
Profiling-as-a-Service: Adaptive Scalable
Resource Profiling for the Cloud in the Cloud

Nima Kaviani†, Eric Wohlstadter†, and Rodger Lea‡

Department of Computer Science†, Department of Electrical and Computer
Engineering‡, University of British Columbia

201-2366 Main Mall, Vancouver, B.C. V6T 1Z4 Canada
{{nkaviani,wohlstad}@cs,rodgerl@ece}.ubc.ca

Abstract. Runtime profiling of Web-based applications and services is
an effective method to aid in the provisioning of required resources, for
monitoring server-level objectives, and for detecting implementation de-
fects. Unfortunately, it is difficult to obtain accurate profile data on live
client workloads due to the high overhead of instrumentation. This pa-
per describes a cloud-based profiling service for managing the tradeoffs
between: (i) profiling accuracy, (ii) performance overhead, and (iii) costs
incurred for cloud computing platform usage. We validate our cloud-
based profiling service by applying it to an open-source e-commerce Web
application.

Keywords: Cloud Computing, Resource Monitoring, Application Profiling

1 Introduction

Dynamic runtime instrumentation of applications is an effective method for un-
derstanding application behavior, but imposes significant overhead to the overall
execution of the application [2, 7, 9, 11]. One approach to mitigating this over-
head is offline profiling which allows the profiling process to be executed in a
controlled environment, using collected traces from a previously running appli-
cation. However, relying on offline collected traces often leads to inaccurate or
incomplete datasets which may not represent the full spectrum of application
execution states [10].

With the emergence of cloud computing and its direct mapping of resource
usage to financial costs, the need to understand the low-level behavior of services
and applications has become more critical, yet the challenges in profiling stay
the same. However, cloud computing offers unique features which we believe can
mitigate some of the above concerns. In particular, elastic and adaptive resource
usage can be utilized to provide realtime analysis of system behavior with min-
imal performance degradation. This is achieved essentially by selectively and

Copyright c© 2011 Kaviani, Wohlstadter, Lea. Permission to copy is hereby granted
provided the original copyright notice is reproduced in copies made.

2 Lecture Notes in Computer Science: Authors’ Instructions

adaptively instrumenting only a specific subset of application virtual machine
(VM) instances.

This approach, which we refer to as Profiling-as-a-Service (PraaS), offers
adaptive instrumentation strategies that can collect realistic profiling informa-
tion about running applications in the cloud while respecting desired quality of
service requirements (QoS) (e.g., response time, throughput, and cost of deploy-
ment). Such QoS strategies need to adhere to both business and performance
requirements specified for an application undergoing instrumentation and mon-
itoring. Essentially, a profiling service should help to manage tradeoffs between
three factors:

– Accuracy: Profiling results are more accurate over short periods when appli-
cations are heavily instrumented. Accurate profiles are important for soft-
ware developers who need to make decisions using this data, under tight
business schedules. Unfortunately, accuracy could come at the expense of
performance or financial cost.

– Performance: Cloud-based services and applications must ensure high perfor-
mance to meet expected service-level agreements and good user experience.
In the cloud, performance can be obtained through elastic scaling of virtual
machine (VM) instances. Unfortunately, a naive approach to scaling could
be wasteful and require unnecessary financial cost.

– Cost: Public cloud providers offer flexible infrastructure for system scaling
and reconfiguration but obviously “there is no free lunch”. A profiling ser-
vice will need to consider the financial costs of ensuring good accuracy and
performance.

PraaS allows system architects to specify their desired level of accuracy for
collecting profiling information using policies. In our profiling model, system
architects can declare the desired QoS and cost constraints to the profiling service
and it will accommodate them with just enough resources from the cloud to suit
their needs. We evaluate our prototype PraaS implementation for a stateless,
horizontally scalable, open-source Web application called RUBiS. However, we
believe our approach is generalizable to other types of applications deployable
to the cloud.

The paper is organized as follows: in Section 2 we define the concept of
Profiling-as-a-Service. In Section 3 the technical details of our envisioned frame-
work are described. Section 4 shows some evaluation of our implementation of
the service, Section 5 goes over some of the related work, and finally we conclude
in Section 6.

