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Abstract. We introduce the notion of column planarity of a subset R
of the vertices of a graph G. Informally, we say that R is column planar
in G if we can assign x-coordinates to the vertices in R such that any
assignment of y-coordinates to them produces a partial embedding that
can be completed to a plane straight-line drawing of G. Column planarity
is both a relaxation and a strengthening of unlabeled level planarity. We
prove near tight bounds for column planar subsets of trees: any tree on
n vertices contains a column planar set of size at least 14n/17 and for
any ε > 0 and any sufficiently large n, there exists an n-vertex tree in
which every column planar subset has size at most (5/6 + ε)n.
We also consider a relaxation of simultaneous geometric embedding (SGE),
which we call partial SGE (PSGE). A PSGE of two graphs G1 and G2 al-
lows some of their vertices to map to two different points in the plane. We
show how to use column planar subsets to construct k-PSGEs in which
k vertices are still mapped to the same point. In particular, we show
that any two trees on n vertices admit an 11n/17-PSGE, two outerpaths
admit an n/4-PSGE, and an outerpath and a tree admit a 11n/34-PSGE.

1 Introduction

A graph G = (V,E) on n vertices is unlabeled level planar (ULP) if for all
injections γ : V → R, there exists an injection ρ : V → R, so that embed-
ding each v ∈ V at (ρ(v), γ(v)) results in a plane straight-line embedding of
G. Estrella-Balderrama, Fowler and Kobourov [9] originally introduced ULP
graphs and characterized ULP trees in terms of forbidden subgraphs. Fowler
and Kobourov [11] extended this characterization to general ULP graphs. ULP
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Fig. 1. (a) A graph G = (V,E) with R = {a, d, e, f} which is ρ-column planar for
ρ = {d 7→ 1, a 7→ 2, e 7→ 3, f 7→ 4}. (b-c) Two assignments of y-coordinates to the
vertices R and corresponding plane straight-line completions of G.

graphs are exactly the graphs that admit a simultaneous geometric embedding
with a monotone path: this was the original motivation for studying them.

In this paper we introduce the notion of column planarity of a subset R of
the vertices V of a graph G = (V,E). Informally, we say that R is column planar
in G if we can assign x-coordinates to the vertices in R such that any assignment
of y-coordinates to them produces a partial embedding that can be completed to
a plane straight-line drawing of G. Column planarity is both a relaxation and a
strengthening of unlabeled level planarity. It is a relaxation since it applies only
to a subset R of the vertices and a strengthening since the requirements on R
are more strict than in the case of unlabeled level planarity.

More formally, for R ⊆ V , we say that R is column planar in G = (V,E)
if there exists an injection ρ : R → R such that for all ρ-compatible injections
γ : R → R, there exists a plane straight-line embedding of G where each v ∈ R
is embedded at (ρ(v), γ(v)). Injection γ is ρ-compatible if the combination of ρ
and γ does not embed three vertices on a line. Clearly, if R is column planar in
G then any subset of R is also column planar in G. We say that R is ρ-column
planar when we need to emphasize the injection ρ (see Fig. 1 for an example).
If R = V is column planar in G then G is ULP since column planarity implies
the existence of one assignment of x-coordinates to vertices that will produce a
planar embedding for all assignments of y-coordinates, while to be a ULP graph
the x-coordinate assignment may depend on the y-coordinate assignment. In
this sense, column planarity of V is strictly more restrictive than unlabeled level
planarity of G.

As mentioned above, the study of ULP was originally motivated by simulta-
neous geometric embedding, a concept introduced by Brass et al. [4]. Formally,
given two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of n vertices,
they defined a simultaneous geometric embedding (SGE) of G1 and G2 as an
injection ϕ : V → R2 such that the straight-line drawings of G1 and G2 induced
by ϕ are both plane. With slight abuse of notation, we refer to these drawings as
ϕ(G1) and ϕ(G2). Fig. 2c depicts an SGE of the graphs in Fig. 2a and Fig. 2b.
SGE has been studied in several subsequent papers. Bläsius et al. [2] give an
excellent survey of the area with a comprehensive list of results. On the positive
side, Brass et al. [4] prove that two paths, cycles or caterpillars always admit
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Fig. 2. (a-b) Two graphs on the same vertex set. (c) An SGE of these graphs. (d) A
3-PSGE of these graphs.

