
1

Object-Relational Event Middleware
for Web Applications

Peng Li and Eric Wohlstadter

University of British Columbia

{lipeng, wohlstad}@cs.ubc.ca

Abstract

Web based applications are increasingly being

used for highly reactive systems where clients

expect to be notified of broadcast style informa-

tion with relatively low latency. Software devel-

opment of these applications has partially been

addressed by technologies associated with the

Ajax and Comet architecture for Web program-

ming. While such applications are beneficial to

end users, they create additional burdens for soft-

ware developers. In particular, this push-style

development is not integrated with the object-

oriented model of data used by application-tier

developers. In this paper, we investigate an event-

driven style of programming to allow event-based

subscription and notification of changes to appli-

cation object state. This requires a new framework

to maintain consistency for developers between

two key elements. First, consistency must be

maintained between application-tier objects and

data-tier state. Second, consistency must be main-

tained between subscriptions across multiple hosts

in a server cluster, so that notifications of changes

to object state are disseminated to all appropriate

browser clients. We use a running example from

the Java-based LightPortal open-source social

network Web application to describe the approach.

We also evaluate performance implications on the

RUBiS Web auction application benchmark.

Copyright 2011 Peng Li. Permission to copy is here-

by granted provided the original copyright notice is

reproduced in copies made.

1 Introduction

Web based applications are increasingly being

used for highly reactive systems where clients

expect to be notified of broadcast style informa-

tion [27] with relatively low latency according to

user’s specific interests. Compared to traditional

request-driven Web applications, these applica-

tions require that clients are notified efficiently,

when data of interest is updated on the server,

asynchronously to that user’s actions.

These server push-based applications make

use of a publish-subscribe style architecture. Here

the application is primarily responsible for man-

aging a large, shared, data repository for users. At

the application level, users express interest in

some subset of the data provided by the applica-

tion service. These interest generating actions

from the user are then interpreted by application

code to manage delivery of updated data to inter-

ested users.

For example, in a social networking Web site,

users might share information by posting short

messages on each other’s profile pages (i.e. on

their “wall”). In this case, users who are viewing

the wall for another specific user should receive

notification of the updates to that wall interactive-

ly (i.e. in soft real-time). So an action such as

viewing a profile page implicitly creates a sub-

scription for notification of those wall updates.

Users expect such notification to occur asyn-

chronously, through Ajax mechanisms.

As in Figure 1, User X might visit such a

page in step 1. Later (step 2), User Y causes an

action which updates some application state on

2

which that page depends. So, in step 3, User X

will be notified.

Figure 1: Overview of Object Relational Events

(ORE). ORE manages consistency between the

database and application-tier object model, and

manages notification to subscriptions placed by

multiple servers in the application-tier. Example:

User X visits a profile page for a particular user.

Later (step 2), User Y causes an action which

updates some application state on which that page

depends. So, in step 3, User X will be notified

through server-side push.

Software development of these applications

has partially been addressed by technologies asso-

ciated with the Ajax architecture for Web pro-

gramming. Recently, this approach is being used

more aggressively to add the high-level abstrac-

tion of server to browser push notification using

techniques under the name Comet [9]. A closely

related technology, known as Web Sockets, is

also being considered for W3C standardization.

Applications using these new approaches can be

found in Gmail, online chat rooms, social net-

working and other applications which need notifi-

cations to occur interactively.

While such applications are beneficial to end

users, they create additional burdens for software

developers in the application-tier. In particular,

this push-style development is not integrated with

the object-oriented programming practices used in

typical application-tier development. Standard

practice is generally to focus development around

an object-oriented model of data (as in the appli-

cation-tier of Figure 1).

This object model can then be mapped to re-

lational data storage through the use of specific

design patterns and automation techniques known

as Object-Relational Mapping (ORM). While the

ORM approach is beneficial, it does not directly

support an event-driven style of development,

making it cumbersome to develop push-style ap-

plications using such middleware. In this paper

we address this problem by investigating the inte-

gration of event-driven application programming

with the object-relational model in server-push

Web applications. We hope to enable an event-

driven style of programming where software de-

velopers can easily register for notification of

updates to objects. When the object state changes,

this information can be pushed to any interested

browser clients.

Unfortunately, ORM frameworks do not pro-

vide consistency guarantees once an object view

has been extracted from the database. For exam-

ple, when all the wall postings for a specific user

have been retrieved from the database, the ORM

will not guarantee the consistency between the

wall post objects in the application-tier and those

represented in a database. So, in this case, when a

post is inserted by another user, the postings in

memory could become inconsistent with those in

the database. This was never seen as a problem

before, since traditional Web applications only

use such object replicas transiently, in the

processing of a client request. This inconsistency

problem manifests itself in two ways, which we

consider in this research.

First, since object class properties are mapped

to a specific view (e.g. projection) of the database

tables, the underlying data which corresponds to

object state can be modified in multiple ways. For

example, it is possible for two distinct object

classes to have properties that map to the same

column in the database. This problem is closely

related to the problem of view maintenance in the

database literature [14]. However, this problem

has not previously been considered for object-

relational frameworks or server-push technology.

