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ABSTRACT 
This paper describes the design and implementation of a method 
for producing compact, bytecoded instruction sets and interpreters 
for them. It accepts a grammar for programs written using a 
simple bytecoded stack-based instruction set, as well as a training 
set of sample programs. The system transforms the grammar, 
creating an expanded grammar that represents the same language 
as the original grammar, but permits a shorter derivation of the 
sample programs and others like them. A program’s derivation 
under the expanded grammar forms the compressed bytecode 
representation of the program. The interpreter for this bytecode is 
automatically generated from the original bytecode interpreter and 
the expanded grammar. Programs expressed using compressed 
bytecode can be substantially smaller than their original bytecode 
representation and even their machine code representation. For 
example, compression cuts the bytecode for lcc from 199KB to 
58KB but increases the size of the interpreter by just over 11KB. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Processors—optimization, 
run-time environments. 

General Terms 
Algorithms, Performance, Design, Economics, Experimentation, 
Languages, Theory. 

Keywords 
Program compression, bytecode interpretation, variable-to-fixed 
length codes, context-free grammars. 

1. INTRODUCTION 
Code compression can pay dividends in a variety of scenarios, 
saving network transmission time, disk space, or memory at run-
time. In general, programs can be stored at a variety of points in a 
memory hierarchy:  
1. Instruction cache (possibly more than one level) 

                                                                 
   
 
 
 
 
 

2. Main memory 
3. Local disk 
4. Installation media and remote disks, perhaps accessed via a 

fast LAN or even analog modems. 
Code compression can save space within a level, transmission 
time between levels, or both. It is obviously in common use at 
levels 3 and 4, but there exist applications at levels 2 [6, 27] and 
even at level 1 [1, 20]. 
Each scenario has somewhat different requirements. At slow 
levels, the cost of reading the program is high enough to mask 
significant decompression costs. Faster levels typically require 
faster decompression or, in the limit, a compressed form that can 
be interpreted directly, without the time or memory costs of a 
separate decompression step. Though recently there has been an 
increase in research on program compression e.g. [1, 3, 7, 8, 11, 
13, 14, 16, 17, 20, 21, 22, 24, 27], very little of it has focused on 
methods, sometimes called code compaction methods, that avoid 
any decompression before execution. These methods produce 
representations that can be directly executed [7, 8] or interpreted 
[11, 16, 17, 21, 24] and, as a result, are more limited than 
schemes that have the flexibility to decompress before execution. 
Certain embedded systems supply one of the clearest examples of 
the need for zero-overhead decompression. These systems 
typically store much of their code in ROM. Competition drives 
manufacturers to add features, some of which track events so 
infrequent (e.g. cellular telephone key presses) as to render moot 
the traditional objections to direct interpretation of bytecode, 
whereas saving ROM or packing more features into a fixed-size 
ROM can give a competitive advantage. Moreover, it may be 
unwise or impossible to decompress the ROM temporarily to 
RAM, because on such systems RAM can be scarce, 
decompression costs power, and the processor can access ROM 
faster to boot. Direct interpretation of bytecode may not suit all 
commercially important scenarios, but it clearly suits this one. 

2. OVERVIEW 
Our system constructs a compressor that compresses a program’s 
bytecode representation, and an interpreter that reads and executes 
the compressed bytecode. To construct the compressor, the system 
accepts two inputs: 
1. An initial grammar for a simple bytecoded stack-based 

instruction set. 
2. A training set of sample bytecoded programs. This corpus is 

assumed to represent statistically the populations of the 
programs to be coded in the new bytecode. 