an SGE. Cabello et al. [5] prove that a matching and a tree or outerpath (a
type of outerplanar graph) always admit an SGE. On the negative side, Brass
et al. [4] prove that three paths sometimes do not admit an SGE. Erten and
Kobourov [8] prove that a planar graph and a path may not admit an SGE.
Frati, Kaufmann and Kobourov [12] strengthen this result to the case where
the planar graph and the path do not share any edges. Geyer, Kaufmann and
Kobourov [13] describe two trees that do not admit an SGE. Angelini et al. [1]
close a long-standing open question by describing a tree and a path that admit
no SGE. Finally, Estrella-Balderrama et al. [10] show that the decision problem
for SGE is NP-hard.

In light of the restrictiveness of simultaneous geometric embedding, several
other variations on the abstract problem have been studied. Cappos et al. [6] con-
sider a version of SGE where edges are embedded as circular arcs or with bends.
Di Giacomo et al. [7] consider matched drawings: a version of SGE where the
location of a vertex in the drawing of G1 need only have the same y-coordinate
as its location in the drawing of G2.

In this paper we consider a variant on SGE which we call partial simultaneous
geometric embedding (PSGE). We do not require every vertex to map to a single
point in the plane. Instead, some vertices can have a “split personality” and map
to two different locations, one associated with G1 and one associated with G2.
Specifically, given two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of
n vertices, a k-partial simultaneous geometric embedding (k-PSGE) of G1 and
G2 is a pair of injections ϕ1 : V → R2 and ϕ2 : V → R2 such that (i) the
straight-line drawings ϕ1(G1) and ϕ2(G2) are both plane; (ii) if ϕ1(v1) = ϕ2(v2)
then v1 = v2 and; (iii) ϕ1(v) = ϕ2(v) for at least k vertices v ∈ V . An n-PSGE
is simply an SGE. Fig. 2d depicts a 3-PSGE of the graphs in Fig. 2a and Fig. 2b.

PSGE is related to the notion of planar untangling : Given a straight-line
drawing of a planar graph, change the embedding of as few vertices as possible
in order to obtain a plane drawing. Goaoc et al. [14] describe an improvement of
a result by Bose et al. [3] to show that 4

√
(n+ 1)/2 vertices can always be kept

in their original positions. Since we can simply take any plane embedding of G1,
use the same embedding for G2 and then untangle G2, it immediately follows
that every two planar graphs on n vertices admit a 4

√
(n+ 1)/2-PSGE.

Results and Organization. In Section 2, we study column planarity for subsets
of trees. We prove that every tree on n vertices contains a column planar subset
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of size 14n/17 and we show that there exist trees where every column planar
subset has size at most 5n/6. In Section 3, we establish the relation between
column planarity and PSGE. We show that every two trees admit an 11n/17-
PSGE, that every tree and ULP graph admit a 14n/17-PSGE, that every two
outerpaths admit an n/4-PSGE, and that every outerpath and a tree admit an
11n/34-PSGE.

2 Column planar sets in trees

In this section, we show how to find large column planar sets in trees. Let p(v)
be the parent of vertex v in a rooted tree T , and let r(T ) be the root of T . Given
a subset R of the vertices of T , let CR(v) be the non-leaf children of v in R
and let C+

R (v) be those vertices in CR(v) with at least one child in R. We first
prove that subsets of T satisfying certain conditions are always column planar
and next that every tree contains a large such subset.

Lemma 1. For a rooted tree T , R is column planar in T if for all v ∈ R, either
(1) p(v) ∈ R, the number of non-leaf children of v in R is at most two, and at
most one of these children has a child in R (i.e. CR(v) ≤ 2 and C+

R (v) ≤ 1); or
(2) p(v) 6∈ R, the number of non-leaf children of v in R is at most four, and at
most two of these children have a child in R (i.e. CR(v) ≤ 4 and C+

R (v) ≤ 2).

Proof. We will embed T recursively. The x-coordinates of V will be fixed in
such a way that any assignment γ : R → R of y-coordinates to R can be
accommodated by embedding the vertices of V \ R with y-coordinates much
larger than max γ or much smaller than min γ. Thus, the edges between V \ R
andR are embedded as near-vertical line segments. In the figures that accompany
this proof, such edges will be drawn as curves.