Second, push-based Web applications typi-

cally include notifications of data representing

3

interactions between users (e.g. sharing data on a

profile wall). However, medium- and large-scale

Web sites are handled by multiple physical hosts

in an application-tier cluster (indicated by the

layering of the application-tier in Figure 1). Rely-

ing on the data-tier to provide consistency be-

tween end-user views of data would create

additional latency that is a bottleneck to interac-

tivity. This paper describes how we have miti-

gated this problem specifically for dissemination

of updates to object state monitored by an applica-

tion-tier programming framework.

We have investigated the integration of

event-driven application programming with the

object-relational model and describe the details of

our research through reference to our implementa-

tion called Object-Relational Events (ORE). The

contributions of this paper can be summarized as

follows:

1. Design, implementation and evaluation

of ORE, a Web application platform for

event-driven programming at the Web

application-tier, to resolve both: (i) con-

ceptual consistency between relational

and object-oriented data models and (ii)

to manage notification dissemination for

server-push Web application clusters.

2. An evaluation demonstrating that ORE

has low overhead compared to a manual-

ly implemented server-push applications.

3. Evaluation of optimization for server-

push notification using bloom filter

based subscription compression.

The rest of the paper proceeds as follows: in

Section 2 we further describe a motivating exam-

ple from the LightPortal project. We present some

technical background in Section 3. In Section 4

we present more technical details of the imple-

mentation, then an evaluation in Section 5. Re-

lated work is presented in Section 6. Finally, the

paper concludes in Section 7.

2 Motivating Example

To motivate the problems described in the intro-

duction, we use a running example of the

LightPortal social network application [20].

LightPortal is an open source Java Web applica-

tion. LightPortal provides support for several

kinds of user interactions, e.g. registering a new

account, creating social links, joining groups,

leaving posts on a user’s wall, etc.

Figure 2 shows an example of the LightPor-

tal profile page. For a more interactive application,

developers may want to provide for new entries of

the profile postings to scroll on to the end of the

log without additional user interaction.

Figure 2: The LightPortal profile page. When new

posts are made, additional entries should be ap-

pended asynchronously. Using ORE, developers

can register for notification of updates to all post-

ings associated with a particular profile object.

For the implementation, the application de-

veloper will need to choose between an approach

based on client-side polling or else use server-side

push mechanisms to handle delivery to clients.

Polling approaches integrate well with existing

server-side programming models. They follow the

traditional request-response workflow and offer a

fairly simple strategy for creating modern Ajax-

style Web applications. However, under heavy

load, polling approaches can cause considerable

strain on the server compared to push-based ap-

proaches. Thus developers have turn to server-

push to achieve low-latency notification with sca-

lability.

A server-side developer needs to address two

concerns in this example: first, to detect when a

new post is added/removed/changed on a profile,

and second, to notify all users who are viewing

the wall.

4

Detecting such changes is normally hard for

an application-tier programmer using object-

oriented programming because the application-tier

may project any number of different object views

of the underlying database for different parts of

the application. As a simple example, suppose the

database includes two tables as in Figure 3.

Figure 3: Example SQL table definitions for

LightPortal Profile and WallPost. In the

conceptual model of the data there are two one-to-

many relationships between Profile entities

and WallPost entities (types are not shown and

elided SQL syntax is used).

So, wallProfileId is a foreign key refe-

rencing the profile of the user whose wall will

contain the message, and posterProfileId is

a foreign key referencing the profile of the user

who posted the message. Thus in the conceptual

(entity-relationship) model [24] of the data there

are two one-to-many relationships between Pro-

file entities and Wall post entities.

The possibility of inconsistency between ob-

ject views and database state can now be seen

concretely in light of Figure 4. This object model

of data corresponds closely to the conceptual (ER)

model, with the aforementioned one-to-many rela-

tionships materialized as Set collections. Notice

that conceptually, when a new WallPost object

is added to the set of posts that a user has made to

their friend’s wall (i.e. added to the set posted-

ToFriendWall), it should seemingly cause a

new WallPost to appear in some other profile’s

wall posts (i.e. added to some object’s onPro-

fileWall set).

However, such conceptual consistency is not

enforced by any existing ORM frameworks. This

is because in a traditional client-pull, request-

driven, Web application such inconsistency is not

generally a problem. In such request-driven appli-

cations object views of the database are recon-

ciled at each client request (such construction

might take place from an application-tier cache,

so this does not necessarily imply a need to access

the data-tier). Thus, such inconsistency would

only be present in the course of a single request

and the developer of that single request’s logic

could manage the problem manually.

Figure 4: Example Java class definition for

LightPortal Profile. This object model of data

corresponds closely to the conceptual (ER) model,

with the aforementioned one-to-many relation-

ships materialized as Set collections.

However, in push-based applications, sub-

scriptions for interesting events are long-lived and

possibly persistent. So the lifetime of a subscrip-

tion would span many application requests, mak-

ing it difficult for a programmer to manually

reason about inconsistency.

Ideally mutations occurring to objects which

correspond to updates of interest for users would

be detected immediately, so that notification to

any interested users could be processed. For ex-

ample, in ORE, a server-side programmer could

create a subscription to be notified when new

posts appear on a profile’s wall as in Figure 5.