2 Profiling as a Service (PraaS)

Applying traditional models of offline profiling for monitoring and provisioning of
resources is not effective for applications migrated to the cloud. This is mainly
due to architectural differences before and after deployment to the cloud and
the heterogeneity of various cloud infrastructures. Additionally, profiling in the

Lecture Notes in Computer Science: Authors’ Instructions 3

cloud is important for closely metering resource usage of software and inferring
the corresponding financial implications.

To illustrate the benefits of integrating the profiling process with the cloud,
consider a typical 3-tier throughput intensive auctioning Web application. We
use the example of RUBiS [1, 6], an open-source benchmark which simulates
the activities of an e-commerce auction site. The original architecture of the
system consists of a Web tier serving as the entry point for the application, a
business logic tier containing the business logic of the application (e.g., searching,
commenting, bidding, buying, authentication, and browsing of items as shown
in Figure 1a-bottom), and finally a database tier to persist the transactions.

Figure 1b shows a potential architecture of the application after deployment
to the cloud. As can be seen in the picture, several VM instances of the busi-
ness logic tier and the Web server tier are instantiated and are placed behind
load balancers. Clearly, profiling and monitoring of resources for the original ap-
plication (Figure 1a) would not be helpful in understanding the behavior of the
migrated application (Figure 1b). Consequently, resource usage foot prints of the
application in the cloud can be more effectively analyzed if profiling happens in
the cloud.

When re-architectured for the cloud, all the instances in the Web server tier
and the business logic tier are placed behind load balancers and hence their
addition, removal, or modification stays transparent to the end clients of the
application. These changes may only come to the attention of the end clients as
response time delays or throughput alterations. Subsequently, as long as through-
put shortfalls or response time delays are not significantly noticeable to the end
clients, adaptive profiling strategies can be effectively blended into the overall
behavior of the application.

2.1 Adaptive Resource Profiling in the Cloud

Adaptive profiling has been utilized in the past by many researchers [2, 8–10].
Those efforts usually rely on duplicating the code blocks in an application, keep-
ing an original version for the code along with an instrumented version. Upon oc-
currence of some triggering event the instrumented and non-instrumented code

. (a) (b)

Fig. 1. A 3-tier Web application (a) before deployment to the cloud; and (b) after
deployment to the cloud with potential architectural changes after cloud deployment.

4 Lecture Notes in Computer Science: Authors’ Instructions

are swapped. Such adaptation takes advantage of certain low-level code hot-
swapping features [8] available for some programming languages. In contrast,
our high-level service performs adaptation at the granularity of VM instances in
the cloud. As such, our approach is compatible with a wider range of heteroge-
neous instrumentation strategies and programming platforms.

Fig. 2. Request flow through three VM instances deployed from different VM images
by the profiling service. The figure shows an illustrative example (i.e. the number of VM
instances and application modules varies by application). This figure shows VM images
with: (a) no instrumentation; (b) partial instrumentation; (c) full instrumentation. SP
and EP define the start point and the end point for request flow in an application
instance. A, B, and C represent different modules (e.g. classes) of the application. The
shaded modules are the instrumented duplicates of the original ones for the application.

Figure 2 demonstrates the flow of a client request through an application
using our profiling service. In the figure, several cloud-based VM instances of
some example application are shown which process client requests behind a load
balancer. For illustration we show a scenario with three different versions: (a) an
instance with no instrumentation, (b) an instance with some instrumentation,
and (c) an instance with full instrumentation. Our profiling service manages
a repository of such VM image versions with their differing levels of profiling
instrumentation. As described next, by utilizing declarative policies specified
by developers and by monitoring certain QoS parameters, the service makes
adjustments to the numbers of these different VM image types deployed for the
application to tradeoff between performance and business requirements.

2.2 Constraint-Guided Profiling Adaptation

Two major QoS requirements for Web applications deployed in the cloud are
performance, particularly how it is perceived by the end clients (i.e., throughput
and response time), and cost of deployment. Any effort to integrate profiling into
the lifecycle of a deployed application to the cloud should actively respect these
QoS requirements.