For a subtree T ′ of T , let p(T ′) be the parent of r(T ′). If r(T ′) is the root
of T then p(T ′), though it does not exist, is viewed as not in R. Our embed-
ding will have the following properties for each subtree T ′: (i) if r(T ′) 6∈ R or
{r(T ′), p(T ′)} ⊆ R, then r(T ′) has either the smallest or largest x-coordinate
among all vertices in T ′; (ii) if r(T ′) 6∈ R, then r(T ′) has either the smallest
or largest y-coordinate among all vertices in T ′; and (iii) no almost-vertical ray
from r(T ′) intersects any edge from T ′.

Let T be the rooted tree we want to embed. Let r = r(T ). If r ∈ R, then
recursively generate embeddings of all non-leaf children of r. Scale each such
embedding horizontally to width 1. Suppose first that p(T ) ∈ R. See Fig. 3a.

Embed r at x = 1 and its ` leaf children at x = 2, . . . , ` + 1. (Their y-
coordinates are determined by γ.) Suppose CR(v) ⊆ {r1, s1} and C+

R (v) ⊆ {r1}.
Embed r1 and its subtree recursively and scale its x-coordinates to lie in [`+3, `+
4]. By (i), and possibly after mirroring the embedding of the subtree rooted at
r1 horizontally, the edge {r, r1} does not cross edges in the subtree rooted at r1.

Embed s1 at x = ` + 2. Let T1, . . . , Tk be the child subtrees of s1. Embed
Ti recursively and scale its x-coordinates to lie in [` + 3 + 2i, ` + 4 + 2i] for all
1 ≤ i ≤ k. Vertex s1 will be above {r, r1} for some γ and below {r, r1} for other
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Fig. 3. Embedding a tree with a column planar set. The column planar vertices are
black .

γ. If it is above, let r(T1), . . . , r(Tk) have progressively larger y-coordinates (by
scaling up and mirroring vertically if necessary). If it is below, let them have
progressively smaller y-coordinates. Then none of the edges {s1, r(Ti)} cross
{r, r1} and the edge {s1, r(Ti)} does not cross any edges in Ti by (i) and (ii).

Recursively, embed the remaining child subtrees T ′1, . . . , T
′
t (none of whose

roots are in R) with x-coordinates in [` + 3 + 2k + 2i, ` + 4 + 2k + 2i] for all
1 ≤ i ≤ t such that r(T ′1), . . . , r(T ′t ) have progressively larger y-coordinates. The
edge {r, r(T ′i )} does not cross any edges in T ′i by (ii). In the completed drawing,
note that r has the lowest x-coordinate, and thus (i) is satisfied. Properties (ii)
and (iii) are trivially satisfied.

Suppose that p(T ) 6∈ R. Proceed first as in the previous case. Suppose
CR(v) ⊆ {r1, r2, s1, s2} and C+

R (v) ⊆ {r1, r2}. Mirror the recursive embedding
of the subtree rooted at r2 horizontally and scale it to have x-coordinates in
[−3,−2]. Embed the subtree rooted at s1 as in the previous case. For s2, pro-
ceed similarly but embed s2 and its subtree to the left of r. See Fig. 3b. Properties
(i)-(iii) are trivially satisfied.

Finally, suppose that r = r(T ) 6∈ R. Embed its child subtrees T1, . . . , Tt to
have x-coordinates in [2i, 2i+ 1] for all 1 ≤ i ≤ t, starting with the ones rooted
at a vertex in R. Embed r sufficiently high on the line x = 1. For subtrees Ti
with r(Ti) ∈ R, note that the edge {r, r(Ti)} does not cross any edges of Ti due
to (iii). For the other ones, {r, r(Ti)} does not cross edges of Ti due to (i) and
(ii). See Fig. 3c. Properties (i-iii) are satisfied. ut

It remains to show that every tree contains a subset that satisfies the conditions
imposed by Lemma 1. We show that every tree on n vertices contains such a
subset of size at least 14n/17 and that there are trees with no column planar
subset of size larger than 5n/6. Note that 14/17 ≈ 5/6 − 0.01, and thus our
results are almost tight.
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Lemma 2. Let T be a tree on n vertices rooted at any vertex r(T ). Let ci be the

number of vertices with exactly i children. Then c0 = (n+ 1 +
∑n−1

i=1 (i− 2)ci)/2.

