

Bytecode Compression via
Profiled Grammar Rewriting

William S. Evans
Computer Science Dept.

University of British Columbia
Vancouver, BC V6T 1Z4
will@cs.ubc.ca

Christopher W. Fraser
Microsoft Research
One Microsoft Way

Redmond, WA 98052
cwfraser@microsoft.com

ABSTRACT
This paper describes the design and implementation of a method
for producing compact, bytecoded instruction sets and interpreters
for them. It accepts a grammar for programs written using a
simple bytecoded stack-based instruction set, as well as a training
set of sample programs. The system transforms the grammar,
creating an expanded grammar that represents the same language
as the original grammar, but permits a shorter derivation of the
sample programs and others like them. A program’s derivation
under the expanded grammar forms the compressed bytecode
representation of the program. The interpreter for this bytecode is
automatically generated from the original bytecode interpreter and
the expanded grammar. Programs expressed using compressed
bytecode can be substantially smaller than their original bytecode
representation and even their machine code representation. For
example, compression cuts the bytecode for lcc from 199KB to
58KB but increases the size of the interpreter by just over 11KB.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Processors—optimization,
run-time environments.

General Terms
Algorithms, Performance, Design, Economics, Experimentation,
Languages, Theory.

Keywords
Program compression, bytecode interpretation, variable-to-fixed
length codes, context-free grammars.

1. INTRODUCTION
Code compression can pay dividends in a variety of scenarios,
saving network transmission time, disk space, or memory at run-
time. In general, programs can be stored at a variety of points in a
memory hierarchy:
1. Instruction cache (possibly more than one level)

2. Main memory
3. Local disk
4. Installation media and remote disks, perhaps accessed via a

fast LAN or even analog modems.
Code compression can save space within a level, transmission
time between levels, or both. It is obviously in common use at
levels 3 and 4, but there exist applications at levels 2 [6, 27] and
even at level 1 [1, 20].
Each scenario has somewhat different requirements. At slow
levels, the cost of reading the program is high enough to mask
significant decompression costs. Faster levels typically require
faster decompression or, in the limit, a compressed form that can
be interpreted directly, without the time or memory costs of a
separate decompression step. Though recently there has been an
increase in research on program compression e.g. [1, 3, 7, 8, 11,
13, 14, 16, 17, 20, 21, 22, 24, 27], very little of it has focused on
methods, sometimes called code compaction methods, that avoid
any decompression before execution. These methods produce
representations that can be directly executed [7, 8] or interpreted
[11, 16, 17, 21, 24] and, as a result, are more limited than
schemes that have the flexibility to decompress before execution.
Certain embedded systems supply one of the clearest examples of
the need for zero-overhead decompression. These systems
typically store much of their code in ROM. Competition drives
manufacturers to add features, some of which track events so
infrequent (e.g. cellular telephone key presses) as to render moot
the traditional objections to direct interpretation of bytecode,
whereas saving ROM or packing more features into a fixed-size
ROM can give a competitive advantage. Moreover, it may be
unwise or impossible to decompress the ROM temporarily to
RAM, because on such systems RAM can be scarce,
decompression costs power, and the processor can access ROM
faster to boot. Direct interpretation of bytecode may not suit all
commercially important scenarios, but it clearly suits this one.

2. OVERVIEW
Our system constructs a compressor that compresses a program’s
bytecode representation, and an interpreter that reads and executes
the compressed bytecode. To construct the compressor, the system
accepts two inputs:
1. An initial grammar for a simple bytecoded stack-based

instruction set.
2. A training set of sample bytecoded programs. This corpus is

assumed to represent statistically the populations of the
programs to be coded in the new bytecode.

The compressor construction works as follows: A parser accepts
the initial grammar and a training set of sample programs, and
produces a forest of parse trees. Frequent rule pairs are identified
and new rules are added to the original grammar to decrease the
overall size of the forest (i.e. the length of the derivation specified
by the forest). The result of this training phase is an ambiguous
expanded grammar. The compressed bytecode for a program is a
specification of a shortest derivation under the expanded
grammar. The key to compression is creating an expanded
grammar that permits concise derivations.
To construct the interpreter, the system also accepts two inputs:
1. The expanded grammar produced in the training phase.
2. An interpreter for the original bytecode.
The interpreter generator combines the expanded grammar and an
interpreter for the original bytecode to form an interpreter for the
compressed bytecode. Each instruction of the new interpreter
implements an entire rule in the expanded grammar. Thus the new
interpreter can read and execute the compressed bytecode, which
is a program’s derivation under the expanded grammar.
Figure 1 illustrates the operation of the system at a high level. The
figure is divided horizontally to emphasize the training and
compression phases of the system.