 

The compressor construction works as follows: A parser accepts 
the initial grammar and a training set of sample programs, and 
produces a forest of parse trees. Frequent rule pairs are identified 
and new rules are added to the original grammar to decrease the 
overall size of the forest (i.e. the length of the derivation specified 
by the forest). The result of this training phase is an ambiguous 
expanded grammar. The compressed bytecode for a program is a 
specification of a shortest derivation under the expanded 
grammar. The key to compression is creating an expanded 
grammar that permits concise derivations. 
To construct the interpreter, the system also accepts two inputs: 
1. The expanded grammar produced in the training phase. 
2. An interpreter for the original bytecode. 
The interpreter generator combines the expanded grammar and an 
interpreter for the original bytecode to form an interpreter for the 
compressed bytecode. Each instruction of the new interpreter 
implements an entire rule in the expanded grammar. Thus the new 
interpreter can read and execute the compressed bytecode, which 
is a program’s derivation under the expanded grammar. 
Figure 1 illustrates the operation of the system at a high level. The 
figure is divided horizontally to emphasize the training and 
compression phases of the system. 

3. THE INITIAL BYTECODE 
Our system starts with a bytecode that is a simple postfix 
encoding of lcc trees [15]. Most operators consist of an un-typed 
or generic base (such as ADD) followed by a one-character type 
suffix (I for integer, F for float, etc), which indicates the type of 
value produced. Appendix 1 lists all of the operators that appear 
in the bytecode. 
All operators that produce values push these values onto a global 
stack. Most operators that require operands (such as ADD) obtain 
them from the stack. The exceptions are LIT[1234], 
ADDR[FGL], LocalCALL, JUMP, and BrTrue. These 
operators follow a prefix rather than postfix format and take the 
bytes that follow the operator in the bytecode as their operands. 
LIT, for example, simply pushes the specified number of bytes 
that follow it onto the stack. 
The bytecode is organized into procedures. A descriptor records 
three elements for each procedure: 

•  The bytecode for the procedure. 

•  A table of branch and jump offsets. 

•  The size of the procedure’s frame. 
Branch offsets could be placed in the bytecode, but doing so 
would require that the compressor change the offsets as it changes 
the instruction set, which would be unwieldy. For simplicity, we 
place label table indices rather than offsets in the bytecode. The 
specified label table entry holds the offset into the current 
procedure’s bytecode of the branch target needed when the 
corresponding branch is taken. When the compressor rewrites the 
original bytecode, it also rewrites the label table to reflect the new 
position of each label, but the label table indices in the bytecode 
do not change. 
Global addresses are handled similarly. Global addresses are not, 
in general, known until after final linking or loading, so they 
aren’t available to the compressor. The bytecode thus contains 
instead an index into a single, global table of global addresses, 
and it relies on the linker to fill in the table entry with the 
appropriate address. 
For inter-operation with existing libraries, lcc creates for some 
bytecoded procedures a “trampoline”, which is a C-callable 
interface that simply passes to the interpreter the procedure’s 
descriptor number and incoming arguments. Appendix 3 
illustrates this packaging. 
Trampolines take space, so they are created only for procedures 
that must have them. If a procedure’s address is taken and not 
consumed immediately by a call operator, we conservatively 
assume that it could be the target of an indirect call and thus needs 
a trampoline. The target of an indirect call requires a trampoline 
because the indirect call may call conventional code (a library 
routine) or bytecode and uses the same calling mechanism for 
both. The trampoline is omitted if a call operator always 
immediately consumes the procedure’s address. Calls to these 
procedures use a specialized call operator (“LocalCALL”) that 
recursively calls the interpreter without going through a 
trampoline. These rules assume, of course, that the bytecode 
represents an executable with a single entry point (namely the 
routine main, which needs a trampoline) and not, for example, a 
dynamically linked library, for which it could be difficult or 
impossible to omit any trampolines. 

 

Figure 1. High-level structure of the bytecode compression system. 
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4. DERIVING A BETTER BYTECODE 
Our goal is to produce a program representation that is small and 
can be interpreted quickly. We cannot afford the space to 
decompress a representation before executing it. Instead, we 
should be able to read part of the representation and immediately 
execute a sequence of machine instructions. In addition, if we 
encounter a control transfer instruction, we should be able to jump 
to the corresponding part of the compressed representation and 
continue interpretation. 