Proof. The number of edges in T is n−1 and also equals the degree sum divided
by two. Thus,

∑n−1
i=0 ci(i + 1) = 2(n − 1) + 1 = 2n − 1. Since

∑n−1
i=0 ci = n,∑n−1

i=0 ci(i− 2) + 3n = 2n− 1, and −2c0 = −n− 1−∑n−1
i=1 ci(i− 2). The lemma

follows. ut

Theorem 1. A tree T on n vertices contains a column planar set of size at least
14n/17.

Proof. Root T at an arbitrary non-leaf vertex r(T ). Orient every edge towards
the root and topologically sort T to obtain an order v1, . . . , vn. We will greedily
add vertices to R in this order. More precisely, let R0 = ∅ and let Ri := Ri−1 ∪
{vi} if Ri−1 ∪ {vi} satisfies Lemma 1 and let Ri := Ri−1 otherwise. Let R = Rn

be our final subset of T .
We say that a vertex is marked if it is in R. Consider a vertex v = vi 6∈ R.

The reason that v is not in R is that Ri−1 ∪ {v} does not satisfy the condition
in Lemma 1 for v or a child u of v (or both). More precisely, v is contained in
exactly one of the following sets:

Xa = {v ∈ T \R : |C+
R (v)| > 2}

Xb = {v ∈ T \R \Xa : |CR(v)| > 4}
Xc = {v ∈ T \R \Xa \Xb : |C+

R (u)| > 1}
Xd = {v ∈ T \R \Xa \Xb \Xc : |CR(u)| > 2}.

We associate with each such v a witness tree W (v) as follows (see Fig. 4). If
v ∈ Xa, then let W (v) be v, three vertices of C+

R (v) and a marked child of each
of them (which must exist by definition of C+

R (v)). If v ∈ Xb, then let W (v) be
v and five marked children of v. If v ∈ Xc, then let W (v) be v, u, two vertices of
C+

R (u) and a marked child of each of them. If v ∈ Xd, let W (v) be v, u and three
marked children of u. Note that W (v) and W (v′) are disjoint for v, v′ ∈ T \ R
with v 6= v′. We have

|Xa|+ |Xb|+ |Xc|+ |Xd|+ |R| = n. (1)

vv

u

v

u

v

v ∈ Xa v ∈ Xb v ∈ Xc v ∈ Xd

Fig. 4. The witness tree W (v) when v is in Xa, Xb, Xc or Xd. The marked vertices
are black. Dotted line segments indicate that a vertex has at least one child.
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Let Lt and It be the set of marked vertices of
⋃

v∈Xt
W (v) that are leaves and

internal vertices in T , respectively, for t = a, b, c, d. We have

|Ia|+ |La| = 6|Xa| |La| ≤ 3|Xa| (2)

|Ib|+ |Lb| = 5|Xb| |Lb| = 0 (3)

|Ic|+ |Lc| = 5|Xc| |Lc| ≤ 2|Xc| (4)

|Id|+ |Ld| = 4|Xd| |Ld| = 0 (5)

Since R always contains all leaves of T , we have

|R| ≥ c0 + |Ia|+ |Ib|+ |Ic|+ |Id|, (6)

where ci is the number of vertices with exactly i children in T . Note that W (v)
contains a vertex with at least three children if v ∈ Xa ∪ Xb ∪ Xd. Hence, by
Lemma 2,

c0 >
n− c1 +

∑n−1
i=3 ci

2
≥ n− c1 + |Xa|+ |Xb|+ |Xd|

2
. (7)

In addition, we have
c0 ≥ |La|+ |Lb|+ |Lc|+ |Ld|. (8)

Before we bound |R|, consider the set S formed by all leaves and all vertices with
one child. Then S is column planar by Lemma 1 and |S| = c0 + c1. Whenever
the greedily chosen R has size less than c0 + c1, we choose R = S instead. Thus,
we may assume

|R| ≥ c0 + c1. (9)