3. THE INITIAL BYTECODE
Our system starts with a bytecode that is a simple postfix
encoding of lcc trees [15]. Most operators consist of an un-typed
or generic base (such as ADD) followed by a one-character type
suffix (I for integer, F for float, etc), which indicates the type of
value produced. Appendix 1 lists all of the operators that appear
in the bytecode.
All operators that produce values push these values onto a global
stack. Most operators that require operands (such as ADD) obtain
them from the stack. The exceptions are LIT[1234],
ADDR[FGL], LocalCALL, JUMP, and BrTrue. These
operators follow a prefix rather than postfix format and take the
bytes that follow the operator in the bytecode as their operands.
LIT, for example, simply pushes the specified number of bytes
that follow it onto the stack.
The bytecode is organized into procedures. A descriptor records
three elements for each procedure:

• The bytecode for the procedure.

• A table of branch and jump offsets.

• The size of the procedure’s frame.
Branch offsets could be placed in the bytecode, but doing so
would require that the compressor change the offsets as it changes
the instruction set, which would be unwieldy. For simplicity, we
place label table indices rather than offsets in the bytecode. The
specified label table entry holds the offset into the current
procedure’s bytecode of the branch target needed when the
corresponding branch is taken. When the compressor rewrites the
original bytecode, it also rewrites the label table to reflect the new
position of each label, but the label table indices in the bytecode
do not change.
Global addresses are handled similarly. Global addresses are not,
in general, known until after final linking or loading, so they
aren’t available to the compressor. The bytecode thus contains
instead an index into a single, global table of global addresses,
and it relies on the linker to fill in the table entry with the
appropriate address.
For inter-operation with existing libraries, lcc creates for some
bytecoded procedures a “trampoline”, which is a C-callable
interface that simply passes to the interpreter the procedure’s
descriptor number and incoming arguments. Appendix 3
illustrates this packaging.
Trampolines take space, so they are created only for procedures
that must have them. If a procedure’s address is taken and not
consumed immediately by a call operator, we conservatively
assume that it could be the target of an indirect call and thus needs
a trampoline. The target of an indirect call requires a trampoline
because the indirect call may call conventional code (a library
routine) or bytecode and uses the same calling mechanism for
both. The trampoline is omitted if a call operator always
immediately consumes the procedure’s address. Calls to these
procedures use a specialized call operator (“LocalCALL”) that
recursively calls the interpreter without going through a
trampoline. These rules assume, of course, that the bytecode
represents an executable with a single entry point (namely the
routine main, which needs a trampoline) and not, for example, a
dynamically linked library, for which it could be difficult or
impossible to omit any trampolines.

Figure 1. High-level structure of the bytecode compression system.

Training

Compression

sample
program

parse trees
expanded
grammar

parser expander
interpreter
generator

compressed
bytecode

interpreter

program parser

original interpreter

(derivation)

original grammar

4. DERIVING A BETTER BYTECODE
Our goal is to produce a program representation that is small and
can be interpreted quickly. We cannot afford the space to
decompress a representation before executing it. Instead, we
should be able to read part of the representation and immediately
execute a sequence of machine instructions. In addition, if we
encounter a control transfer instruction, we should be able to jump
to the corresponding part of the compressed representation and
continue interpretation.

One possible approach is to encode the original instructions using
a fixed-to-variable length code. Each original instruction is
assigned a codeword whose length varies according to the
instruction's frequency: low frequency instructions receive long
codewords; high frequency ones receive shorter codewords.
Huffman's algorithm provides a method to construct such a code
given instruction frequencies [18]. Though optimal for the given
frequencies, since the codewords vary in length, we may be forced
to examine the program representation one bit at a time to extract
a single instruction. We cannot afford the time to extract and
decode each instruction in this manner. Huffman codes can be
decoded in larger increments than bits (e.g. a byte at a time) but
this uses a significant amount of space for look-up tables [5].

Rather than encode single instructions using a variable number of
bits, we instead encode multiple instructions using a fixed number
of bits. In essence, we adopt a variable-to-fixed length coding
policy rather than producing a fixed-to-variable length code as
Huffman does.

4.1 Grammar Rewriting
Our scheme is based on a grammar that describes the set of legal
instruction sequences. The grammar provides a model or structure
that helps us obtain a concise representation for these sequences.
We represent a sequence by specifying its derivation with respect
to the grammar. Since we are only concerned with the
representation of legal sequences, we can ignore sequences that
do not have such a derivation.