Figure 5: Using ORE a developer can register a

long-lived subscription for notification when

posts are added to a profile wall. ORE will ensure

conceptual consistency when posts are added

through object views, possibly different from the

one used to bind the subscription. (Syntax shown

in JavaScript for conciseness, although implemen-

tation is server-side Java).

5

Still, ensuring consistency between object

views and the underlying logical database model

is not the only problem to provide a programmer

friendly, scalable, event-notification framework

for Web applications. This is because most Web

applications are deployed across several hosts in a

server cluster. ORE will also need to manage the

fact that replicas of objects will be distributed

across the various hosts which manage the session

for interacting users.

For such reasons, we believe frameworks for

supporting object-oriented, event-driven pro-

gramming, should be integrated with ORM

frameworks used commonly in application-tier

logic. In the remainder of the paper we discuss

more details of our prototype platform for investi-

gating this approach.

3 Background

Before describing our technical research, we de-

scribe some useful background on important serv-

er-side Web application programming

technologies currently used in industry. Later, in

Section 6, we return to describe other closely re-

lated research.

3.1 Comet and Web Sockets
Since HTTP is inherently a request-response

based protocol, pushing asynchronous updates of

data from the server to browser based clients can

be difficult. Although a proposal for server-push

was put forward by Netscape in the late 1990’s,

this mechanism was never supported across all

major browsers [8].

Due to this limitation, Web developers have

used a number of techniques to try and work

around this problem. Traditionally, a polling

based approach was used, in which a Web page

would be programmed to automatically refresh

after a certain timeout period. This solution led to

a poor user experience as the browser was forced

to render an entire page resulting in a noticeable

interrupt of the user interaction.

Newer approaches based on the popular Ajax

mechanisms provide for a less intrusive user ex-

perience. The Ajax mechanisms include an RPC-

like abstraction which enables the browser to poll

for updates from the server in the background. As

content is retrieved from the server, scripts can be

used to partially render incremental changes of

the user interface. However, this approach still

suffers from two serious problems.

First, since polling is used, the polling inter-

val determines a best possible latency between the

time of an update to data on the server and the

time of delivery to the client. Second, reducing

the polling rate has the effect of increasing the

workload on the server, so managing tradeoffs

between this latency and overall server throughput

can be difficult.

The demand for more responsive Web appli-

cations has led to interest in an alternative ap-

proach, commonly referred to as Comet, for

example using the mechanism of long-polling. In

this approach, the browser creates an HTTP con-

nection to the server, which is held idle by the

server until some update of data is available for

delivery to the client.

Since a browser script programmer is able to

set the timeout on the client, the browser can hold

the connection open indefinitely, until data is

pushed to the client along the ordinary HTTP re-

sponse flow. While there has been interest in the

approach for some time, it was not practical be-

fore, since on traditional threaded Web servers,

each held connection resulted in consumption of

costly thread resources on the server. More re-

cently, since the introduction of asynchronous

event-based Web server architectures [26], there

has been an increasingly widespread use of this

approach.

Research in [4] has compared the server per-

formance cost for Comet and the polling approach

based on the same work load and shows that un-

der high workloads Comet provides far better

scalability.

3.2 Object-Relational Middle-

ware
Web applications usually rely on a relational data

source for handling the ACID requirements of

information storage and retrieval. The conceptual

model of relational data for most online transac-

tion processing applications, such as a typical

Web application, corresponds closely to an ob-

ject-oriented class structure. However, at the im-

plementation level, the relational model and

object model are diverse.

To solve this impedance mismatch, develop-

ers turn to object-relational mapping middleware

to try and maintain the best of both worlds. In an

ORM, entity relationships and properties from a

6

database schema are explicitly mapped to proper-

ties of object classes in the application-tier. Rela-

tionships such as one-to-many and many-to-many

can be mapped to collection classes of an object-

oriented programming language, such as Set, List,

or Map.

4 Technical Details

To describe the technical details, we start by

briefly discussing the high-level programming

model exposed to application developers and then

describe the further technical details of the ORE

framework.

4.1 ORE Framework Architec-

ture
Figure 6 shows the high-level architecture of the

ORE framework runtime components, placed in

the context of the Web application-tier. Clients

communicate with an ORE-based application over

two types of connections.

Figure 6: Internal architecture of ORE framework,

in the context of a three-tier Web architecture.

Client communicates with ORE-based application

through two types of connections (i) a traditional

HTTP request (bold arrow) and (ii) an HTTP

long-polling request.

First, as in traditional applications, clients is-

sue HTTP requests which are handled by Applica-

tion Logic, implemented by a request handler (e.g.

a Java Servlet, CGI script, String Template [23],

etc..) targeted by a URI for fetching dynamic Web

page content. During request handling, a develop-

er typically manipulates data as an Object Model

to complete HTML page generation or generation

of Ajax updates (i.e. XML or JSON content). Ob-

ject data is retrieved as views from the data-tier

through an ORM. Unlike traditional Web applica-

tions, application programmers can use the ORE

API to registered long-lived subscriptions for no-

tification to changes of ORM managed state.

