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Abstract

In a recent paper [2] we gave query strategies for min-
imizing the ply of the potential locations of a set of
moving entities. We extend our results to the case
where the entities have different maximum speeds.

We present a query strategy that can achieve ply
O(k∆) when we have at least 2n time, the intrinsic
ply of the entities is ∆, and the speeds of the entities
fall into k speed classes. Furthermore, we show that
for every query strategy there is a set of n entities for
which the strategy achieves ply Ω(k∆). Hence, our
results are optimal up to a constant factor.

We present our query strategy for entities moving in
R1. However, our results extend to higher dimensions.

1 Introduction

Movement is everywhere. Whether it is people driving
to work in their car, robots assembling a product,
or birds flying around in search of food, everywhere
we look we see moving objects. So, it is no surprise
that researchers in a wide range of application fields
study movement and moving data [1, 4, 5]. Often,
the movement of the objects involved is unpredictable,
and the data must be processed in real-time.

Acquiring the (exact) location of an entity in real
time often has a certain cost. For example the re-
maining battery power of the tracking device, or the
time it takes to obtain the location. Therefore, it is
often still impossible to know the exact location of all
entities involved at any time. Instead, the exact lo-
cation of an entity may only be available at discrete
times. In between two such times, the entity can be
anywhere in a region of potential locations, typically
a ball. The size of this uncertainty region increases as
time progresses. See Fig. 1 for an illustration.

A natural question is now how to keep track of a
set of moving entities if we can query the location
of one entity at any time, and each query takes unit
time. That is, can we maintain a representation of the
uncertainty regions of the entities that distinguishes
them as well as possible.
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Fig. 1: Illustrating the model at three subsequent time
steps, for entities of three different speeds. In each
step, one disk (red border) is queried, resulting in a
point at the next step. All other disks grow in diam-
eter proportional to their speed.

In a previous paper [2] we took a first step in an-
swering this question. We presented query strategies
(algorithms) that try to minimize the ply of the set of
uncertainty regions at a given time t∗ in the future, as-
suming that all entities have a given maximum speed
s. The ply [3] of the uncertainty regions at a time t is
the maximum number of uncertainty regions (at time
t) that contain any given point in Rd. If the entities
move too close together it may not be possible to as-
sure a good ply with any querying strategy. So we
used a form of competitive analysis: we compared the
ply achieved by our strategies to the ply achievable
by an optimal strategy that knows the trajectories of
the entities in advance, and showed that our strategies
were O(1)-competitive to such an informed strategy.

In this paper, we extend our work to the case where
the entities have different maximum speeds. More
specifically, we present an O(k)-competitive query
strategy for when we can group the entities with sim-
ilar (maximum) speeds into k speed classes (in which
maximum speeds differ by at most a constant factor).
Furthermore, we show that this bound is optimal up
to a constant factor; that is, there is no query strategy
that achieves competitive ratio o(k).

Problem Statement. Let E = {e1, e2, . . . , en} be
a set of n point entities moving unpredictably in R1.
An entity ei belongs to speed class s if its maximum
speed, vi, lies in the range [s/2, s]. Let s1, .., sk be a
set of speed classes covering all entities in E . We wish
to obtain information about the potential locations of
the entities in E so that we can distinguish them as
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well as possible at some future time t∗.
We consider query strategies that can obtain the

current location of an entity by querying it, but can
only query one entity per unit time. Knowing the cur-
rent location of an entity restricts its future positions
because it has bounded speed. Let fi be the (un-
known) trajectory of entity ei, which is a continuous
function from time (R) to position (R1).

A query strategy’s t∗-uncertainty interval with time
τ remaining for an entity ei is the interval centered at
fi(ti) with length 2vi(t

∗− ti), where ti < t∗− τ is the
last time the strategy queries ei with at least τ time
remaining. We will omit t∗, the time τ remaining,
and the entity ei when these are implied by context.
When the time remaining is τ = 0, we will call this
the final uncertainty interval.

We measure how well a strategy distinguishes enti-
ties by the (final) ply of its final uncertainty intervals.
The ply of a set of intervals is the maximum number
of intervals in the set that contain a common point.