Lecture Notes in Computer Science: Authors’ Instructions 5

Given an upper limit for the target cost of deployment in one billing cycle
in the cloud, Ct, a target performance requirement for the application, Pt, and
the expected performance Pinst after deploying a fully-instrumented application
on a VM instance in the cloud, our adaptive swapping strategy will eventually
ensure that the following inequalities hold:

m× (P − Pinst) ≥ Pt (1)

Cinst < Ct (2)

where m is the total number of VM instances leased from the cloud; P is the
performance measure for the target application on a single VM in the absence of
the instrumented code; and Cinst is the overall cost of running the application
(in any of the non-instrumented, partially-instrument, and fully-instrumented
modes) in the cloud during a single billing cycle.

Our current strategy for implementing the above measures is based on a
simple heuristic which increases the number of VM instances by a rate of dα ×
VMinst × (Pinst/P)e where VMinst is the number of instrumented virtual ma-
chines (VMinst + VMnoinst = m), and α is a constant. In case the cost of
instrumented deployment with increased number of VMs (Cinst) exceeds the
previously set threshold Ct, we revert the instrumented instances back and in-
crementally replace the VMs running the instrumented application (VMinst)
with VMs running non-instrumented code (VMnoinst) until Inequality (2) holds
again. Consequently, the current algorithm always prioritizes cost constraints to
the expected performance measures.

In other words, the algorithm can be thought of as a simple state machine.
As long as the overall performance does not violate Inequality (1), the machine
stays in an acceptable state. Once Inequality (1) is violated, the algorithm tries
to bring the machine back to an acceptable state by adding more VMs or replac-
ing instrumented VMs (VMinst) with non-instrumented ones (VMnoinst). The
state machine stabilizes under one of the following conditions: i) adding extra
VMs brings the performance requirements back to normal without exceeding
cost constraints of Inequality (2); ii) reverting some of the VMinst machines to
VMnoinst machines brings the performance requirements back to normal while
Inequality (2) holds; and iii) All running machines are VMnoinst machines and
while Inequality (1) is not satisfied, addition of another VMnoinst will violate
Inequality (2).

In our current implementation, we translate application performance to the
average application response time for requests. Hence, in Inequality (1), P = RT
where RT indicates the average response time when the application is in no-
instrumentation mode and Pinst = RTinst, where RTinst indicates the average
response time degradation when the application is under full instrumentation.

For the cost of deployment, at this point we consider Cinst equal to the total
cost of application deployment (i.e.,

∑m
Cost(VM)) during one billing cycle as

defined by each public cloud provider (we provide details for Microsoft’s Azure
cloud in our evaluation). At this stage, we ignore other costs, e.g. the inbound
and outbound communication costs and the costs of storing data in the cloud.

6 Lecture Notes in Computer Science: Authors’ Instructions

3 Technical Details

Now we turn to the specific details of our PraaS system starting with our sup-
ported policy specification (Section 3.1), system architecture (3.2) and some
implementation details for our specific prototype (Section 3.3).

3.1 Profiling Service Policy Specifications

To effectively expose profiling as a service to system architects, we wanted to
provide a declarative policy model for controlling service parameters. Our cur-
rent implementation allows for two sets of policy requirements to be specified:
Profiling Requirements & QoS Requirements.

Profiling Requirements. System architects can define the level of granularity
and the type of profiling that they want to be applied to the application during
the execution of the application. The profiling requirements and specifications
can be modified arbitrarily and even during the execution of the applications.
For the level of granularity, they can choose instrumentation strategies to apply
to the full application or a specific set of modules, classes, and methods in an
application. They can also decide on the type of instrumentation, i.e., CPU usage
and Data Exchange (described in further Section 3.3) and the scope of profiling.
The scope of profiling can be defined as either internal or external.

Internal profiling only measures information internal to the elements of a
module (e.g., its components, classes, and methods) while external profiling col-
lects information from inter-module interactions in the application. Figure 3a
shows a sample policy for RUBiS.

