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1 Introduction

Suppose the only access we have to an arrangement of n input lines is to “probe” the
arrangement with horizontal lines. A probe returns the set of probe points which are the
intersections of the probe’s horizontal line (the probe line) with all input lines. We assume
that none of the input lines is horizontal, so a probe line intersects every input line. This
does not imply that the number of probe points on a probe line is n. It is possible that
two or more input lines may intersect the probe line at the same point.  Our goal is to
reconstruct the set of input lines using a small number of probes.

Aoki, Imai, Imai, and Rappaport [1] observed that if one is allowed to place the probe
lines after seeing the results of previous probes, then the number of probes required is at
most three. The first two probes serve to define a set of at most n? candidate lines: the set
of lines through one probe point on the first probe line and one probe point on the second
probe line. Placing the third probe line so that it does not intersect an intersection of the
arrangement of candidates serves to distinguish the input lines from the other candidates.
This paper addresses the problem of fized probes; in our setting the locations of the probes
must be chosen before the input is examined.

In the case of intersection probes, we show that for each natural number n there is a
set of n + 1 probe lines that will serve to determine any arrangement of n input lines. We
also show that n + 1 is sometimes necessary. In general, we obtain asymptotically tight
upper and lower bounds on the maximum number of input lines that are compatible with
k probes each of which reports at most n probe points. A line is compatible with a set of
probes if every intersection of the line with a probe line occurs at a probe point. We give
an algorithm to reconstruct an arrangement of n lines from a set of intersection probes that
runs in O(n?log®n). A randomized version runs in time O(n?logn).

2 Intersection Probes

In this section, we consider the problem of reconstructing an arrangement of lines from the
set (i.e. without duplicates) of points defined by its intersection with a set of horizontal
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Figure 1: An (n, k) probe set compatible with n?/(k — 1) lines.

probe lines. More formally, let LM H ={IlNh |l €l,h € H}. If L is a set of (hidden)
non-horizontal lines and H is a set of (known) horizontal probe lines, we want to determine
L given just LM H. A natural question is how many probe lines are necessary to determine
an arrangement in this way.

Proposition 1 Let Ly and Ly be sets of n non-horizontal lines, and H a set of n + 1
horizontal lines. If H T Ly = H T Ly then Ly = L.

Proof. If Ly # Ly then chose ¢ € Ly \ Li. There must be exactly n + 1 intersections
S1, 89, - . Spt1 between £ and H. Since |L;| = n, there must be some s; that is not intersected
by any line in L;. O

Let S be a set of points in R?. Let #(S) be the set of horizontal lines that contain a
point in S. We say that a set L of non-horizontal lines is compatible with S if S = H(S)ML.
We define the height of S as [H(S)|. We define the width of S as max;cyg) [[M1S]. If S has
width n and height &, we call S an (n, k) probe set. Let fi(n) be the maximum cardinality of
a set of non-horizontal lines compatible with an (n, k) probe set. For example, fy(n) = n?,
and Proposition 1 implies that f,,1(n) = n. We next prove bounds on fi(n) for other
values of k.  Consideration of a rectangular grid of probe points (Figure 1) yields the

following.
Proposition 2 fe(n) >n?/(k—1) 2<k<n

Proof. Let S be a set of probe points arranged in a regular n x k grid as in Figure 1. Let
L be the set of lines that contain the ith probe point in the bottom row (row 1) and the
jth probe point in the top row (row k), for all 1 < ,j < n such that i = j mod (k — 1).
Each line in L is compatible with S since the line containing the ith probe point in row 1
and the jth probe point in row k contains the (i +m(j —)/(k — 1))th probe point in row
m + 1. Let L; be the subset of L intersecting point ¢z on the top row.

L = ln/(k—1)]+1 ifi<n mod (k—1)
e In/(k—1)] otherwise
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Let A(L) denote the arrangement induced by a set of lines L. Let deg(v) be the number
of lines that intersect at a vertex v in an arrangement. We will make use in the sequel of
the following bound.

Proposition 3 [2] Let L be a set of N lines and V' be any set of M wvertices of A(L).

) " deg(v) € O(N*PM* + N + M)

Our first application of Proposition 3 will be find an asymptotically matching upper
bound for the lower bound of Proposition 2.