Generated content simply contains a snapshot

representation of some resource state [12]. How-

ever, developers might want to maintain consis-

tency between the client and server state for some

temporally sensitive objects. Using ORE, devel-

opers can use an API to attach Event Handlers (i.e.

listeners) to properties of objects in the object

model. The attachment of handlers to objects is

correlated with the session of the client making

the request. When that property is mutated, the

event handler will be queued for execution, as

described later in Section 4.4.

At the time of execution, the handler is pro-

vided with some information specific to that event

as well as a handle to an output stream which will

be pushed to the client browser. For example, in

the case of a new WallPost in LightPortal, the

event would contain a reference to the wall post-

ing information as an object. The handler imple-

mentation can simply be programmed to marshal

an appropriate representation of the event to the

output stream; the resulting output will be appro-

priately routed to the corresponding session for

delivery to the client.

4.2 ORE Framework API
The top of Figure 7 shows three representative

functions provided for ORE programmers. The

first two, addPropertyListener and add-

CollectionListener accept similar argu-

ment types, but provides different semantics.

For these functions the argument entity is

a reference to an ORM object to monitor. The

property describes a specific property whose

mutation should cause notification to the callback

provided by listener. The final argument

persistent describes whether the subscription

7

should remain durable across multiple sessions

from the same user.

The first case, addPropertyListener,

covers detection of mutations to the value of a

property, whereas the second, addCollec-

tionListener, covers addition, removal, or

update of elements from a collection referenced

by the property.

The third function, addQueryListener,

provides support for listening to updates of an ad-

hoc collection of objects, selected by an object

query. In our implementation we rely on the Java

based Hibernate Query Language (HQL) but other

object query languages could be supported. De-

tails of the ORE implementation to support these

functions are described below (in Section 4.3).

Figure 7: Sample of functions from ORE API (top)

and example of usage (bottom).

The bottom of Figure 7 shows three exam-

ples of use. The first covering a subscription to be

notified when the status of a particular pro-

file object changes; the second covering a sub-

scription to be notified when any elements are

added, removed, or updated from the set of

posts related to the profile. The last exam-

ple also subscribes to a set of posts, but using an

ad-hoc query which might filter on additional

values from the database.

4.3 Object-Relational Consis-

tency
The details of detecting updates for the purpose of

notification depend on the particular API func-

tions that are used. As in Figure 6, an interceptor

(ORE Interceptor) is used to monitor the SQL

UPDATE and INSERT statements issued by the

ORM to the database. The interceptor wraps the

original API used by the ORM so it can be

plugged in transparently. These details are de-

scribed for the three most important functions

from the API.

4.3.1 addPropertyListener

In an ORM-based application, every primitive (i.e.

non-collection) typed property of a class corres-

ponds to a single column of some singleton view

of the database state (i.e. a query that returns one

row). For views which do not contain aggregation,

each primitive property can be mapped back to a

single column in one of the base relations of the

database.

Here we monitor updates made the ORM to

detect when an update is made to a row of this

relation with the same primary key as that given

by the entity passed to addPropertyLis-

tener. If the update changes the value of

property, then ORE passes the new value as an

event to the listener callback.

As described in the literature, not all views

generated by aggregation can be mapped to base

relations [14] without reissuing the original data-

base query. For those limited cases, developers

would still need to rely on application specific

consistency logic.

4.3.2 addCollectionListener
In the case of a collection type, such properties

correspond to a view of the database which con-

tains one column. The column maps directly to a

column in a base relation that is a foreign key

referencing the primary key of the relation identi-

fied above (in addPropertyListener). Here

we monitor updates made to the ORM to detect

8

when an insert, delete, or update is made to the

table containing this column.

In each case, if the value of the column

matches the same primary key as that given by the

entity passed to addCollectionListen-

er, an event is generated. Depending on the type

of operation, the event passed to the listener
callback contains an object either representing the

data added, removed, or changed in the collection.

4.3.3 addQueryListener
For ad-hoc queries, we compute the intersection

between the query passed as a subscription and

the UPDATE or INSERT generated by the ORM.

This intersection is computed as described, for

example, in previous work on Web application

cache invalidation [3]. As described, bulk updates

with conditional criteria may require an additional

query to the database, in order to resolve intersec-

tion.

These types of bulk updates appear to be are

rare in end-user Web applications, since users

typically interact with set of objects that have

already been presented in the browser (e.g. in a

HTML table), and users actions do not typically

result in an ad-hoc set of database rows being

changed. Even still, this can be supported with a

small amount of additional overhead.

4.4 Server-Push
Some Web applications can tolerate a reasonably

high latency between updates on the server and

notification to interested clients. For some Web

applications a push based solution is likely to be

more efficient, to avoid the cost of repeated appli-

cation-level connection setup. Several HTTP push

solutions have been proposed recently, including

a proposal for changes to include server-side push

in the W3C HTML 5 standard. In our current im-

plementation we make use of the Comet long-

polling approach.

When an event is triggered by the ORE Inter-

ceptor it checks to see if the client for which the

event is targeted is currently holding on to a con-

nection. If they are, we can simply execute the

handler immediately, and push the resulting out-

put stream as a response to the held HTTP request.

However, although long polling helps alle-

viate some performance concerns in Web applica-

tions, it is still not based on a connection-oriented

protocol. So for delivering content to clients, we

may need to store some state information in the

event that they are in the process of creating a

new long-connection.