QoS Requirements. We also enable system architects to define their QoS con-
straints for instrumentation and profiling. QoS requirements are taken into con-
sideration when ensuring Inequalities 1 and 2. As mentioned earlier, we consider
a defined response time (RTt) in milliseconds for the performance constraint of
deployed Web applications and the upper limit dollar amount for leasing VMs
from the cloud as the cost of deployment (Ct). These constraints can be ex-
tended with performance measures such as throughput or database transactions,
and cost measures including inbound/outbound communication costs, and data
storage costs. Figure 3b shows a sample QoS specification used in our RUBiS
case-study.

The policy requirements of the developer are formulated into an Instrumen-
tation Map document stored and loaded to a service master node as we describe
next.

3.2 System Architecture

The architecture for our PraaS concept extends the architecture of a Web appli-
cation deployed to the cloud, similar to the one in Figure 1b by adding a master
node to each tier in the application that sits behind a load balancer. The master

Lecture Notes in Computer Science: Authors’ Instructions 7

<profiling-spec>
<!-- instrumentation constraints -->
<instrumentation-map>

<unit name="rubis.auth">
<type>module</type>
<profile>

<mode>CPU</mode>
<mode>Data</mode>

</profile>
<scope>internal</scope>

</unit>

<unit name="rubis.buy.BuyItem">
<type>class</type>
<profile>

<mode>CPU</mode>
</profile>
<scope>internal</scope>

</unit>

<unit name="rubis.bid">
<type>module</type>
<profile>

<mode>Data</mode>
</profile>
<scope>external</scope>

</unit>
</instrumentation-map>

<!-- quality of service requirements -->
<qos-requirements>

<cost>
<vm-cost>2000</vm-cost>

</cost>
<performance>

<resp-time>500ms</resp-time>
</performance>

</qos-requirements>
</profiling-spec>

. (a) (b)

Fig. 3. A sample instrumentation map defining (a) the modes of profiling for different
modules in RUBiS and (b) QoS constraints

node encapsulates the core of the service and is loosely coupled from individual
applications, communicating through an interface that specifies the exchange of
profiling data and control messages. As the low-level instrumentation of code
must be platform specific, this part of the service is isolated to a customized
profiler agent colocated with each VM instance.

The profiler agent is in charge of collecting information about an application
instance and reporting the collected results back to the service master node. The
master node aggregates the results from all the agents and checks the validity
of Inequalities (1) and (2) during the execution of the application.

As shown in Figure 4, the master node consists of the following five com-
ponents: a Profiler Specification Module, a Policy Controller Engine, an Instru-
mentation Map, a Reconfiguration Engine, and a Result Aggregator. The profiler
specification module allows the system architect to define the required profiling
specification (similar to Figure 3). Once the specification is loaded to the master
node it is used by the master node to initiate the policy controller engine based
on the qos-requirements part of the profiling specification, and to provide an
instrumentation map. The instrumentation map is then communicated to each
Profiler Agent to orchestrate the profiling behavior among all instances of the
application.

The Profiler Agent, deployed together on each application node, has two
components: i) a platform (e.g. Java, C#, etc..) specific component which takes

8 Lecture Notes in Computer Science: Authors’ Instructions

care of instrumentation of application code, and ii) a service integration module.
The SIM mediates communication of profiling data to the service master node.
Through communication with the master node, SIM receives the instrumentation
map specified by the system architect from the master node. The SIM then
coordinates the loading if a VM image with the appropriate instrumentation.

Fig. 4. Integration of Master Node and Application Node into the framework. M1 to
M7 represent the classes/modules for the application and SIM is the service integration
module.

During the profiling process, the performance on each application node gets
reported to the SIM and the SIM periodically updates the master node about
the status of the running application on its VMinst. The master node aggregates
the results from all application nodes and decides about potential reconfigura-
tions for each node in the deployment. Upon a need for change in profiling,
the SIM manages stopping and starting new VM instances with the required
instrumentation. Once the application is back to normal, the SIM informs the
master node and the master node coordinates the profiling process among all
the running instances of the application again.

The master node can change the modes of profiling to the three already
explained modes of no instrumentation, partial instrumentation, and full instru-
mentation. The adaptive switching of the profiling mode at this point is done
by taking the application running on a target VM instance down, replacing it
with an application image in a different profiling mode, and bringing an instance
back up. The process of mode switching is done for one instance at a time in
order to minimize performance degradation caused by taking out one instance
of the running application. Further to mode switching during profiling, the mas-
ter node regulates the type of profiling to be performed for different instances
of the application and also enables interventions and updates to the profiling
process to be performed by system architects while the application is deployed
in a production environment.