One possible approach is to encode the original instructions using 
a fixed-to-variable length code. Each original instruction is 
assigned a codeword whose length varies according to the 
instruction's frequency: low frequency instructions receive long 
codewords; high frequency ones receive shorter codewords. 
Huffman's algorithm provides a method to construct such a code 
given instruction frequencies [18]. Though optimal for the given 
frequencies, since the codewords vary in length, we may be forced 
to examine the program representation one bit at a time to extract 
a single instruction. We cannot afford the time to extract and 
decode each instruction in this manner. Huffman codes can be 
decoded in larger increments than bits (e.g. a byte at a time) but 
this uses a significant amount of space for look-up tables [5]. 

Rather than encode single instructions using a variable number of 
bits, we instead encode multiple instructions using a fixed number 
of bits. In essence, we adopt a variable-to-fixed length coding 
policy rather than producing a fixed-to-variable length code as 
Huffman does. 

4.1 Grammar Rewriting 
Our scheme is based on a grammar that describes the set of legal 
instruction sequences. The grammar provides a model or structure 
that helps us obtain a concise representation for these sequences. 
We represent a sequence by specifying its derivation with respect 
to the grammar. Since we are only concerned with the 
representation of legal sequences, we can ignore sequences that 
do not have such a derivation. 

We describe a sequence by its leftmost derivation with respect to 
the grammar. The derivation is a list of the rules used to expand 
the leftmost non-terminal in each sentential form of the derivation 
where each rule is represented as an index: the ith rule for a non-
terminal represented as the index i. For example, the sequence 

ADDRFP 0 0 INDIRU LIT1 0 NEU BrTrue 0 0 LIT1
0 ARGU ADDRGP 0 0 CALLU POPU LABELV RETV
which represents the C-code 

void check(int flag) {
if (flag == 0)

exit( 0 );
}

 
could be encoded as 

1 1 1 0 1 2 1 0 0 0 0 1 0 2 0 0 0 0 1 0 2 0
1 1 1 0 1 0 0 0 2 1 0 0
with respect to the following grammar: 

0. <start> =
1. <start> = <start> <x>
0. <x> = RETV
1. <x> = <v> <x1>
0. <v> = <v0>
1. <v> = <v> <v1>
2. <v> = <v> <v> NEU
0. <v1> = CALLU
1. <v1> = INDIRU
0. <v0> = ADDRFP <byte> <byte>
1. <v0> = ADDRGP <byte> <byte>
2. <v0> = LIT1 <byte>
0. <x1> = BrTrue <byte> <byte>
1. <x1> = ARGU
2. <x1> = POPU
0. <byte> = 0

Notice that the sequence is actually parsed into two separate 
derivations, one for the code prior to the LABELV and one for the 
code after. The LABELV indicates a branch target; it is not an 
operator itself. Keeping the derivations separate allows direct 
interpretation of this representation. When the interpreter 
encounters a control transfer, it knows that wherever it jumps to in 
the derivation sequence, it can assume that this is the beginning of 
a derivation of the start non-terminal of the grammar and that the 
first rule it encounters applies to this start non-terminal. 

Unless we encode each rule number as a byte, this is not, in 
general, a very practical code for interpretation. The problem is 
that the interpreter, as in the fixed-to-variable (Huffman) encoding 
scenario, may be forced to examine the representation a single bit 
at a time, which is too costly. However, using one byte per rule 
number can be very wasteful, especially for non-terminals with 
very few rules. In the sample grammar, we would use an entire 
byte to represent, in the case of the non-terminal <v>, only three 
possible values. This results in a not very concise encoding of the 
program. 

In order to create a practical and concise encoding of the program, 
we modify the grammar so that each non-terminal has close to the 
same number (256) of rules. The modification process takes two 
rules, A → α B β and B → γ, and adds to the grammar a third rule, 
A → α γ β, where A and B are non-terminals and α, β, and γ are 
strings of terminals and non-terminals. We call this process 
inlining a B rule into an A rule. Inlining doesn't change the 
language accepted by the grammar. However, it shortens the 
sequence of rules (the derivation) needed to express some strings, 
and it increases the number of rules for some non-terminal. 