This state consists of the set of event handlers

which have been triggered between the time of the

client’s last long polling request, held in the Ses-

sion Queue. Later, when a new connection is

made by the client, these queued event handlers

are executed on behalf of the client and a response

based on the output can be returned immediately.

4.5 ORE Cluster Details
Using ORE on an application-tier hosted by a

single server machine host can be achieved as

previously described. However, medium- and

large-scale deployments of Web applications will

require the application-tier to be hosted across a

cluster of server hosts or VM instances in a cloud

computing platform. In these settings, user re-

quests are generally forwarded by a load balancer

to some host in the cluster.

 To ensure that clients have continuous access

to session state stored in host main memory,

sticky sessions can be used so that client requests

from the same user continue to be forwarded to

the same host. For an ORE application, we will

additionally need to require a mechanism to en-

sure that updates made by a user on one host are

disseminated as notifications to users that may be

connected to other hosts in the cluster. This situa-

tion is illustrated in Figure 8, where two clients

are shown with sessions hosted by different ORE

cluster hosts.

 Figure 8: Architecture of ORE clustering.

9

In traditional client-pull Web applications,

strong data consistency across application hosts is

generally achieved by access to the data-tier. In

order to prevent the data-tier from becoming a

bottleneck, weaker data consistency is provided

by distributed caching [16, 10, 11] in the applica-

tion-tier. Neither of these approaches are ideal for

notification dissemination as they are used to up-

date passive data storage which requires a client-

driven request to pull information. While a large

amount of research exists for efficient notification

in publish-subscribe systems [27, 6, 17], such

research results do not apply directly to push-

based Web applications. Also closely related is

research on scalable distributed storage for Web-

based systems [7, 15]. However, like research on

Web caching, that research is applied to applica-

tions that are pull-driven by client requests.

In a Web application, user actions which

generate the need for new subscriptions could

take place at any time through a user’s browsing

session. This could even depend on relatively

transient session state, such as which page in a

Web site a user is actively viewing. Thus the need

to generate new subscriptions for clients could

come at any time and at a large scale. For this

reason, ORE uses a peer to peer topology for noti-

fication dissemination to avoid potential bottle-

necks associated with centralizing subscription

information or notification routing. ORE peers

discover the identity of existing peers in a cluster

using a central discovery server since changes to

cluster membership happen relatively infrequently.

This is true even in an elastic cloud computing

scenario since membership changes would happen

on the order of minutes.

The ORE clustering implementation is cur-

rently built on top of a Java Messaging Service

(JMS) layer, although any efficient point-to-point

asynchronous messaging middleware could be

used. Updates to objects on a single host are de-

tected as described, requiring notification to any

hosts which are currently managing users interest-

ed in such updates.

To avoid broadcasting notifications to all

peers, notifications are filtered by subscription

information broadcast periodically by every host

to all peers. Since modern Web application hosts

can manage many thousands of user simulta-

neously, this subscription information is com-

pressed as lossy set membership information,

using the well known Bloom Filter [2, 5, 25] data-

structure. Each filter encodes the subscriptions

currently active for some host in the cluster. This

allows us to filter notifications before forwarding

to distinct cluster hosts. Since bloom filters are

probabilistic, there is a chance of false positives,

where some notification is sent unnecessarily. We

configured an existing implementation (Apache

open-source), to a false positive rate of 2%. In our

experiments this provided a minimum reduction

of 48% in bandwidth cost and reduces CPU costs

associated with processing subscription filters.

We use a Counting Bloom Filter [25], since

subscriptions will need to be added and also re-

moved depending on users browsing behavior. As

long as one user at a particular host is interested in

an update of a particular type, that host will need

to receive relevant notifications. For this reason,

each host maintains a counter for each unique

subscription currently active at that host. Two

subscriptions are considered identical when either:

the entity and property arguments given to

the API have the same value (in the case of

addPropertyListener and addCollec-

tionListener) or when the query statement

given to the API is the same (in the case of add-

QueryListener).

When the counter is incremented from 0 to 1,

a key is generated to represent that subscription

type, and is added to the bloom filter maintained

by the host. Later, when the counter is decre-

mented from 1 to 0, this key is removed from the

filter. In our experiments, we use a subscription

filter broadcast period of 200ms, since this pro-

vides a low latency for interactive applications

while only introducing negligible overhead. This

is considering that Web application hosts are typi-

cally already processing on the order of hundreds

or thousands of requests per second.

5 Experimentation and Ex-

amples

We applied our implementation to two open-

source Java-based Web applications. We looked

for cases where ORE would be useful to extend

the capabilities of these traditional Web applica-

tions with server-push. We also used the applica-

tions to run performance and scalability

experiments with realistic applications. All mea-

surements are averages over 10 trials. In both cas-

es the base experimental setup was as follows.

10

Hardware environment: All machines used in

the experiments are a 64-bit Intel Xeon dual core

2.8GHz processor with 7.5GB main memory. The

workload generation is partitioned between mul-

tiple clients to ensure that the client simulation

does not become a bottleneck in the experiments.

These machines are connected through a 1Gbps

ethernet local area network.

Software environment: The application server

is Jetty 7 for Java and the database is MySQL 5.1.