We describe a sequence by its leftmost derivation with respect to
the grammar. The derivation is a list of the rules used to expand
the leftmost non-terminal in each sentential form of the derivation
where each rule is represented as an index: the ith rule for a non-
terminal represented as the index i. For example, the sequence

ADDRFP 0 0 INDIRU LIT1 0 NEU BrTrue 0 0 LIT1
0 ARGU ADDRGP 0 0 CALLU POPU LABELV RETV
which represents the C-code

void check(int flag) {
if (flag == 0)

exit(0);
}

could be encoded as

1 1 1 0 1 2 1 0 0 0 0 1 0 2 0 0 0 0 1 0 2 0
1 1 1 0 1 0 0 0 2 1 0 0
with respect to the following grammar:

0. <start> =
1. <start> = <start> <x>
0. <x> = RETV
1. <x> = <v> <x1>
0. <v> = <v0>
1. <v> = <v> <v1>
2. <v> = <v> <v> NEU
0. <v1> = CALLU
1. <v1> = INDIRU
0. <v0> = ADDRFP <byte> <byte>
1. <v0> = ADDRGP <byte> <byte>
2. <v0> = LIT1 <byte>
0. <x1> = BrTrue <byte> <byte>
1. <x1> = ARGU
2. <x1> = POPU
0. <byte> = 0

Notice that the sequence is actually parsed into two separate
derivations, one for the code prior to the LABELV and one for the
code after. The LABELV indicates a branch target; it is not an
operator itself. Keeping the derivations separate allows direct
interpretation of this representation. When the interpreter
encounters a control transfer, it knows that wherever it jumps to in
the derivation sequence, it can assume that this is the beginning of
a derivation of the start non-terminal of the grammar and that the
first rule it encounters applies to this start non-terminal.

Unless we encode each rule number as a byte, this is not, in
general, a very practical code for interpretation. The problem is
that the interpreter, as in the fixed-to-variable (Huffman) encoding
scenario, may be forced to examine the representation a single bit
at a time, which is too costly. However, using one byte per rule
number can be very wasteful, especially for non-terminals with
very few rules. In the sample grammar, we would use an entire
byte to represent, in the case of the non-terminal <v>, only three
possible values. This results in a not very concise encoding of the
program.

In order to create a practical and concise encoding of the program,
we modify the grammar so that each non-terminal has close to the
same number (256) of rules. The modification process takes two
rules, A → α B β and B → γ, and adds to the grammar a third rule,
A → α γ β, where A and B are non-terminals and α, β, and γ are
strings of terminals and non-terminals. We call this process
inlining a B rule into an A rule. Inlining doesn't change the
language accepted by the grammar. However, it shortens the
sequence of rules (the derivation) needed to express some strings,
and it increases the number of rules for some non-terminal.

The question is which rules should we inline. The goal of the
inlining is to produce a grammar that provides short derivations
for programs. Starting with a derivation of a program using the
original grammar, the best single inline that we could perform is
the most frequently occurring pair of rules; one used to expand a
non-terminal on the right-hand side of the other. If this pair were
used m times in the derivation, inlining would decrease the
derivation length by m rules.

We can view this process as operating on the forest of parse trees
obtained from parsing the program using the original grammar.
The parse produces a forest since we restart the parser from the
start non-terminal at every potential branch target (i.e. LABELV).
For our purposes, a parse tree is a rooted tree in which each
internal node is labeled with a rule and each leaf with a terminal

symbol. The root is labeled with a rule for the start non-terminal.
In general, an internal node that is labeled with a rule A → a1 a2 ...
ak (where ai is a terminal or non-terminal symbol) has k children.
If ai is a non-terminal then the ith child (from the left) is labeled
with a rule for non-terminal ai. If ai is a terminal then the ith child
is a leaf labeled with ai. The program appears as the sequence of
labels at the leaves of the parse trees in the forest, reading from
left to right. A leftmost derivation is simply the sequence of rules
encountered in a preorder traversal of each parse tree in the forest.

The inlining of one rule rB into another rule rA creates a new rule
r’A whose addition to the grammar permits a different (and
shorter) parse of the program. One such new parse can be
obtained by contracting every edge from a node labeled rA to a
node labeled rB in the original forest – meaning the children of rB
become the children of rA – and relabeling the node labeled rA
with the new rule r’A. See figure 2. If the number of edge
contractions is m, the resulting forest has m fewer internal nodes
and thus represents a derivation that is shorter by m steps.