For some entities, it may be impossible for a query
strategy to achieve low final ply. We say that the
collection I = {I1, I2, . . . In} of intervals forms a t∗-
uncertainty realisation of E if there exists a sequence
of distinct integer query times t1, t2, . . . tn, all less
than t∗, such that Ii has center fi(ti) and length
2vi(t

∗ − ti). The minimum, over all t∗-uncertainty
realisations I of E , of the ply of I is the t∗-intrinsic
ply of E . The intrinsic ply of E is a lower bound on the
final ply that any query strategy could achieve, even
one that has full knowledge of the trajectories of the
entities involved. We will call an optimal informed
strategy that achieves final ply equal to the intrinsic
ply OPT.

2 A O(k)-Competitive Query Strategy

In this section we describe a query strategy that with
τ ≥ 2n time remaining and a set E of n entities,
each belonging to one of k different speed classes
s1, s2, . . . , sk, achieves final ply at most some fixed
constant c times k∆, where ∆ is the intrinsic ply
of E . Like our strategy PlentyOfTime [2], which
worked for the case k = 1, the new strategy Plen-
tyOfTimeWithSpeeds proceeds in rounds, each of
which begins by querying all entities once in arbitrary
order, and then sets aside half of the entities (never
to be queried again). The key questions are how to
decide which entities to set aside, and how to argue
that the final ply of all uncertainty intervals does not
exceed ck∆. Since our strategy eventually sets aside
all entities, this means we have to argue that the ply
of all uncertainty intervals that we set aside does not
exceed ck∆.

Our previous strategy PlentyOfTime [2] set aside
entities whose uncertainty intervals did not intersect
h-heavy windows: regions containing at least h uncer-

tainty intervals (for an appropriate value of h). How-
ever, it seems that this argument is no longer appli-
cable, since the size of the windows now also depends
on the speed of the entities.1Therefore, we use a more
fine-grained approach. In each round, our strategy
will set aside the set of entities that is not h-crowded
(for an appropriate value of h). An entity of speed
class s is h-crowded (with remaining time τ), if its
current uncertainty interval, that is, the uncertainty
interval when the remaining time is τ , contains a point
that is also contained in at least h − 1 other uncer-
tainty intervals of entities in speed class s.

To reason that the ply of the uncertainty intervals
that we set aside is not too large, we introduce the
concept of delay units. Given a set E of entities, the
delay units with time τ remaining assigned to entity
ei ∈ E is dlg 2τ

xi
e where xi is the time remaining (be-

fore t∗) when entity ei was last queried by OPT. If
OPT does not query ei in the last 2τ time steps, we set
xi = 2τ . The number of delay units assigned to entity
ei measures the difference in scale between the length
of the uncertainty interval with time 2τ remaining for
ei (assuming that the exact position of ei at this time
is known), and the size of OPT’s final uncertainty in-
terval for ei. It is easy to argue that the total number
of delay units, over all entities, is bounded:

Lemma 1 With time τ remaining, the total number
of delay units over all entities is at most 3τ .

Proof. Since OPT can query only once per time
step, the total number of delay units is at most∑τ
i=1

⌈
lg 2τ

i

⌉
which, bounding the sum by the cor-

responding integral, is at most 3τ . �

The following lemma, which is the key to our ap-
proach, asserts that if some point p is contained in
more than c∆ uncertainty intervals for entities from
any one speed class s then those (c∆-crowded) enti-
ties must be assigned a total of at least lg c− 2 delay
units on average.

Lemma 2 In any set of entities with intrinsic ply ∆,
the average number of delay units assigned to each
h-crowded entity with time τ remaining is at least
lg h

4∆ .

Proof. Assume, by renumbering if necessary, that
e1, e2, . . . , em are the h-crowded entities in speed class
s. Let Ii be the uncertainty interval for ei and let I∗i
be OPT’s final uncertainty interval for ei. We will
show that OPT, in order to achieve ply ∆, must as-
sign at least lg h

4∆ delay units on average to each of
these h-crowded entities.

Let ui = dlg 2τ
xi
e be the delay units assigned to en-

tity ei, where xi is the time remaining (before t∗)

1When speeds are the same, we can avoid this problem by
scaling [2].
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when entity ei was last queried by OPT. If OPT does
not query ei in the last 2τ time steps, we set xi = 2τ .
In effect, this permits OPT to query multiple entities
at time t∗ − 2τ without using any delay units. It also
means that we may assume that the intervals I∗i are
contained in intervals of length 2τ · 2s.