Equations (7) and (9) yield

|R| > n− c0 + |Xa|+ |Xb|+ |Xd|; (10)

equations (2) and (8) yield

c0 ≥ 6|Xa| − |Ia|+ |Lc|; (11)

and equations (3), (4), (5), and (6) yield

|R| ≥ c0 + 5|Xb|+ 5|Xc|+ 4|Xd| − |Lc|+ |Ia|. (12)

To eliminate c0, we combine equation (10) with two times (11) and three times (12)
to obtain 4|R| > n + 13|Xa| + 16|Xb| + 15|Xc| + 13|Xd| − |Lc| + |Ia|. With
equation (4), this gives 4|R| > n + 13|Xa| + 16|Xb| + 13|Xc| + 13|Xd| + |Ia| ≥
n + 13(|Xa| + |Xb| + |Xc| + |Xd|). Together with equation (1), this yields the
desired bound of |R| > 14n/17. ut

The greedy algorithm achieves exactly this amount on the tree depicted in Fig. 5.
Note that also |S| = c0 + c1 = 14n/17 in this tree. In general, Theorem 1 is close
to best possible:
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· · ·

Fig. 5. A tree for which |R| = |S| = 14n/17. The set R is colored black.

Theorem 2. For any ε > 0 and any n > 2/ε + 5, there exists a tree T with n
vertices in which every column planar subset in T has at most (5/6+ε)n vertices.

Proof. Let p = bn/6c. Let T be p copies, T1, T2, . . . , Tp, of the tree shown in
Fig. 6a in which the root of Ti+1 is made a child of the rightmost leaf of Ti, for
i = 1, . . . , p− 1. Suppose there is a column planar set R of marked vertices in T
with |R|/n > 5/6 + ε. Then in some sequence of at most k = d1/(3ε)e subtrees
Ti, Ti+1, . . . , Tj there must be at least two trees with 6 marked vertices and the
other trees with 5 marked vertices. If not, since each subtree has 6 vertices, the
average fraction of marked vertices per tree is less than 5k+2

6k < 5/6 + ε.
Let Ti, Ti+1, . . . , Tj be such a sequence. By possibly deleting a prefix of the

sequence, we can assume that Ti has 6 marked vertices. Let ` > i be the smallest
index such that the root of T` is marked. Since Ti, Ti+1, . . . , Tj contains at least
two trees with 6 marked vertices, T` exists. Let H be the subtree induced by the
root of T` and the vertices in Ti ∪Ti+1 ∪ · · · ∪T`−1. By definition, the unmarked
vertices in H are exactly the roots of the subtrees Ti+1, Ti+2, . . . , T`−1. We claim
that the marked vertices are not column planar in H.

To simplify notation, let H1, H2, . . . ,Hq−1 be the sequence of subtrees in H
and let rq be the (marked) root of T`. Label the vertices of Hi as in Fig. 6a
subscripted by i. See Fig. 6b. Let R′ be the marked vertices in H and suppose
R′ is ρ-column planar in H. For an edge {a, b} in H with a, b ∈ R′, let ρ(a, b) =
[ρ(a), ρ(b)] be the x-interval of edge {a, b}. For two edges {a, b} and {c, d} in H
where a, b, c, and d are distinct vertices in R′, ρ(a, b)∩ρ(c, d) = ∅: otherwise, by
choosing γ appropriately we can cause the edges to intersect within their shared
x-interval. This implies, for example, that the x-interval spanned by marked
vertices in one subtree does not intersect that of a different subtree.

r

s

t

u

v

w

(a) (b)

H1 H2 Hq−1

· · ·

r1 r2 rq−1 rq

s1

t1

u1

v1

w1

Fig. 6. (a) The tree Ti and (b) H used in the proof of Theorem 2.
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r2
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t3

u3

v3
w3

r4

u4

v4

s4

t4w4

r5

Fig. 7. An example of how γ is chosen in the proof of Theorem 2 where q = 5. Note
that forcing r5 (bottom left) below the x-axis causes the edge {w4, r5} to intersect
another edge.