The question is which rules should we inline. The goal of the 
inlining is to produce a grammar that provides short derivations 
for programs. Starting with a derivation of a program using the 
original grammar, the best single inline that we could perform is 
the most frequently occurring pair of rules; one used to expand a 
non-terminal on the right-hand side of the other. If this pair were 
used m times in the derivation, inlining would decrease the 
derivation length by m rules. 

We can view this process as operating on the forest of parse trees 
obtained from parsing the program using the original grammar. 
The parse produces a forest since we restart the parser from the 
start non-terminal at every potential branch target (i.e. LABELV). 
For our purposes, a parse tree is a rooted tree in which each 
internal node is labeled with a rule and each leaf with a terminal 



 

symbol. The root is labeled with a rule for the start non-terminal. 
In general, an internal node that is labeled with a rule A → a1 a2 ... 
ak (where ai is a terminal or non-terminal symbol) has k children. 
If ai is a non-terminal then the ith child (from the left) is labeled 
with a rule for non-terminal ai. If ai is a terminal then the ith child 
is a leaf labeled with ai. The program appears as the sequence of 
labels at the leaves of the parse trees in the forest, reading from 
left to right. A leftmost derivation is simply the sequence of rules 
encountered in a preorder traversal of each parse tree in the forest. 

The inlining of one rule rB into another rule rA creates a new rule 
r’A whose addition to the grammar permits a different (and 
shorter) parse of the program. One such new parse can be 
obtained by contracting every edge from a node labeled rA to a 
node labeled rB in the original forest – meaning the children of rB 
become the children of rA – and relabeling the node labeled rA 
with the new rule r’A. See figure 2. If the number of edge 
contractions is m, the resulting forest has m fewer internal nodes 
and thus represents a derivation that is shorter by m steps. 

To construct an expanded grammar, we parse a sample program 
(or a set of sample programs) using the original grammar and 
obtain a forest of parse trees. We then inline the pair of rules at 
the endpoints of the most frequent edge in the forest, contract all 
occurrences of this edge, add the new inlined rule to the grammar, 
and repeat. We stop creating rules for a non-terminal once it has 
256 rules. 

Occasionally, a rule for a non-terminal may be subsumed by a 
new rule. That is, after the addition of the new rule, the first rule is 
no longer used in the derivation. If the unused rule is one that was 
added via inlining, we are free to remove it from the grammar. 
(We cannot, however, remove one of the original grammar rules 
or we risk changing the grammar’s language.) In our current 
implementation, we remove unused inlined rules in order to 
decrease the size of the expanded grammar. This may cause some 
non-terminals to have fewer than 256 rules. 

This construction procedure is greedy; it always inlines the most 
frequent pair of rules. This is a heuristic solution to the problem 
of finding a set of rules to add to the grammar that permits the 
shortest derivation of the sample program. We rely on this 
heuristic since finding an exact solution is, unfortunately, NP-
hard. 

The resulting expanded grammar is ambiguous, even if the 
original grammar was not, since we leave the original rules in the 
grammar. Given a program that we wish to compress, we are free 
to choose any derivation under the expanded grammar to 
represent the program’s original bytecode sequence. The size of 
the representation is the number of rules in the derivation. Since 
our goal is compression, we want a minimum length derivation. 
We use Earley’s parsing algorithm [9], slightly modified, to 
obtain a shortest derivation for a given sequence. The derivation 
is then the compressed bytecode representation of the program 
and is suitable for interpretation. Figure 1 shows the structure of 
this system. 

