raw” runs lasted longer than the longest “Cutoff
doubling” run.

9 Related Work

Limited space precludes a survey of boolean satisfiability algorithms and linear
programming methods in this paper. See [Cook and Mitchell, 1997] for a survey
of satisfiability and [Karloff, 1991] for a survey of linear programming.

Our work was inspired by the idea of compiling probabilistic planning prob-
lems to majsat [Majercik and Littman, 1998]. It seemed that if one could
extend the SAT “virtual machine” to support probabilistic reasoning, then it
would be useful to consider the orthogonal extension to handle metric con-
straints. Hooker at al. [Hooker et al., 1999] argue convincingly that Operations
Research techniques (such as LP) and Artificial Intelligence techniques (such as
SAT solving) could be combined to their mutual benefit, and our system bears
this notion out.

5All three sets of runs use minimal conflict sets, learning, and backjumping.



Other researchers have combined logical and constraint reasoning, usually in
the context of programming languages. clpr may be thought of as an inte-
gration of Prolog and linear programming, and this work introduced the notion
of incremental Simplex [Jaffar et al., 1992]. Saraswat’s thesis [Saraswat, 1989]
formulates a family of programming languages which operate through the in-
cremental construction of a constraint framework.

A variety of recent systems have addressed the issue of integrating metric
reasoning into planning. ILPPLAN [Kautz and Walser, 1999] solves planning
problems that have been manually encoded as integer linear programs. While
integer linear programming (ILP) is more expressive than LCNF, solvers for
ILP problems tend to perform poorly on problems which are primarily proposi-
tional [Kautz and Walser, 1999]; therefore, LPSAT has the advantage over ILP-
PLAN on many planning problems, and future solvers for LCNF can continue
to exploit advances in SAT engines for solving purely propositional problems.
Alternatively, the LPSAT compiler could be used to construct ILPs through a
straightforward transformation of the propositional portion to an integer pro-
gram. Vossen et al. [Vossen et al., 1999] investigate a variety of new encodings
and techniques to use ILP to solve planning problems.

CPLAN [van Beek and Chen, 1999] is similar to ILPPLAN but solves planning
problems that have been manually encoded as constraint satisfaction problems.
While CPLAN’s results are promising, no automatic compiler from a planning
language to a CPLAN-style CSP exists, and it is unclear how to take advantage
of the flexibility of general CSPs.

Blackbox uses a translate/solve/decode scheme from planning to satisfia-
bility [Kautz and Selman, 1998]. zeno is a causal link temporal planner which
handles resources by calling an incremental Simplex algorithm within the plan-
refinement loop [Penberthy and Weld, 1994]. The Graphplan [Blum and Furst,
1995] descendant ipp has also been extended to handle metric reasoning in its
plan graph [Koehler, 1998].

10 Conclusions and Future Work

LPSAT is a promising new technique that combines the strengths of fast boolean
satisfiability solving methods with an incremental Simplex algorithm to effi-
ciently handle problems involving both propositional and metric reasoning. This
paper describes the following contributions:

• We defined the LCNF formalism for combining boolean satisfiability with
linear (in)equalities.

• We implemented the LPSAT solver for LCNF by combining the RelSAT
satisfiability solver [Bayardo and Schrag, 1997] with the Cassowary con-
straint reasoner [Badros and Borning, 1998].

• We developed a variety of optimizations and enhancements for LPSAT:
incrementally updating the constraint set, caching constraints, constructing
constraint conflict sets, and making an optimizing variant of LPSAT.

• We experimented with three optimizations for LPSAT: adapting the split-
ting heuristic to trigger variables, adding random restarts, and incorporat-
ing learning. Using minimal conflict sets to guide learning provided four
orders of magnitude speedup.



• We implemented a compiler for resource planning problems. LPSAT’s per-
formance with this compiler was much better than that of zeno [Penberthy
and Weld, 1994].

Much remains to be done. We wish to investigate the issue of tuning restarts
to problems, including a thorough investigation of exponentially growing re-
source limits. It would also be interesting to implement an LCNF solver based
on a stochastic engine. It would be interesting to investigate precomputing all
minimal conflict sets in an LCNF problem and add appropriate learned clauses
to the CNF portion of the problem, entirely removing the need for the metric
constraints6. Finally, we would like to add dynamic backtracking [Ginsberg and
McAllester, 1994] to LPSAT in the hopes that it will reduce the number of
unnecessary constraint adds and deletes incurred during normal backjumping.
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