2τ p

4τs4τs

Fig. 2: The uncertainty intervals (brown) covering p,
and their corresponding final uncertainty intervals in
OPT (purple) are clustered around p.

Every uncertainty interval Ii, with i ≤ m, contains
a point p that is contained in at least h distinct uncer-
tainty intervals. Each of these intervals is contained
in an interval of length 2τ ·2s that also contains OPT’s
corresponding final uncertainty interval. Thus OPT’s
final uncertainty intervals are clustered within dis-
tance 4τs of such points p, in groups of size at least
h (see Fig. 2). The union of all of OPT’s final un-
certainty intervals thus covers at most 1-dimensional
volume 8τs(m/h), since there are at most m/h groups
and each group lies within an interval of length 8τs
centered at such a point p. The intrinsic ply is ∆, so

m∑
i=1

|I∗i | ≤ 8τs(m/h)∆. (1)

We know |I∗i | ≥ xis since s/2 is the smallest max-
imum speed of an entity in speed class s. Further-
more, by the definition of ui, xi ≥ 2τ

2ui
. Thus, from

inequality (1), we have

m∑
i=1

2τ

2ui
s ≤ 8τ(m/h)∆.

By the arithmetic-geometric mean inequality,(
m∏
i=1

2−ui

)1/m

≤ 4∆

h
,

which implies 1
m

∑m
i=1 ui ≥ lg h

4∆ . �

We use Lemma 2 to show:

Theorem 3 Given a set E of n entities, each belong-
ing to one of k speed classes s1, s2, . . . , sk, and time
τ ≥ 2n remaining, PlentyOfTimeWithSpeeds
achieves final ply at most 28k∆ where ∆ is the in-
trinsic ply of E .

Algorithm PlentyOfTimeWithSpeeds(E , τ)
Input. A set of n entities E , and the remaining time
τ , with τ ≥ 2n.
1. if τ > 0 then
2. Wait (query nothing) for τ − 2n time steps.
3. Query all entities in E once.

B Now there is time n remaining. C
4. Choose the smallest h so that the set E ′ of

h-crowded entities has size at most n/2.
B Set aside the non-h-crowded entities. C

5. Call PlentyOfTimeWithSpeeds(E ′, n).

Proof. For h = 28∆, the number of h-crowded enti-
ties with time τ = n remaining is at most n/2; oth-
erwise, by Lemma 2, the total delay units assigned to

h-crowded entities is more than τ
2 lg 28∆

4∆ = 3τ , which,
by Lemma 1, exceeds the total number of delay units
available.

Thus the entities the strategy sets aside are not h-
crowded for h = 28∆. This implies that whenever an
entity in speed class si is set aside that has current
(i.e., with τ time remaining) uncertainty interval I,
all points p ∈ I are contained in less than 28∆ cur-
rent uncertainty intervals for entities in speed class si.
The strategy’s final uncertainty intervals for entities
that are not set aside are contained in their current
uncertainty intervals. Thus at the end of the strategy,
when all entities are set aside, every point p ∈ R1 is
covered by at most 28∆ uncertainty intervals for enti-
ties in speed class si. Since this is true for all k speed
classes, the strategy’s final uncertainty intervals have
ply at most k28∆. �

3 A Lower bound

Next, we describe a construction involving a collec-
tion of 2k entities moving in R1. The entities belong
to k different speed classes: two entities per class. The
construction is designed to force ply at least k/4−1 for
any strategy that knows only the initial uncertainty
intervals and maximum speeds of the various entities.
An informed strategy, one that knows the actual tra-
jectories followed by the various entities, is capable of
choosing query times for the various entities in such
a way that the final ply is one.

Note that the 2k entities can form part of a larger
collection of n > 2k entities by simply adding n− 2k
entities whose initial uncertainty intervals are all dis-
joint from those of all other entities, and hence require
no further queries. Furthermore, a modest general-
ization of the construction involves 2k∆ entities, and
forces ply Ω(k∆), where ply ∆ is realizable by an in-
formed strategy.