For H1, since ρ(s1, t1) ∩ ρ(u1, v1) = ∅ and ρ(t1, u1) ∩ ρ(r1, s1) = ∅, ρ(t1) is
between ρ(r1, s1) and ρ(u1, v1) (meaning either ρ(r1, s1) < ρ(t1) < ρ(u1, v1) or
ρ(u1, v1) < ρ(t1) < ρ(r1, s1), where A < B if for all a ∈ A and b ∈ B, a < b).
By similar reasoning, ρ(w1) is between ρ(t1) and ρ(u1, v1) or between ρ(t1) and
ρ(r1, s1). Let us assume, by renaming vertices if necessary, that ρ(w1) is between
ρ(t1) and ρ(u1, v1). See Fig. 7.

The basic idea is to choose γ so that vertices in R are close to the x-axis
(with γ(ui) < γ(si) < 0 = γ(wi) < γ(ti) < γ(vi) for all i except when mentioned
otherwise) and so that unmarked vertices are forced to be above the x-axis.
We set γ(u1) to be negative and γ(v1) to be positive (so w1 lies in the triangle
t1u1v1). This, together with the fact that r2 is connected to s2, forces the edge
from w1 to r2 to be upward and thus r2 to be above the x-axis.

Consider the order of ρ(s2), ρ(t2) and ρ(u2, v2). If ρ(s2) is between ρ(t2) and
ρ(u2, v2), then setting γ so that the path t2, u2, v2 is above s2 (γ(t2) < γ(v2) <
0 < γ(s2) < γ(u2)) causes the path to intersect {r2, s2}. Note that ρ(u2, v2)
cannot be between ρ(t2) and ρ(s2) since ρ(u2, v2) ∩ ρ(s2, t2) = ∅. Hence, ρ(t2)
is between ρ(s2) and ρ(u2, v2). Now let us consider the possible positions of
ρ(w2). If ρ(s2) is between ρ(w2) and ρ(t2), then setting γ so that the path
u2, t2, w2 is above s2 (γ(w2) < γ(u2) < 0 < γ(s2) < γ(t2)) causes the path to
intersect {r2, s2}. Note that ρ(u2, v2) cannot be between ρ(w2) and ρ(t2) since
ρ(u2, v2) ∩ ρ(t2, w2) = ∅. Hence, ρ(w2) is between ρ(s2) and ρ(t2) or between
ρ(t2) and ρ(u2, v2). In the first case, we set γ(s2) < 0 = γ(w2) < γ(t2) so the
edge from w2 to r3 is forced upward to avoid intersecting path r2, s2, t2. In the
second case, we set γ so that the path t2, u2, v2 is below w2 (γ(u2) < 0 = γ(w2) <
γ(t2) < γ(v2)) and the edge from w2 to r3 is forced upward. By repeating this
argument, we force all the unmarked vertices as well as rq to be above the x-axis.
Since rq is marked, we derive a contradiction by setting γ(rq) < 0. ut

3 Partial simultaneous geometric embedding

The relation between column planarity and PSGE is expressed by the following
theorem, which relates the size of column planar sets to PSGE.
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Fig. 8. (a) Graph G1 with R1 = {a, d, e, f} and ρ1 = {d 7→ 1, a 7→ 2, e 7→ 3, f 7→ 4}.
(b) Graph G2 with R2 = {a, b, f} and ρ2 = {a 7→ 1, b 7→ 2, f 7→ 3}. (c) A 2-PSGE of
G1 and G2 where vertex set R = R1 ∩R2 = {a, f} is shared.

Theorem 3. Consider planar graphs G1 = (V,E1) and G2 = (V,E2) on n
vertices. If R1 is column planar in G1, R2 is column planar in G2 and |R1| +
|R2| > n, then G1 and G2 admit a (|R1|+ |R2| − n)-PSGE.

Proof. Fig. 8 illustrates the construction. The set R = R1 ∩R2 has size at least
|R1|+ |R2| − n > 0 and is column planar in both G1 and G2. More specifically,
there exist injections ρ1 : R → R and ρ2 : R → R such that R is ρ1-column
planar in G1 and ρ2-column planar in G2. By exchanging the roles of the x-
and y-coordinates in the definition of column planar in G2, we see that for all
injections γ : R → R, there exists a plane straight-line embedding of G2 that
embeds each v ∈ R at (γ(v), ρ2(v)). In particular, we may choose γ = ρ1. ut

Two trees. Combining Theorem 3 and Theorem 1 immediately yields the fol-
lowing lower bound on the size of a PSGE of two trees.