Theorem 4 fe(n) € O(n?/k) 2<k<n

Proof. Consider a set L of N non-horizontal lines and a set H of £ horizontal probe lines
with at most n < N probe points on each; there are N + k£ < 2N lines in total and at
most nk points. For n sufficiently large, it follows from Proposition 3 that the sum of the
degrees of these points (in A(L U H)) is at most

) " deg(v) < co ((2N)*?(nk)*?® + 2N + nk)
< ¢ (N?3(nk)?/® + N + nk)

for some constants cg, ¢;. If all lines are to be compatible with all probes then we must
have

Nk <) " deg(v) < ¢ (N*?(nk)*® + N + nk)
N(k —¢) < eN?3(nk)?® + enk

k)2/3 cnk
N1/3 < C(TL
S Th—e T (k — c)N2/3
We know that N > n, so
N € O(n?*/k +n) O

We now present algorithms to compute L from L H for sufficiently large H. In order
that the number of input lines need not be known in advance, we assume that the probe
points are presented grouped by line. If this is not the case, then an additional O(nk)
preprocessing needs to be done for an (n, k) probe set.
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Theorem 5 Let L be a set of n non-horizontal lines and H = { hy,...,h} be a set of
horizontal lines such that n < k. Given LT H grouped by probe line, we can compute L in
time O(n?log®n).

Proof. Form the set of n? candidate lines compatible with h; and hy. Incrementally add
probes and “weed out” impossible candidates. The ith weeding out step takes O(N;logn)
where NN; is the number of candidate lines that survived the first : — 1 weeding out steps.
By Theorem 4, N; € O(n?/i). By Proposition 1, we can stop when the number of probes
processed is greater than the number of remaining candidates. Thus the time required is
at most ¢ N;logn = en?logn > 1/i = O(n?log®n). O

Theorem 6 Let L be a set of n non-horizontal lines and H = { hy,...,h} be a set of
horizontal lines such that n < k. Given H M L grouped by probe line, we can compute L in
ezpected time O(n?logn).

Proof. Initially form the set Ly of Ny < n? candidate lines obtained by joining every probe
point on h; with every probe point on hy. Let Hy = H \ { hy, hs }.

At each step ¢ > 1, we have a set L;_; of N;_; candidate lines and a set H; ; of at
least n — ¢ unprocessed probe lines. Choose a probe line A from the set H; ; at random.
Let H; = H,_; \ {h}. Let L; be the candidate lines from L;_; that are compatible with A.
Forming L;, that is testing each of the N;_; candidate lines in L;_; to see if it is eliminated,
requires O(N;_1logn) time. By Proposition 1, we know we can stop when N; < i.

We can divide the running of this incremental algorithm into two stages according to
whether or not the following is satisfied:

(1) 1 < g and N; > cin

for some constant ¢; to chosen later. We will bound the time taken in stage 1, when
(1) holds, below. In stage 2, when (1) is not satisfied, we know from Theorem 4 that
|L;] € O(n). Both stages together take time at most

n/2

2 ZNi logn + O(n*logn).

=0

where the NN; are random variables. We will bound the expected running time of the
algorithm by obtaining a bound on EN;.

Lemma 1 For0<i<n/2, EN; < et 2/3)

Proof. The proof is by induction on 7. The lemma holds for : = 0. Consider the change in
the number of candidate lines at step ¢ > 1. Let H; ; be the set of n — i probe lines chosen



after step i — 1. Let V' be the set probe points on the probe lines in H} | (|V| < n(n —1)).
We know (Proposition 3) that

(2) Zdeg(v) < e((Nicy + 1 — ) (n(n — )2 + (Ni_y +n — i) + n(n — 1))

Let D be the right-hand side of (2). Let D; denote the sum of the degrees of the probe
points on the ith probe line h; processed. Since all orderings of the n — 7 probe lines to
be chosen randomly are equally likely, ED; = ED;, for all 2 <7 < j < n. It follows that
ED; < D/(n—1). Thus the expected number N; of candidate lines that survive the test at
step ¢ is at most D/(n — i), or since N;_1 > c¢n,

n*/? N1 >

+ -+ n

EN, < ¢,E [ N*/3
= <’_1(n—2')1/3 n—1

where ¢4 = (14 1/¢1)?/3. Since f(z) = 22/3 is a concave function, E[N-/] < (EN;_;)?/3
and by induction,

) 4/3 1+(2/3)i~!
ENiSC4<03 n(/)(n—i)1/3+ n—1 +n>

Since n —1i > n/2,

)i—l

EN; < ¢4 (62/321/3n1+(2/3)i + 23T 4 n)
< 04(63/321/3 + 3)n1+(2/3)i
which is at most ¢3n!t®/3)" for ¢5 > max{/27/2,16¢3}. O

The expected running time 7'(n) of the algorithm is then bounded as follows

n/2
T(n) < co Z csn' T3 logn + O(n?logn)
i=0
We claim that
(3) T(n) € O(n*logn)

To see that (3) holds, note that for > 8, /2 > x?/3. Thus

n/2 n/2

Zn@/?’)i <A4n + Z 27'n < 6n
i=0 =0

which suffices to prove the claim, and the theorem. O
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