Our implementation for PraaS works independent of the type of instrumenta-
tion mechanism used by the profiler agents for deployed applications. Instrumen-
tation strategies from memory-leak [9] and performance bottleneck [4] detection
to security related taint tracing [14] and resource usage monitoring [12, 13] could
be integrated into our framework. Nonetheless, for our current implementation,

Lecture Notes in Computer Science: Authors’ Instructions 9

we have particularly focused on monitoring resource utilization by different com-
ponents of the application.

3.3 Prototype Profiling Support

While the service exposed by the master node is agnostic to specific platforms
being profiled, a customized profiling agent is required for each programming
platform (e.g. Java, C#, etc..) to be supported. Our current implementation
supports Java profiling and we provide a profiler agent on top of The Java In-
teractive Profiler (JiP). JiP is a code profiling tool that supports performance
timing, fine-grained CPU usage profiling to the level of classes and packages
and requires no native code to enable profiling. JiP uses the ASM [5] library to
provide manipulation, transformation, and analysis of Java classes at the level
of byte code. We used the combination of JiP and ASM to collect information
on CPU usage and data exchange between code blocks.

CPU Usage Profiling. CPU usage profiling is achieved simply by adding per-
formance timers to the beginning and end of function in the application. This is
done by rewriting the Java bytecode for the function to include a System.nanoTime()
timer.

Data Exchange Profiling. In order to make decisions on how to optimally
partition software components across VM hosts in a cloud infrastructure, soft-
ware developers can use profiling to determine the costs of information exchange
between distributed components. Our instrumentation measures data exchange
between software components by monitoring the size of remote function call ar-
guments and return values. For local intra-VM function calls, such arguments
and return values are typically passed by reference. So, in the case where devel-
opers are considering partitioning a local function into a remote function call,
our framework will provide details on the size of the equivalent serialized data
for each referenced argument or return value. This instrumentation strategy
gives application developers a chance to measure data exchange in a monolithic
application before deciding on the actual distribution.

4 Evaluation

We evaluated our current implemented service against a case-study of the RUBiS
benchmark.

As discussed earlier, RUBiS implements the basic functionalities of an auc-
tioning Web site following a three tier Web architecture with eleven com-
ponents: a front-end Web server tier, nine business logic components (User,
UserTransactions, Region, Item, Category, Comment, Region, Bid, and Buy),
and a back-end database tier. Several implementations of RUBiS exist, but for
our evaluation we used its Java Servlet implementation that makes use of the
Hibernate middleware to provide data persistence. We deployed RUBiS together

10 Lecture Notes in Computer Science: Authors’ Instructions

with our profiler agent modules on small instances of Microsoft’s Windows Azure
cloud platform. Each small Azure instance is equipped with a 1.6GHz CPU and
1.75GB of memory.

On each small Azure instance, we deployed the Web server along with all
business logic components of RUBiS. For the database server, we used a 5GB
SQLAzure database instance running SQLServer 2008 R2. When deploying the
application on more than one instance, the Azure platform automatically places
the instances behind a load balancer and distributes the load across all existing
instances.

To provide a realistic client workload we used the provided RUBiS client
simulator that comes bundled with the RUBiS benchmark [1]. The simulator was
designed to operate in either a browsing mode or in a buy mode. In the browsing
mode only browsing requests for items, users, comments, bids, etc. are launched.
In the buy mode in addition to the browsing requests, requests to authenticate,
bid on an item, or purchase of an item are also made. In our experiments, we
used the clients in the browsing mode unless otherwise is mentioned. Clients
were launched from two machines, each equipped with a dual core 2.1GHz CPU
and 4GB of memory.

4.1 Measuring Profiling Overhead

We modified the RUBiS client so that each client would generate requests at
a pace of every 125 milliseconds. To set a base line, in Table 1, we show the
throughput and response time when only one single client launches requests to
a single instance of RUBiS deployed on Windows Azure. We collected the data
for both the profiling and the non-profiling modes. For the profiling mode, the
entire set of components on the Azure instance were profiled to collect CPU
usage information (cf. Section 3.3) and in the non-profiling mode, no profiling
data was collected.