To construct an expanded grammar, we parse a sample program
(or a set of sample programs) using the original grammar and
obtain a forest of parse trees. We then inline the pair of rules at
the endpoints of the most frequent edge in the forest, contract all
occurrences of this edge, add the new inlined rule to the grammar,
and repeat. We stop creating rules for a non-terminal once it has
256 rules.

Occasionally, a rule for a non-terminal may be subsumed by a
new rule. That is, after the addition of the new rule, the first rule is
no longer used in the derivation. If the unused rule is one that was
added via inlining, we are free to remove it from the grammar.
(We cannot, however, remove one of the original grammar rules
or we risk changing the grammar’s language.) In our current
implementation, we remove unused inlined rules in order to
decrease the size of the expanded grammar. This may cause some
non-terminals to have fewer than 256 rules.

This construction procedure is greedy; it always inlines the most
frequent pair of rules. This is a heuristic solution to the problem
of finding a set of rules to add to the grammar that permits the
shortest derivation of the sample program. We rely on this
heuristic since finding an exact solution is, unfortunately, NP-
hard.

The resulting expanded grammar is ambiguous, even if the
original grammar was not, since we leave the original rules in the
grammar. Given a program that we wish to compress, we are free
to choose any derivation under the expanded grammar to
represent the program’s original bytecode sequence. The size of
the representation is the number of rules in the derivation. Since
our goal is compression, we want a minimum length derivation.
We use Earley’s parsing algorithm [9], slightly modified, to
obtain a shortest derivation for a given sequence. The derivation
is then the compressed bytecode representation of the program
and is suitable for interpretation. Figure 1 shows the structure of
this system.

5. THE INTERPRETERS
This system has two interpreters. The initial interpreter accepts the
initial, uncompressed bytecode. The initial interpreter and the
expanded grammar form the raw material from which the system
builds the second interpreter, which accepts compressed bytecode.
At the core of the initial interpreter is a routine with a single
statement, namely a C switch:
void interpret1(

unsigned char op,
istate *istate

) {
switch (op) { … }

}
It accepts a single, uncompressed operator and pointer to a
structure that records the state of an interpreter. The latter would
be maintained as variables local to a single interpretation routine
but for the need to modify its contents from several different
routines.
The switch above has one case for each instruction in the initial
instruction set, and the cases manipulate a small execution stack.
Stack elements use a union of the basic machine types. For
example, the case for ADDI pops two elements, adds them as
integers, and pushes the result:
case ADDI:
a = istate->stack[istate->top--].i;
b = istate->stack[istate->top--].i;
istate->stack[++istate->top].i = a + b;
return;
Cases for operators that need a literal operand invoke a macro
GET(n) to collect an n-byte literal starting at istate->pc.

To interpret a sequence of operators, the initial interpreter enters
an infinite loop that passes the next bytecode to the switch
routine:
void interp(istate *istate) {

while (1)
interpret1(

istate->code[istate->pc++],
istate

);
}
The case arms for return operators use the standard C routine
longjmp to return to the top-level routine (interpret, not
shown) that handles control transfer between procedures. Initially,
interpret is called by a trampoline or by a LocalCALL
operator. It creates an istate record, calls interp, and, when

Figure 2. Edge contraction.

a
c

r’A rA

rB

a

b c

d
e

b d
e

rA : = A → aBde

rB := B → bc

r’A := A → abcde

returned to via a longjmp, returns the value atop the execution
stack.
The second interpreter, which interprets compressed bytecodes,
introduces another level of interpretation between interp and
interpret1.
void interp(istate *istate) {

while (1)
interpNT(istate, NT_start);

}
InterpNT adds an argument that identifies a non-terminal and
thus which of several specialized bytecoded instruction sets to
use. InterpNT fetches the next bytecode, which, with the given
non-terminal, identifies the rule for the next derivation step. A
table encodes for each rule the sequence of terminals and non-
terminals on the rule’s right-hand side. InterpNT advances left-
to-right across this right-hand side. When it encounters a terminal
symbol, it calls interpret1 to execute that symbol. When it
encounters a non-terminal, it calls itself recursively, with the
given non-terminal to define the new context and new specialized
bytecode.
Literals represent a modest complication because a rule can inline
a literal partially. For example, the rule
<start> = JUMPV 0 <byte>

effectively creates a specialized jump bytecode for which the first
of two literal bytes is constrained to be zero. The second
interpreter’s GET macro must decode the representation of the
rule to determine that the first half of the literal comes from the
rule and the second half from the bytecoded instruction stream.