We used Jetty for its support of asynchronous I/O

on long-polling connections. This design will

soon become a Java standard through the Servlet

3.0 API. We use the Hibernate 3.5.2 ORM.

5.1 RUBiS
First, we applied our ORE framework to part of

the Rice University Bidding System (RUBiS) [1]

Web auction application. This application simu-

lates the activities for an online auction site. RU-

BiS provides support for several kinds of user

interactions, e.g. registering a new account, sub-

mitting an item for auction, placing a bid for an

item, leaving comments on another user, etc..

Currently RUBiS is programmed as a traditional

Web application where users are required to pull

new information from the server by explicitly

refreshing a page representing some content

which they have read.

5.2 RUBiS Application Example
To evaluate and test the implementation of ORE,

we applied it to a common use-case for server-

push Web applications, monitoring of bid history.

We found that this interaction in RUBiS contains

a source of potential inconsistency in the object

model, which could be overlooked by developers,

in the case of relationships between Auction Items

and Bids (shown in Figure 9).

Consider a developer who wants to imple-

ment a server-push version of RUBiS auction

monitoring. Looking at the ViewBidHistory

code, they could see that each item object con-

tains a reference to its collection of bids (i.e.

item.getBids()). So they may mistakenly

assume that changing the RUBiS code to monitor

additions to this collection would help detect

whenever a new bid was added to an item.

However, after looking at the StoreBid

servlet (bottom of Figure 9), we see that other

parts of the code insert bids directly to the data-

base, creating a relationship to an item only by

virtue of a foreign key.

In order to implement a new server-push ver-

sion of RUBiS auction monitoring, we applied an

ORE event handler to manage updates of changes

to the underlying one-to-many relationship be-

tween Auction Items and Bids. We changed the

HTML of RUBiS to accept these JSON updates

and apply them as incremental changes to the

client-side Document Object Model (DOM).

Figure 9: RUBiS Java Servlet classes to (top: to

insert a new bid for an auction item) and (bottom:

to generate content displaying a log of bids on an

auction item). Notice that the entity relationship

between Items and Bids is being manipulated

through different object views (top: through a

collection property Item.bids) and (bottom:

directly through a mapping to the Bid table).

5.3 RUBiS Experiment
In this experiment we modify the bidding client

workload of RUBiS, which uses a mix of the

RUBiS benchmark workload where 80% of users

are read-heavy and 20% of users are write-heavy.

We took CPU load measures over a 5 minute in-

terval with a 1 minute warm up interval to build

up to a 4000 user workload. This particular evalu-

ation is performed using a single server to isolate

the CPU usage overhead for three implementa-

tions.

The Polling case uses a traditional polling

approach for delivering bid history updates to

clients across Ajax. The x-axis plots measure-

ments for a range of concurrent simulated users.

In the Polling case, each read-heavy user polls at a

frequency of 2 seconds for updates.

The measurements for Manual and ORE both

use a server-push implementation over long-

11

polling. In the Manual case, we hand-coded the

event notification by locating appropriate points

in the Java code where relevant object state was

mutated. The ORE approach uses an event hand-

ler attached to an item’s bids property.

From Figure 10, we see that the CPU usage

for both the ORE and manual implementation are

similar, although ORE induces a fix overhead of

between 2% and 10%. This overhead is due to the

additional costs of query interception and analysis.

Figure 10: CPU Usage in RUBiS Use-Case for

three different implementations.

5.4 LightPortal Experiment
Similarly to the RUBiS example, we have applied

ORE to the use-case of the LightPortal profile

pages, as described in Section 2. Here we consider

performance implications of ORE as applied to

this scenario and deployed on a cluster of six

server hosts. Again we use a mix where 20% of

simulated users write to a profile periodically and

80% of simulated users only read from profiles.

Across the experiments, there is a fixed client

workload of 3000 simultaneous clients (per clus-

ter host). Each client is simulated by a thread

which changes its target profile page (reading or

writing) every 5 seconds. Thus, each writing

thread will write once every 5 seconds, and every

reading thread will receive any updates to a spe-

cific profile page which occur during that 5

second interval.

Clearly most users in a real application would

likely view a page for more than 5 seconds, how-

ever, using a shorter interval allows us to test the

scalability of our subscription filter dissemination

protocol, since changes to page viewing corres-

pond to changes in subscription state.

As shown in Figure 11, along the x-axis we

vary the client browsing activity according to a

probability that two users will choose to

read/write a single specific page during a 5 second

interval. So, for the case of 0%, all users are al-

ways active on a separate page, and for the case of

100%, there is only a single profile page which is

visited by users. This allows us to investigate dif-

fering implementation strategies for sharing sub-

scription and notification information between

cluster hosts. For example, in the case of a 0%

overlap, there is no need for separate machines to

ever share notifications; in the case of 100% all

updates to the profile page must be broadcast to

all other hosts.

Figure 11: CPU Usage in LightPortal Use-Case

for differing client overlap in page activity.

The y-axis shows the CPU usage on one sin-

gle machine. Since the experiment is symmetric

with respect to all six hosts, the measurements for

any host are roughly identical.