5. THE INTERPRETERS 
This system has two interpreters. The initial interpreter accepts the 
initial, uncompressed bytecode. The initial interpreter and the 
expanded grammar form the raw material from which the system 
builds the second interpreter, which accepts compressed bytecode. 
At the core of the initial interpreter is a routine with a single 
statement, namely a C switch: 
void interpret1(

unsigned char op,
istate *istate

) {
switch (op) { … }

}
It accepts a single, uncompressed operator and pointer to a 
structure that records the state of an interpreter. The latter would 
be maintained as variables local to a single interpretation routine 
but for the need to modify its contents from several different 
routines. 
The switch above has one case for each instruction in the initial 
instruction set, and the cases manipulate a small execution stack. 
Stack elements use a union of the basic machine types. For 
example, the case for ADDI pops two elements, adds them as 
integers, and pushes the result: 
case ADDI:
a = istate->stack[istate->top--].i;
b = istate->stack[istate->top--].i;
istate->stack[++istate->top].i = a + b;
return;
Cases for operators that need a literal operand invoke a macro 
GET(n) to collect an n-byte literal starting at istate->pc. 

To interpret a sequence of operators, the initial interpreter enters 
an infinite loop that passes the next bytecode to the switch 
routine: 
void interp(istate *istate) {

while (1)
interpret1(

istate->code[istate->pc++],
istate

);
}
The case arms for return operators use the standard C routine 
longjmp to return to the top-level routine (interpret, not 
shown) that handles control transfer between procedures. Initially, 
interpret is called by a trampoline or by a LocalCALL 
operator. It creates an istate record, calls interp, and, when 

 

Figure 2. Edge contraction. 
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returned to via a longjmp, returns the value atop the execution 
stack. 
The second interpreter, which interprets compressed bytecodes, 
introduces another level of interpretation between interp and 
interpret1. 
void interp(istate *istate) {

while (1)
interpNT(istate, NT_start);

}
InterpNT adds an argument that identifies a non-terminal and 
thus which of several specialized bytecoded instruction sets to 
use. InterpNT fetches the next bytecode, which, with the given 
non-terminal, identifies the rule for the next derivation step. A 
table encodes for each rule the sequence of terminals and non-
terminals on the rule’s right-hand side. InterpNT advances left-
to-right across this right-hand side. When it encounters a terminal 
symbol, it calls interpret1 to execute that symbol. When it 
encounters a non-terminal, it calls itself recursively, with the 
given non-terminal to define the new context and new specialized 
bytecode. 
Literals represent a modest complication because a rule can inline 
a literal partially. For example, the rule 
<start> = JUMPV 0 <byte>

effectively creates a specialized jump bytecode for which the first 
of two literal bytes is constrained to be zero. The second 
interpreter’s GET macro must decode the representation of the 
rule to determine that the first half of the literal comes from the 
rule and the second half from the bytecoded instruction stream.

6. PERFORMANCE 
The table below reports the size of several bytecode sequences as 
compressed by our method. Each input was compressed twice, 
with grammars generated from two different training sets, namely 
lcc and gcc. Predictably, lcc and gcc each compress 
somewhat better with their own grammar, but the other inputs 
compress about as well with either grammar. 

compressed 

trained on gcc trained on lcc input original 

bytes ratio bytes ratio 
gcc 1,423,370 471,111 33% 577,814 41% 
lcc 199,497 75,077 38% 57,722 29% 

gzip 47,066 19,466 41% 19,706 42% 
8q 436 138 32% 152 35% 

 
The interpreters are small: 7,855 bytes for the initial, 
uncompressed bytecode and 18,962 for the bytecode generated 
from the lcc training set. Thus 11KB of extra space in the 
interpreter saves over 900KB in the bytecode for gcc. The 
grammar occupies 10,525 bytes and thus accounts for most of the 
difference in interpreter size. 
For calibration and as a very rough bound on what might be 
achievable with good, general-purpose data compression, gzip [2] 
compresses the inputs above to 31-44% of their original size, with 
the larger inputs naturally getting the better ratios. Any 
comparison, of course, unfairly favors gzip, which is not 

constrained to support direct interpretation or random access. For 
example, gzip is free to exploit redundant patterns that span basic 
blocks, where our bytecode compressor must stop and discard all 
contextual information at every branch target. 
The table below compares bytecoded and conventional object 
code for one of our programs, namely lcc. The first two rows 
describe executables based on the original and compressed 
bytecodes. The third row describes a conventional x86 executable 
obtained by compiling lcc using lcc. 
 