6. PERFORMANCE
The table below reports the size of several bytecode sequences as
compressed by our method. Each input was compressed twice,
with grammars generated from two different training sets, namely
lcc and gcc. Predictably, lcc and gcc each compress
somewhat better with their own grammar, but the other inputs
compress about as well with either grammar.

compressed

trained on gcc trained on lcc input original

bytes ratio bytes ratio
gcc 1,423,370 471,111 33% 577,814 41%
lcc 199,497 75,077 38% 57,722 29%

gzip 47,066 19,466 41% 19,706 42%
8q 436 138 32% 152 35%

The interpreters are small: 7,855 bytes for the initial,
uncompressed bytecode and 18,962 for the bytecode generated
from the lcc training set. Thus 11KB of extra space in the
interpreter saves over 900KB in the bytecode for gcc. The
grammar occupies 10,525 bytes and thus accounts for most of the
difference in interpreter size.
For calibration and as a very rough bound on what might be
achievable with good, general-purpose data compression, gzip [2]
compresses the inputs above to 31-44% of their original size, with
the larger inputs naturally getting the better ratios. Any
comparison, of course, unfairly favors gzip, which is not

constrained to support direct interpretation or random access. For
example, gzip is free to exploit redundant patterns that span basic
blocks, where our bytecode compressor must stop and discard all
contextual information at every branch target.
The table below compares bytecoded and conventional object
code for one of our programs, namely lcc. The first two rows
describe executables based on the original and compressed
bytecodes. The third row describes a conventional x86 executable
obtained by compiling lcc using lcc.

representation bytes
Uncompressed

bytecode 292,039

Compressed
bytecode 161,386

lcc-compiled
x86 executable 240,522

Each row above includes the code and data for any interpreter
associated with the row, the corresponding bytecode, the label and
global tables, the procedure descriptors, the trampolines, and the
initialized and uninitialized data for the original program. Indeed,
it includes everything but library code and data, because the linker
rounds each segment up to a page boundary and thus sacrifices
some precision and because the library code was not available for
compression. Two experimental notes are in order:
• The interpreters were compiled with Microsoft Visual C

V6.0 (“MSVC”), in order to benefit from its thorough space
optimizer. Compiling the interpreters with lcc instead
increases the total size of the uncompressed version by 7,769
bytes and of the compressed version by 8,734 bytes.

• All rows use an lcc option that compiles switches into
decision trees, because the current implementation of the
bytecode cannot handle indirect jumps. The use of this
option accounts for about 5KB of the conventional
executable.

Another way to save space is simply to use a more ambitious
optimizer. For example, MSVC compiles lcc to 236,181 bytes
without optimization but to 161,716 bytes when full space
optimization is requested. It would be interesting to run our
compressor on bytecodes that have been through such an
optimizer, but this experiment requires obtaining a suitable
bytecode representation from MSVC, which is currently
impossible. Highly optimized code is usually less regular and thus
less compressible than more modestly optimized code, but it
appears likely that the combination of an ambitious optimizer with
bytecode compression would yield a smaller result than either tool
in isolation.
Several other opportunities for further compression remain:

• The label and global tables were taken out of line to simplify
implementation. These tables account for 9,628 and 3,940
bytes of the bytecoded executables for lcc, and, although
they could save code space for some constants, it’s likely that
switching to inline global addresses and branch offsets would
save much of that overhead.

• Trampolines account for 1,674 bytes of code in each of the
first two rows of the table above. In the embedded systems
that motivate this research, trampolines, which exist mainly
for inter-operation with other code, might be unnecessary.

• The current implementation stores grammars sub-optimally.
Straightforward recoding should save another 1,863 bytes for
the grammar generated from lcc.

• Different starting grammars yield different compressors. The
current grammar effectively tracks stack height. A more
complex grammar that tracked the datatype of each element
on the stack did not do significantly better, but grammars that
track more state or different state than the current grammar
might improve compression.