Table 1. Baseline throughput and response time when one client launches requests to
a single instance of RUBiS is deployed on one small Azure instance.

Throughput (req/sec) Response Time (millisec)

Profiling Mode 2 432

Non-profiling Mode 6 74

From Table 1, we see the overhead of instrumentation in an isolated case. To
mitigate this overhead we need to amortize it over our system. So next, in order
to measure the effects of delegating data profiling to a subset of all instances
running an application, we made two deployments of RUBiS, one on 4 and
another on 6 small Azure instances. We measured the change in response time
and throughput when the number of instances running the profiling process goes
from no instance (i.e., a profiling ratio of 0) to all instances (i.e., a profiling ratio
of 1). A moderate load was generated on all instances in both deployments by

Lecture Notes in Computer Science: Authors’ Instructions 11

launching 100 clients to perform 1000 transactions during a period of 5 minutes.

As Figure 5 shows, although throughput does decrease and response-time in-
crease as we increase the VM profiling ratio, our approach does mitigate the
performance overhead of profiling. In particular, by keeping the ratio of in-
stances that are profiled to less than 0.5 we are able to maintain throughput
and response-time close to the non profile case, i.e. 200 request per second. Only
after we increase the ration of profiled to non-profiled past 0.5 does performance
significantly decline. In essence, this indicates that the Azure load balancer does
a good job of intelligently redirecting requests to less busy nodes of the deploy-
ment.

4.2 Measuring Profiling Accuracy

To measure the accuracy of the PraaS system, profiling data collected at differ-
ent profiling ratios were compared against the perfect profiling data (i.e., where
all nodes were doing profiling), and we computed the corresponding accuracy
metrics. We used the Overlap Percentage metric suggested by [2] to measure
the accuracy of collected profiling information. As described by Arnold and Ry-
der [2], the overlap of two profiles represents the percentage of profiled infor-
mation weighted by execution frequency that exists in both profiles. Obviously,
the overlap percentage metric is a function of the diversity of requests for which
profiling data is collected. In order to assess how the diversity of requests affects
the overlap percentage, we collected the overlap percentage data in two modes:
i) Single Request Mode, where RUBiS clients only launched BrowseCategories
requests, and ii) Multi-Request Mode, where RUBiS clients launched all sorts
of browsing requests, from browsing item categories, to browsing and searching
items, browsing user information and their bid and buy histories. Table 2 shows
the result of measuring overlap percentage for each of these deployments.

As expected, increasing the number of instances increases the number of sam-
ples taken during profiling. However, as we discussed earlier, increased diversity
in types of requests results in a lower overlap percentage between partial profiling

Fig. 5. Throughput and Response Time when 4 and 6 clients with different modes of
profiling are placed under moderate load of client requests.

12 Lecture Notes in Computer Science: Authors’ Instructions

Table 2. The Overlap Percentage measure for accuracy of profiling information subject
to the diversity of requests. Table 2 provides the overlap percentage measures for all
profiling ratios of Section 4.2 for which we have throughput and response time collected.

Single Request Multi-Request

Profiling Num Num Unique Overlap Num Num Unique Overlap
Ratio Samples Methods % Samples Methods %

2 of 4 (0.5) 6.07 × 107 6338 99.65 2.74 × 107 7094 97.62

2 of 6 (0.33) 3.00 × 107 6325 99.03 3.07 × 107 6992 91.53

3 of 6 (0.5) 5.78 × 107 6329 99.10 4.35 × 107 7014 92.21

4 of 6 (0.66) 9.19 × 107 6339 99.34 5.32 × 107 7092 93.13

and full profiling. Since RUBiS is only a small representative of potential enter-
prise Web deployments, we expect deployment of larger applications to result in
lower overlap percentages when doing partial profiling. Nonetheless, an increase
in the number of nodes clearly brings the collected profiling results closer to a
full profiling deployment.