representation bytes 
Uncompressed 

bytecode 292,039 

Compressed 
bytecode 161,386 

lcc-compiled 
x86 executable 240,522 

 
Each row above includes the code and data for any interpreter 
associated with the row, the corresponding bytecode, the label and 
global tables, the procedure descriptors, the trampolines, and the 
initialized and uninitialized data for the original program. Indeed, 
it includes everything but library code and data, because the linker 
rounds each segment up to a page boundary and thus sacrifices 
some precision and because the library code was not available for 
compression. Two experimental notes are in order: 
•  The interpreters were compiled with Microsoft Visual C 

V6.0 (“MSVC”), in order to benefit from its thorough space 
optimizer. Compiling the interpreters with lcc instead 
increases the total size of the uncompressed version by 7,769 
bytes and of the compressed version by 8,734 bytes. 

•  All rows use an lcc option that compiles switches into 
decision trees, because the current implementation of the 
bytecode cannot handle indirect jumps. The use of this 
option accounts for about 5KB of the conventional 
executable. 

Another way to save space is simply to use a more ambitious 
optimizer. For example, MSVC compiles lcc to 236,181 bytes 
without optimization but to 161,716 bytes when full space 
optimization is requested. It would be interesting to run our 
compressor on bytecodes that have been through such an 
optimizer, but this experiment requires obtaining a suitable 
bytecode representation from MSVC, which is currently 
impossible. Highly optimized code is usually less regular and thus 
less compressible than more modestly optimized code, but it 
appears likely that the combination of an ambitious optimizer with 
bytecode compression would yield a smaller result than either tool 
in isolation. 
Several other opportunities for further compression remain: 

•  The label and global tables were taken out of line to simplify 
implementation. These tables account for 9,628 and 3,940 
bytes of the bytecoded executables for lcc, and, although 
they could save code space for some constants, it’s likely that 
switching to inline global addresses and branch offsets would 
save much of that overhead.  

•  Trampolines account for 1,674 bytes of code in each of the 
first two rows of the table above. In the embedded systems 
that motivate this research, trampolines, which exist mainly 
for inter-operation with other code, might be unnecessary. 



 

•  The current implementation stores grammars sub-optimally. 
Straightforward recoding should save another 1,863 bytes for 
the grammar generated from lcc. 

•  Different starting grammars yield different compressors. The 
current grammar effectively tracks stack height. A more 
complex grammar that tracked the datatype of each element 
on the stack did not do significantly better, but grammars that 
track more state or different state than the current grammar 
might improve compression. 