7. RELATED WORK
Proebsting’s work on superoperators [24] is the most comparable
to our grammar-based method. Superoperators assign bytecodes to
repeated patterns in expression trees. Our method, on the other
hand, searches for repeated patterns in parse trees obtained by
parsing a linearization of these expression trees. In addition to the
difference in program representation, our approach differs from
superoperators in two fundamental ways. First, a single bytecode
in our system may represent the code from several expression
trees while a superoperator can only represent a pattern that
occurs within an expression tree. Second, the superoperator
interpreter has only a single interpretive state whereas our
interpreter may have a state or context for every non-terminal in
the original grammar. An additional minor difference is that the
original implementation of superoperators did not allow patterns
to contain literals. Subsequent work, however, eliminated this
restriction and resulted in a method that was able to reduce
bytecode representations to approximately 50% of their original
size [16]. One should be careful of comparing this with the
present work, since the initial bytecode and the target machine
code in the two cases are somewhat different. It is, however, safe
to say that allowing a single bytecode to span several expression
trees and supporting more contexts in the interpretation of
bytecodes leads to substantial improvements in compression.
After superoperators, the recent work most comparable to ours is
Lucco’s work on split-stream code compression [11, 22]. The
original code is designed for a virtual machine that resembles
common RISC machines. The compressed code represents
frequently occurring instruction sequences and specialized
instructions with “burned in” operands. This approach is similar
to the superoperator work in that it recognizes repeated local
patterns. However, its separate treatment of opcodes and operand
types, and its packaging of the compressed form into byte-aligned
pieces results in a more succinct yet still interpretable form.
Unlike these local methods, our grammar-based approach has the
ability to see more global patterns (i.e. relations between non-
adjacent code fragments) and to produce an interpretable language
that captures these patterns.
The compression techniques that we use were inspired by
Tunstall’s construction of optimal variable-to-fixed length codes
[26]. A variable-to-fixed length code assigns codewords of a fixed
length, say k bits, to variable length sequences of the original
instructions. The set of sequences that have codewords is called
the dictionary. The general idea is to choose a dictionary of about
2k sequences that are long and occur frequently. Since the same
number of bits represents each sequence, maximizing the average
length of a dictionary sequence minimizes the compressed
representation. Given a distribution on symbols from a memory-
less source, Tunstall’s algorithm produces a uniquely parsable
dictionary of sequences. The term “uniquely parsable” refers to

the property of the dictionary that any sequence can be partitioned
into subsequences from the dictionary in exactly one way.1

There are two problems with applying Tunstall’s algorithm in our
situation. The first is the assumption that the sequence is produced
by a memory-less source. Programs contain too much structure for
this to be a reasonable model of instruction sequences. Recent
work on extending Tunstall’s technique to finite state sources
provides a means of capturing some source structure [25],
however it does not capture the grammatical restrictions of most
source languages. This work is partly an attempt to extend
Tunstall’s method to grammar based sequences.

The second problem is preserving branch targets under the
constraint of unique parsability. Unique parsability implies that no
prefix of a dictionary sequence is in the dictionary. This means
that if a branch target occurs after seeing a prefix of a dictionary
sequence, we must code that prefix explicitly. Since branch targets
may occur at nearly any point, insisting on unique parsability
results in poor compression.

Our technique produces a plurally parsable (allowing more than
one encoding of a sequence) fixed length code based on a context-
free grammar for the language, rather than a memory-less or finite
state source. We force the preservation of branch targets by
restarting the encoding procedure whenever the sequence contains
such a target. However, by using a plurally parsable code, we are
still able to efficiently encode the resulting pre-target
subsequences.

Several compression techniques for structured text have been
designed around the use of context-free grammars [4, 10, 12, 19,
23]. The typical approach is to represent the steps in a derivation
of a text using a grammar; frequent steps are encoded with fewer
bits than infrequent ones. Very little work has been done on the
modification of the grammar to assist in compression. Lake
considers choosing a derivation from an ambiguous grammar
based on its success in compressing the text [19], and Nevill-
Manning constructs a succinct grammar that derives only the
given text (without the aid of an existing grammar) [23]. In some
sense, the latter approach can be seen as an extreme example of
the grammar based, variable-to-fixed length coding we propose in
this paper. Constructing a grammar that derives only the input text
is like building an interpreter that can interpret only a single
program.

8. SUMMARY
This paper describes a system that automatically designs and
implements compact bytecoded instruction sets by rewriting a
grammar for a simple stack-based bytecode. Substantial savings
over recent research, over the initial bytecode, and over machine
code have been shown, and opportunities for further
improvements remain, via more sophisticated grammar
transformations as well as more sophisticated implementation
strategies.

9. REFERENCES
[1] B. Abali, H. Franke, D. E. Poff, and T. B. Smith.

Performance of hardware compressed main memory.

1 The last subsequence in the partition may be a prefix of a

sequence in the dictionary.

Research report RC21799, IBM T. J. Watson Research
Center (July 2000).