For each i, 1 ≤ i ≤ k, the pair of entities in speed
class si have maximum speed of si = (3k)i−1. The
construction fixes the position of both entities up to
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Fig. 3: The lower-bound construction for k = 2. The vertical axis represents time. The purple intervals
correspond to the ideal query times. For all entities it holds that if we were to query them even one time unit
before their ideal query times (the brown intervals), then their uncertainty intervals contain the origin.

time 2k+3 remaining (at times t ≤ t∗−(2k+3)) at the
same point, (2i− 1)(3k)i−1, on the real number line.
Thereafter both move at their maximum permissible
speed in opposite directions. The only information
that is denied to the uninformed strategy is which of
the two entities (copy a) moves left and which (copy
b) moves right. See Fig. 3 for an illustration.

The informed strategy queries copy a of the entities
in speed class si at time k− i+ 1 remaining and copy
b at time k + i remaining. We refer to these times as
the ideal query times. The resulting final uncertainty
intervals are [−2(k−i+2)(3k)i−1,−2(3k)i−1], for copy
a, and [2(3k)i−1, 2(k + i+ 1)(3k)i−1] for copy b. It is
straightforward to confirm that these intervals (from
all speed classes) are disjoint. Note, however, that if
the query to any entity takes place even one time unit
earlier than these ideal query times then the resulting
uncertainty interval must include the origin (see the
brown intervals in Fig. 3). In fact, we will argue that
any uninformed strategy can be forced, by making a
suitable choice for the identity of copy a and b within
each speed class, to have the last query to at least
k/4− 1 of the entities take place earlier than its ideal
query time. As a consequence, the resulting ply at
the origin must be at least k/4− 1.

In speed class si, in order to ensure that copy a
is queried at or after its ideal query time it must be
queried with time less than k−i ≤ k remaining. How-
ever, an adversary is free to make copy b be the first
of the pair to be queried. Hence, for each speed class
where both entities are queried at or after their ideal
time, either (i) both entities are queried with time less
than k remaining, or (ii) both entities are queried be-
tween time 2k+ 2 and k remaining and one is queried
with time less than k remaining. Let x and y be the
number of speed classes that satisfy condition (i) and
(ii), respectively. Since there are k query times with
time less than k remaining, 2x + y ≤ k. Since there
are k + 3 query times between time 2k + 2 and k re-
maining, 2y ≤ k + 3. Thus x + y ≤ 3(k + 1)/4. It
follows then that the entity pairs from at least k/4−1
speed classes satisfy neither condition. Thus the final
uncertainty intervals of at least k/4− 1 entities must
intersect the origin. We conclude:

Theorem 4 For every query strategy, there exist k
speed classes s1, s2, . . . , sk and a set of n ≥ 2k entities
from those speed classes with intrinsic ply ∆, such
that the strategy can only achieve final ply Ω(k∆).

4 Concluding Remarks

We briefly discuss some further consequences of our
results. Our query strategy makes no assumptions
about the relative values of the si’s. So when the
maximum speeds lie in the range [1, s], our strategy
guarantees a final ply that is O(∆ log s). Similarly,
we obtain a lower bound of Ω( log s

log log s ).

Our results extend to entities moving in Rd, with
d > 1. Each h-crowded entity is then assigned at least
1
d lg h

4∆ delay-units. Choosing h = 29d−1∆ guarantees
that our query strategy achieves ply at most k29d−1∆.
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Competitive query strategies for minimising the ply
of the potential locations of moving points. In Proc.
2013 Symposium on Computational Geometry, SoCG
’13, pages 155–164. ACM, 2013.

[3] G. Miller, S. Teng, W. Thurston, and S. Vavasis.
Separators for sphere-packings and nearest neighbor
graphs. Journal of the ACM, 44(1):1–29, 1992.

[4] M. Schneider. Moving Objects in Databases and GIS:
State-of-the-Art and Open Problems. Research Trends
in Geographic Information Science, pages 169–187,
2009.

[5] C. Zhu, L. Shu, T. Hara, L. Wang, and S. Nishio.
Research issues on mobile sensor networks. In Com-
munications and Networking in China (CHINACOM),
2010 5th International ICST Conference on, pages 1–
6. IEEE, 2010.