Three implementations are evaluated. First,

a naive approach in which all notifications are

broadcast for any update to a page (Broadcast All

Notifications). Second, an approach which broad-

casts subscriptions uncompressed at 200ms inter-

vals (Broadcast All Subscriptions). Third, an

approach which broadcasts similarly, but which

compresses subscription information with the

12

previously described counting bloom filter

(Broadcast All Subscription Filters).

Since the naive approach broadcasts all noti-

fications regardless of necessity, its CPU usage is

fixed across all client simulations. We see from

the figure that the ORE cluster implementation

using a subscription bloom filter reduces CPU

usage by up to 25%. The CPU reduction is due

partially to the fact that the serialized bloom filter

can be directly copied from the middleware mes-

sage buffer into a form suitable for testing sub-

scription membership. In the case of the

uncompressed filter, each subscription must be

unmarshalled and used to build a new data-

structure suitable for notification filtering.

6 Related Work

6.1 Caching Dynamic Web Con-

tent
Caching is often used to reduce Internet latency

and server load for Web applications. While

HTTP includes specific support for caching of

static data [22], caching of dynamic content is

much more difficult. Dynamic pages are generat-

ed based on the results of queries to back-end data

sources. In this case, a solution is needed to de-

termine when cached content becomes invalidated

due to updates of data sources.

Iyengar et al. [16] provide a data update

propagation algorithm to maintain the consistency

of query results which may be cached as dynamic

content and the underlying data store. When a

change to the underlying data happens, cache

managers query the dependence information

which has been stored in an object dependence

graph to determine which objects should be inva-

lidated. Such dependence graphs can be automati-

cally generated from queries [10].

AutoWebCache [3] is a middleware solution

which can transparently cache dynamically gener-

ated content in J2EE applications. The first main

contribution of their research is to provide a solu-

tion for caching dynamic Web page at the front-

end and maintaining consistency with the back-

end database using query intersection run-time

analysis. We use a similar approach for detecting

updates to object views. ORE uses some similar

techniques for detection of updates to relevant

database state. Different from caching work we

considered translation of updates as push-based

notification and dissemination in distributed ap-

plication-tier clusters.

6.2 Automated Ajax
Due to the coordination of asynchronous messag-

ing between client and server, client-side Ajax

programming can be difficult. Other projects have

previously identified the essence of Ajax as being

the detection of updates to specific application

state and the propagation of these updates to the

browser’s DOM tree.

Ajax Report Pages [13] is a programming

model for interacting with an SQL data store di-

rectly from client-side script code. In this ap-

proach application code is restricted to a specific

superset of SQL, which allows the framework to

automatically detect changes to the database af-

fecting a previously rendered report. In this re-

spect, that research is similar to ORE. However,

that research does not consider the requirements

for object-oriented application programming,

server-side push technology, or application-tier

clustering.

FlapJax [21] is a client-side data-flow pro-

gramming languages for Ajax. In FlapJax, data-

flow paths created by variable assignments are

tracked by the language runtime to support auto-

matic propagation of variable mutations. Different

from ORE, this project focuses on traditional Ajax

client-side programming, whereas our concern is

on server-side push technology.

6.3 Event-Driven Architecture
Event driven programming is a well established

practice in database management through the use

of triggers and more extensively in the Event-

Condition-Action paradigm [19]. While some

work has been done to add event-driven pro-

gramming to object-oriented databases systems

[18], the ORE research considers support specifi-

cally for an object-relational model where consis-

tency between the application-tier and database

must be managed.

6.4 Pub-Sub Systems
One of the most important problems in wide-area

publish subscribe systems is the efficient forward-

ing of messages between routers [6, 27]. Routers

should filter any published messages which are

not useful to any other downstream subscriber.

However, the size of subscription information can

13

be too large and volatile to efficiently manage.

For this reason, lossy subscription information

can be leveraged in the form of bloom filters. In

ORE we have also leveraged this form of com-

pression for sharing subscriptions between appli-

cation-tier cluster hosts.

7 Conclusion

Currently, the data consistency between resource

updates and an object-oriented model in Web ap-

plications is not guaranteed by conventional ob-

ject-relational middleware such as the popular

ORM frameworks. However, for emerging push-

style Web applications, this consistency guarantee

is important to detect changes which may take

place on multiple differing object views of the

same underlying data.

In our performance evaluation we saw that

the ORE framework approach could provide bet-

ter performance than a traditional polling based

implementation and less than a 10% reduction of

performance compared to a manually imple-

mented push-based based implementation. In our

cluster experiments, we found the use of bloom

filtering important for large-scale subscription

information with a high churn rate.

References

[1] C. Amza, A. Ch, A. L. Cox, S. Elnikety, R.

Gil, K. Rajamani, and W. Zwaenepoel. W.:

Specification and implementation of dy-

namic web site benchmarks. In: IEEE

Workshop on Workload Characterization,

pages 3–13, 2002.

[2] B. H. Bloom. Space/time trade-offs in

hash coding with allowable errors. Com-

munications of the ACM, 13:422–426,

1970.

[3] S. Bouchenak, A. Cox, S. Dropsho, S.

Mittal, and W. Zwaenepoel. Caching dy-

namic web content: Designing and analys-

ing an aspect-oriented solution. In Proc.

of the Internation Middleware Conference,

2006.