[2] M. Adler and J.-l.. Gailly. The gzip home page.
http://www.gzip.org.

[3] C. Benveniste, P. Franaszek, and J. Robinson. Cache-
memory interfaces in compressed memory systems. Research
report RC21662, IBM T. J. Watson Research Center (Feb.
2000).

[4] R. D. Cameron. Source encoding using syntactic information
models. IEEE Transactions on Information Theory, 34(4)
pp.843-850 (1988).

[5] Y. Choueka, S. T. Klein, and Y. Perl. Efficient variants of
Huffman codes in high level languages. Proc. of the 8th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp.122-130 (June
1985).

[6] Connectix Corp. RAM Doubler 9.
http://www.connectix.com/products/rd9.html, (Nov. 2000).

[7] K. D. Cooper and N. McIntosh. Enhanced code compression
for embedded RISC processors. PLDI, pp.139-149 (May
1999).

[8] S. K. Debray, W. Evans, R. Muth, and B. de Sutter.
Compiler techniques for code compaction. TOPLAS, 22(2)
pp.378-415 (March 2000).

[9] J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2) pp.94-102 (Feb. 1970).

[10] P. Eck, X. Changsong, and R. Matzner. A new compression
scheme for syntactically structured messages (programs) and
its application to Java and the internet. Proc. Data
Compression Conference (poster session), p.542 (1998).

[11] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting. Code compression. PLDI, pp.358-365 (June
1997).

[12] W. Evans. Compression via guided parsing. Proc. Data
Compression Conference (poster session), p.544 (1998).
http://www.cs.arizona.edu/people/will/papers/

[13] M. Franz and T. Kistler. Slim Binaries. Communications of
the ACM, 40(12) pp.87-94 (Dec. 1997).

[14] C. W. Fraser. Automatic inference of models for statistical
code compression. PLDI, pp.242-246 (May 1999).

[15] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler:
Design and Implementation. Addison Wesley Longman,
1995.

[16] C. W. Fraser and T. A. Proebsting. Custom instruction sets
for code compression. Unpublished (October 1995).
http://www.research.microsoft.com/~toddpro/

[17] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de
Wiel. A code compression system based on pipelined
interpreters. Softw. Pract. Exper., 29(11) pp.1005-1023
(1999).

[18] D. Huffman. A method for the construction of minimum
redundancy codes. Proc. of IRE, 40 pp.1098-1101 (1952).

[19] J. M. Lake. Prediction by grammatical match. Proc. Data
Compression Conference, pp.153-162 (March, 2000).

[20] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing code size
with run-time decompression. Proceedings of the 6th
International Symposium on High-Performance Computer
Architecture (HPCA) (Jan 2000).

[21] S. Y. Liao. Code generation and optimization for embedded
digital signal processors. Ph.D. thesis, MIT (1996).

[22] S. Lucco. Split-stream dictionary program compression.
PLDI, pp. 27-34 (June 2000).

[23] C. G. Nevill-Manning. Inferring sequential structure. Ph.D.
thesis, University of Waikato, (1996).

[24] T. A. Proebsting. Optimizing an ANSI C interpreter with
superoperators. POPL, pp.322-332 (Jan. 1995).

[25] I. Tabus, G. Korodi, and J. Rissanen. Text compression
based on variable-to-fixed codes for Markov sources. Proc.
Data Compression Conference, pp.133-141 (March, 2000).

[26] B. P. Tunstall. Synthesis of noiseless compression codes.
Ph.D. thesis, Georgia Inst. Technology (1967).

[27] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systems. USENIX
Technical Conference (June 1999).

Appendix 1. Initial instruction set.
The table below describes the un-typed or generic operators from
the initial instruction set. The only changes from lcc [15] are
literals and LocalCALL operators, which Section 3 describes,
and comparisons. lcc comparisons accept two comparands and a
literal branch address, but the comparisons here accept two
comparands and push a flag for BrTrue, which accepts the literal
branch address.
The type suffixes are: V for void or no value, C and S for char
and short, I and U for signed and unsigned integers, F and D
for single- and double-precision floating-point numbers, P for
pointers, and B for instructions that operate on blocks of memory.
The grammar in Appendix 2 shows the valid combinations of the
type suffixes with the generic operators below and also shows
how many literal bytes, if any, follow each operator.

Operator Comment

ADD DIV SUB MUL Arithmetic.

BAND BOR BXOR Bit-wise Booleans.

BCOM Bit-wise negation.

NEG Arithmetic negation.

CVD Convert from double.

CVF Convert from float.

CVI Convert from int.