4.3 Stress Testing of the Deployment & Financial Implications

In order to stress test the application, we ran three deployments of RUBiS using
4, 6, and 8 small instances on Windows Azure. Each deployment was tested with
batches of 1600 and 3200 clients launching 1000 requests to it during a period
of 5 minutes. Figure 6 shows the throughput and response time when 1600 and
3200 clients send requests to the deployed RUBiS application. We summarize
the implications of these results (Table 3 and Figure 6) next.

In order to assess financial implications, in Table 3 we calculate the hourly
and monthly costs of deployment for each of the three deployments above.

4.4 Evaluation Summary

To summarize these findings we see that our approach of “Profiling-as-a-Service”
does indeed provide a way to more accurately profile an application while re-
specting performance and cost constraints. In particular, it could be noted that
the throughput could be kept above 300 req/sec with 8 nodes of 0.5-profiling-
ratio and marginal throughput loss (i.e. within 1% of a baseline with no pro-
filed instances), or 6 nodes of at most 0.66-profiling-ratio (i.e. within 20% of a

Table 3. Deployment costs for RUBiS on various number of small Azure instances.

Deployment Costs (USD)

Num Instances Hourly Monthly Yearly

4 $0.48 $345.6 $4147.2

6 $0.72 $518.4 $6220.8

8 $0.96 $691.2 $8294.4

Lecture Notes in Computer Science: Authors’ Instructions 13

(a)

(b)

Fig. 6. Response time and throughput for (a) 1600 clients, and (b) 3200 clients; sending
requests to RUBiS deployed on 4, 6, and 8 small Azure instances.

baseline). With a 0.75-profiling-ratio for 8 nodes, we achieved a lower through-
put compared to the 0.66-profiling-ratio with 6 nodes, however the response
time perceived with 8 nodes was significantly smaller than the response time
perceived with 6 nodes. Conversely, from a financial perspective running the de-
ployment on 6 nodes costs almost $173/month less compared to running 8 nodes.
Again this demonstrates the flexibility our approach offers, allowing developers
to trade off throughput against response time, and then factor in cost. During
our experiments with 3200 clients sending requests to our RUBiS deployment,
our resources reached their limits and hence, even though we expected to see a
higher throughput, the throughput stayed the same as for our experiment with
1600 RUBiS clients.

5 Related Work

Profiling of service-oriented applications forms the basis of much existing work
on both on-line monitoring of SLAs [3] and also the autonomic management
of services. While the scope of such previous work is too large to cover here
in depth, we can say that compared to such previous work, this paper focuses
on the low-level support of profiling in the cloud environment. Previous work,
on the other hand, has focused on more specific strategies for utilizing runtime
profiles i.e. how to analyze and react to such profiles. Thus previous work did
not cover the cloud-based adaptive instrumentation provided by our profiling
service. Likewise, this research simply supports an efficient profiling mechanism

14 Lecture Notes in Computer Science: Authors’ Instructions

at the systems level. We did not address any specific policies for utilizing profile
data, as we sought to provide profiling as a generic reusable service.

One of the first approaches to directly address the performance problem of
on-line profiling was presented by Arnold and Ryder [2]. They use a compiler-
based approach which duplicates the code for each method into instrumented and
non-instrumented versions. Additionally, the compiler inserts certain “switches”
in the code to allow execution to be dynamically be re-directed along either
instrumented or non-instrumented paths. In similar efforts Dmitriev [8] and BEA
Systems JRockit [15] use modified compilers which enable dynamic code hot
swapping to reduce profiling overhead. The approach in this paper also uses code
duplication to manage profile overhead. However, our research works is different
in that duplication occurs at the level of entire VM-instances. This allows a
more general technique, independent of the details for specific compilers. We
take advantage of the transparency afforded by cloud platforms to shield end-
users from the details of swapping VM-instances dynamically.

Adaptive bursty tracing (ABT) [9, 10] is a particular technique built for the
collection of traces in profiled applications. Since trace logs can grow to enormous
sizes, most profiling approaches use sampling to limit log sizes. The problem with
sampling is that it may capture very limited information about infrequently
executed code. However, often the wort bugs and performance bottlenecks hide
themselves in such code. ABT ensures that detailed traces are generated for
infrequently running code, by providing a sampling rate inversely proportional
to code execution frequency. In the future we will explore applying ABT to our
the context of our distributed service.