[4] E. Bozdag, A. Mesbah, and A. van Deursen.

Performance testing of data delivery

techniques for ajax applications. Journal

of Web Engineering, 2009.

[5] A. Broder and M. Mitzenmacher. Network

applications of bloom filters: A survey. In

Internet Mathematics, pages 636–646,

2002.

[6] A. Carzaniga and A. L. Wolf. Forwarding

in a content-based network. In Proc. of

the SIGCOMM Conference on Applica-

tions, technologies, architectures, and pro-

tocols for computer communication, pages

163–174, 2003.

[7] F. Chang, J. Dean, S. Ghemawat, W. C.

Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system

for structured data. In USENIX Sympo-

sium on Operating System Design and Im-

plementation, pages 205–218, 2006.

[8] N. C. Corporation. An exploration of

dynamic-documents.

http://www.hoolan.net/spec/WWW/push

pull/, 1998.

[9] D. Crane and P. McCarthy. Comet and Re-

verse Ajax: The Next Generation Ajax 2.0.

APress.

[10] L. Degenaro, A. Iyengar, I. Lipkind, and I.

Rouvellou. A middleware system which

intelligently caches query results. In Mid-

dleware ’00: IFIP/ACM International

Conference on Distributed systems plat-

forms, pages 24–44, Secaucus, NJ, USA,

2000. Springer-Verlag New York, Inc.

[11] L. Fan, P. Cao, J. Almeida, and A. Broder.

Summary cache: A scalable wide-area web

cache sharing protocol. In IEEE/ACM

Transactions on Networking, pages 254–

265, 2000.

[12] R. T. Fielding, D. Software, and R. N.

Taylor. Principled design of the modern

web architecture. ACM Transactions on

Internet Technology, 2:115–150, 2002.

[13] Y. Fu, Y. Papakonstantinou, K. Kowalc-

zykowski, K. K. Zhao, and K. W. Ong.

Ajax-based report pages as incrementally

rendered views. In International Confe-

rence on Management of Data

(SIGMOD), 2010.

http://www.hoolan.net/spec/WWW/pushpull/
http://www.hoolan.net/spec/WWW/pushpull/

14

[14] A. Gupta, I. Mumick, and V. Subrahma-

nian. Maintaining views incrementally. In

SIGMOD Conference, 1993.

[15] D. Hastorun, M. Jampani, G. Kakulapati,

A. Pilchin, S. Sivasubramanian, P. Vos-

shall, and W. Vogels. Dynamo: amazons

highly available key-value store. In In Proc.

SOSP, pages 205–220, 2007.

[16] A. Iyengar and J. Challenger. Improving

web server performance by caching dy-

namic data. In Proceedings of the

USENIX Symposium on Internet Tech-

nologies and Systems, pages 49–60, 1997.

[17] H. A. Jacobsen, A. K. Y. Cheung, G. Li, B.

Maniymaran, V.Muthusamy, R. S. Kazemza-

deh: The PADRES Publish/Subscribe System.

Principles, Applications, of Distributed

Event-Based Systems, pages 164-205, IGI

Global, 2010.

[18] G. Jagadish, N. H. Gehani, H. V. Jaga-

dish, and O. Shmueli. Event specification

in an active object-oriented database. In

In Proc. of the ACM SIGMOD Interna-

tional Conference on Management of Data,

pages 81–90, 1992.

[19] K. G. Kulkarni, N. M. Mattos, and R.

Cochrane. Active database features in

sql3. In Active Rules in Database Systems,

pages 197–219. 1999.

[20] LightPortal. http://www.lightportal.org/.

Accessed on 27/06/2011.

[21] L. A. Meyerovich, A. Guha, J. Baskin, G.

H. Cooper, M. Greenberg, A. Bromfield,

and S. Krishnamurthi. Flapjax: A pro-

gramming language for ajax applications.

In OOPSLA, 2009.

[22] H. F. Nielsen, J. Gettys, A. Baird-Smith,

E. Prud’hommeaux, H. W. Lie, H. W.

Lie, and C. Lilley. Network performance

effects of HTTP/1.1, CSS1, and PNG. In

Proc. of the SIGCOMM Conference on

Applications, technologies, architectures,

and protocols for computer communication,

1997.

[23] T. Parr. Enforcing strict model-view sepa-

ration in template engines. In Proc. of the

International World Wide Web Confe-

rence, 2004.

[24] P. P. shan Chen. The entity-relationship

model: Toward a unified view of data.

ACM Transactions on Database Systems,

1:9–36, 1976.

[25] H. Song, J. Turner, S. Dharmapurikar,

and J. Lockwood. Fast hash table lookup

using extended bloom filter: An aid to

network processing. In Proc. Conf. on Ap-

plications Technologies Architectures and

Protocols for Computer Communications,

pages 18–192, 2005.

[26] M. Welsh, D. Culler, and E. Brewer. Seda:

An architecture for well-conditioned,

scalable internet services. In Proc. of the

Symposium on Operating Systems Prin-

ciples, 2001.

[27] T. Yan and H. Garcia-molina. The sift

information dissemination system. ACM

Transactions on Database Systems,

24:529–565, 2000.

http://www.lightportal.org/