CVI1 CVI2 Sign-extend char, short.

CVU1 CVU2 Zero-extend char, short.

EQ GE GT LE LT NE Compare and push 0 or 1.

LSH MOD RSH Shifts, remainder

INDIR Pop p, push *p.

ASGN Pop p and v, copy v to *p.

ADDRF Push address of formal.

ADDRG Push address of global.

ADDRL Push address of local.

JUMP Pop label number, jump.

ARG Top is next outgoing argument.

LocalCALL CALL RET Calls, return.

POP Discard top element.

LIT[1234] Push 1, 2, 3, or 4 literal bytes.

BrTrue Pop flag. Jump if true.

Appendix 2. Initial bytecode grammar.
The grammar for the initial bytecode groups operators based on
their effect on the evaluation stack. Non-terminals that end in 0, 1,
and 2 denote leaf, unary and binary operators. Such non-terminals
that begin with “v” collect operators that yield a value; those that
begin with “x” collect operators that push no result and thus are
executed for a side-effect (e.g. JUMPV). For example, an operator
that removes two values from the stack is grouped under the non-
terminal <x2>. An operator that removes one value and pushes
one value is grouped with <v1>.

<start> =
<start> = <start> <x>

<v> = <v0>
<v> = <v> <v1>
<v> = <v> <v> <v2>

<x> = <x0>
<x> = <v> <x1>
<x> = <v> <v> <x2>

<v2> = ADDD | DIVD | MULD | SUBD
<v2> = ADDF | DIVF | MULF | SUBF
<v2> = DIVI | MODI | MULI
<v2> = ADDU | DIVU | MODU | MULU | SUBU
<v2> = BANDU | BORU | BXORU
<v2> = EQD | GED | GTD | LED | LTD | NED
<v2> = EQF | GEF | GTF | LEF | LTF | NEF
<v2> = GEI | GTI | LEI | LTI
<v2> = EQU | GEU | GTU | LEU | LTU | NEU
<v2> = LSHI | LSHU | RSHI | RSHU

<v1> = BCOMU
<v1> = CALLD | CALLF | CALLU
<v1> = CVDF | CVDI | CVFD | CVFI
<v1> = CVID | CVIF
<v1> = CVI1I4 | CVI2I4 | CVU1U4 | CVU2U4
<v1> = INDIRC | INDIRS | INDIRU
<v1> = INDIRD | INDIRF
<v1> = NEGD | NEGF | NEGI

<v0> = ADDRFP <byte> <byte>
<v0> = ADDRGP <byte> <byte>
<v0> = ADDRLP <byte> <byte>
<v0> = LocalCALLD <byte> <byte>
<v0> = LocalCALLF <byte> <byte>
<v0> = LocalCALLU <byte> <byte>
<v0> = LIT1 <byte>
<v0> = LIT2 <byte> <byte>
<v0> = LIT3 <byte> <byte> <byte>
<v0> = LIT4 <byte> <byte> <byte> <byte>

<x2> = ASGNB | ASGNC | ASGNS | ASGNU
<x2> = ASGND | ASGNF

<x1> = ARGB | ARGD | ARGF | ARGU
<x1> = BrTrue <byte> <byte> | CALLV
<x1> = POPD | POPF | POPU
<x1> = RETD | RETF | RETU

<x0> = JUMPV <byte> <byte>
<x0> = LocalCALLV <byte> <byte>
<x0> = RETV

<byte> = 0 | 1 | … | 255

Appendix 3. Packaging the bytecodes
For each procedure f, the system creates two vectors, which hold
the compressed bytecodes and the table of branch offsets:

static unsigned char _f_code[] = { … }
static short _f_labels[] = { … };

A global table of procedure descriptors packages pointers to these
vectors with the procedure’s framesize:

proc _procs[] = {
{ 12, _f_code, _f_labels },
…

For procedures that need a trampoline, the system also creates a
procedure that passes to the interpreter the index of the
procedure’s descriptor and the address of the block of incoming
arguments:

int f(unsigned arg1) {
return interpret(0, &arg1).i;

}

The generated procedure’s signature differs from the original
procedure’s—namely, it takes only a single, unsigned argument—
but we use an x86 calling convention that passes all arguments in
contiguous memory, and the address of the first argument is all
that the interpreter needs to access all arguments. The interpreter
returns a C union of the primitive C datatypes. The “.i” above
picks out the type that this particular procedure returns.
Finally, the system creates a global table of the addresses of
global variables:

void *_globals[] = {
&malloc,
…