AjaxScope [11] implements a JavaScript instrumentation proxy to provide
monitoring and profiling of code that executes in an end-user’s Web browser.
This allows on-line profiling in a distributed context, where code is deployed on
a server, yet later executed on the client. Traces of client behavior are periodically
uploaded to the server infrastructure for analysis. Similar to our research, AjaxS-
cope targets a distributed computing context. However, where AjaxScope focuses
on client behavior, this research is focused on the server-side. This distinction
changes the kind of techniques which are applicable for providing transparency.
In AjaxScope, transparency is provided to clients through an instrumentation
proxy whereas our research leverages the flexibility of OS VMs used in a cloud
computing context.

6 Conclusion

This paper described the design and implementation for a cloud-based profiling
service. This service was motivated by the need management the tradeoffs
between three important factors in the deployment of cloud services and appli-
cations: performance, cost, and accuracy of monitored profile data. We showed
the validity of the approach in the context of an existing Web application
deployed to the cloud. The results showed that while the reduction of profiled
instances through adaptation did reduce the accuracy of profiling, it also

Lecture Notes in Computer Science: Authors’ Instructions 15

improved performance and reduced cost. More importantly, accuracy degraded
at a much slower rate than performance and cost improved.

Acknowledgements. We would like to thank Microsoft Windows Azure team, and

particularly Ori Amiga, for providing us with access to resources on Windows Azure.

References

1. Amza, C., Chanda, A., Cox, A.L., Elnikety, S., Gil, R., Rajamani, K., Zwaenepoel,
W.: Specification and implementation of dynamic Web site benchmarks. In: IEEE
WShp on Workload Characterization (2002)

2. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
In: Conf. on Programming Language Design and Implementation (PLDI) (2001)

3. Baresi, L., Guinea, S., Pasquale, L.: Integrated and composable supervision of
BPEL processes. In: Intl Conf. on Service-Oriented Computing (ICSOC) (2008)

4. Brear, D.J., Weise, T., Wiffen, T., Yeung, K.C., Bennett, S.A.M., Kelly, P.H.J.:
Search strategies for java bottleneck location by dynamic instrumentation. IEE
Proceedings - Software 150(4), 235–242 (2003), http://dblp.uni-trier.de/db/
journals/iee/iee-s150.html#BrearWWYBK03

5. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to imple-
ment adaptable systems. In: Adaptable and extensible component systems (2002)

6. Cecchet, E., Ch, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance
comparison of middleware architectures for generating dynamic Web content. In:
Proc. of the Intl Middleware Conference (2003)

7. Dmitriev, M.: Profiling java applications using code hotswapping and dynamic call
graph revelation. In: WOSP. pp. 139–150. ACM (2004), http://dblp.uni-trier.
de/db/conf/wosp/wosp2004.html#Dmitriev04

8. Dmitriev, M.: Profiling Java applications using code hotswapping and dynamic call
graph revelation. In: Workshop on Software and Performance (2004)

9. Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detection using adap-
tive statistical profiling. In: Proc. of the Intl Conf on Architectural support for Pro-
gramming Languages and Operating Systems (ASPLOS). pp. 156–164. ACM Press,
New York, NY, USA (2004), http://dx.doi.org/10.1145/1024393.1024412

10. Hirzel, M., Chilimbi, T.M.: Bursty Tracing: A Framework for low overhead tempo-
ral profiling. In: WShp on Feedback-Directed and Dynamic Optimization (2001)

11. Kiciman, E., Livshits, B.: AjaxScope: a platform for remotely monitoring the client-
side behavior of web 2. 0 applications. In: SOSP (2007)

12. Luk, C.K., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace,
S., Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: Sarkar, V., Hall, M.W. (eds.) PLDI (2005)

13. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B.,
Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel perfor-
mance measurement tool. IEEE Computer 28(11), 37–46 (1995), http://dblp.

uni-trier.de/db/journals/computer/computer28.html#MillerCCHIKKN95

14. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In: Network and
Distributed System Security Symposium (NDSS) (2005)

15. Systems, I.B.: Jrockit (August 2008), http://www.bea.com/jrockit/