Corollary 1. Every two trees on a set of n vertices admit an 11n/17-PSGE.

There are two trees T1 and T2 on 226 vertices that do not admit an SGE [13].
Thus, an upper bound on the size of the common set in a PSGE of T1 and T2
is 225. Root T1 arbitrarily and let T k

1 be the result of taking k copies of T1 and
connecting their roots with a path. Define T k

2 similarly. Then an upper bound on
the size of the common set in a PSGE of T k

1 and T k
2 is 225k. It follows that there

exist two trees on a set of n vertices that admit no k-PSGE for k > 225n/226.

Tree and ULP graph. If one of the two graphs in our PSGE is ULP, then the
size of the common set depends only on how large a column planar set we can
find in the other graph:

Lemma 3. Consider a planar graph G1 = (V,E1) and a ULP graph G2 =
(V,E2) on n vertices. If R is column planar in G1, then G1 and G2 admit a
|R|-PSGE.

Proof. By exchanging the roles of x- and y-coordinates in the definition of col-
umn planar, we see that for all injections γ : R → R, there exists a plane
straight-line embedding of G1 with v ∈ R at (γ(v), ρ(v)). Since G2 is a ULP
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graph, for all injections y : V → R, there exists an injection x : V → R such that
placing v ∈ V at (x(v), y(v)) results in a straight-line embedding of G2. Thus,
placing the vertices v ∈ R at (x(v), ρ(v)) permits both a straight-line embedding
of G1 and G2. ut

Combining this with Theorem 1 yields

Corollary 2. A tree and a ULP graph admit a 14n/17-PSGE.

Two outerpaths & outerpath and tree. An outerplanar graph is a planar
graph that admits an embedding (called the outerplane embedding) that places
all its vertices on the unbounded face. An outerpath is an outerplanar graph
whose weak dual (the graph obtained from the dual graph by deleting the ver-
tex corresponding to the unbounded face) is a path. A maximal outerpath has
exactly two vertices of degree two: these vertices are on the faces that corre-
spond to the terminal vertices of the dual path. Consider a maximal outerpath
G = (V,E). The outer cycle of G is the Hamiltonian cycle of G that bounds the
unbounded face in the outerplane embedding of G. Denote by C(G) the vertices
of degree two in G. Deleting C(G) from G partitions the outer cycle of G into
two connected components whose vertices we refer to as A(G) and B(G). Note
that A(G) ∪B(G) ∪ C(G) = V . It is easy to see that:

Lemma 4. Given a maximal outerpath G = (V,E), the subsets A(G) ∪ C(G)
and B(G) ∪ C(G) are column planar.

Unlike in the tree setting, Theorem 3 does not immediately give a lower bound
on the size of a PSGE of two outerpaths, since we might have |A(G)| = |B(G)| =
n/2− 1. Fortunately, this is easily resolved:

Theorem 4. Every two outerpaths on a set of n vertices admit an n/4-PSGE.

Proof. Consider outerpaths G1 = (V,E1) and G2 = (V,E2). Without loss of
generality, G1 and G2 are maximal. Let X+

i := X(Gi) ∪ C(Gi) for X = A,B
and i = 1, 2. Then by Theorem 3 and Lemma 4, G1 and G2 admit a max{|A+

1 ∩
A+

2 |, |A+
1 ∩ B+

2 |, |B+
1 ∩ A+

2 |, |B+
1 ∩ B+

2 |}-PSGE. Since the union of these four
sets is again V , the maximum of their cardinalities must be at least n/4, which
concludes the proof. ut

Note that max{|A(G)∪C(G)|, |B(G)∪C(G)|} ≥ n/2 + 1. Hence, by Theorem 3
and Theorem 1 we get

Corollary 3. An outerpath and a tree on n vertices admit a 11n/34-PSGE.

4 Discussion and Open Problems

Our results leave several directions for future research. The tree drawings pro-
duced by Theorem 1 may have exponential area. It would be interesting to see
whether polynomial area is sufficient. Further research could be directed towards
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closing the gap between the lower and upper bound on the size of column planar
sets for trees and on developing bounds for such sets in general planar graphs.
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