7. RELATED WORK 
Proebsting’s work on superoperators [24] is the most comparable 
to our grammar-based method. Superoperators assign bytecodes to 
repeated patterns in expression trees. Our method, on the other 
hand, searches for repeated patterns in parse trees obtained by 
parsing a linearization of these expression trees. In addition to the 
difference in program representation, our approach differs from 
superoperators in two fundamental ways. First, a single bytecode 
in our system may represent the code from several expression 
trees while a superoperator can only represent a pattern that 
occurs within an expression tree. Second, the superoperator 
interpreter has only a single interpretive state whereas our 
interpreter may have a state or context for every non-terminal in 
the original grammar. An additional minor difference is that the 
original implementation of superoperators did not allow patterns 
to contain literals. Subsequent work, however, eliminated this 
restriction and resulted in a method that was able to reduce 
bytecode representations to approximately 50% of their original 
size [16]. One should be careful of comparing this with the 
present work, since the initial bytecode and the target machine 
code in the two cases are somewhat different. It is, however, safe 
to say that allowing a single bytecode to span several expression 
trees and supporting more contexts in the interpretation of 
bytecodes leads to substantial improvements in compression. 
After superoperators, the recent work most comparable to ours is 
Lucco’s work on split-stream code compression [11, 22]. The 
original code is designed for a virtual machine that resembles 
common RISC machines. The compressed code represents 
frequently occurring instruction sequences and specialized 
instructions with “burned in” operands. This approach is similar 
to the superoperator work in that it recognizes repeated local 
patterns. However, its separate treatment of opcodes and operand 
types, and its packaging of the compressed form into byte-aligned 
pieces results in a more succinct yet still interpretable form. 
Unlike these local methods, our grammar-based approach has the 
ability to see more global patterns (i.e. relations between non-
adjacent code fragments) and to produce an interpretable language 
that captures these patterns. 
The compression techniques that we use were inspired by 
Tunstall’s construction of optimal variable-to-fixed length codes 
[26]. A variable-to-fixed length code assigns codewords of a fixed 
length, say k bits, to variable length sequences of the original 
instructions. The set of sequences that have codewords is called 
the dictionary. The general idea is to choose a dictionary of about 
2k sequences that are long and occur frequently. Since the same 
number of bits represents each sequence, maximizing the average 
length of a dictionary sequence minimizes the compressed 
representation. Given a distribution on symbols from a memory-
less source, Tunstall’s algorithm produces a uniquely parsable 
dictionary of sequences. The term “uniquely parsable” refers to 

the property of the dictionary that any sequence can be partitioned 
into subsequences from the dictionary in exactly one way.1  

There are two problems with applying Tunstall’s algorithm in our 
situation. The first is the assumption that the sequence is produced 
by a memory-less source. Programs contain too much structure for 
this to be a reasonable model of instruction sequences. Recent 
work on extending Tunstall’s technique to finite state sources 
provides a means of capturing some source structure [25], 
however it does not capture the grammatical restrictions of most 
source languages. This work is partly an attempt to extend 
Tunstall’s method to grammar based sequences. 

The second problem is preserving branch targets under the 
constraint of unique parsability. Unique parsability implies that no 
prefix of a dictionary sequence is in the dictionary. This means 
that if a branch target occurs after seeing a prefix of a dictionary 
sequence, we must code that prefix explicitly. Since branch targets 
may occur at nearly any point, insisting on unique parsability 
results in poor compression. 

Our technique produces a plurally parsable (allowing more than 
one encoding of a sequence) fixed length code based on a context-
free grammar for the language, rather than a memory-less or finite 
state source. We force the preservation of branch targets by 
restarting the encoding procedure whenever the sequence contains 
such a target. However, by using a plurally parsable code, we are 
still able to efficiently encode the resulting pre-target 
subsequences. 

Several compression techniques for structured text have been 
designed around the use of context-free grammars [4, 10, 12, 19, 
23]. The typical approach is to represent the steps in a derivation 
of a text using a grammar; frequent steps are encoded with fewer 
bits than infrequent ones. Very little work has been done on the 
modification of the grammar to assist in compression. Lake 
considers choosing a derivation from an ambiguous grammar 
based on its success in compressing the text [19], and Nevill-
Manning constructs a succinct grammar that derives only the 
given text (without the aid of an existing grammar) [23]. In some 
sense, the latter approach can be seen as an extreme example of 
the grammar based, variable-to-fixed length coding we propose in 
this paper. Constructing a grammar that derives only the input text 
is like building an interpreter that can interpret only a single 
program. 

8. SUMMARY 
This paper describes a system that automatically designs and 
implements compact bytecoded instruction sets by rewriting a 
grammar for a simple stack-based bytecode. Substantial savings 
over recent research, over the initial bytecode, and over machine 
code have been shown, and opportunities for further 
improvements remain, via more sophisticated grammar 
transformations as well as more sophisticated implementation 
strategies. 

9. REFERENCES 
[1] B. Abali, H. Franke, D. E. Poff, and T. B. Smith. 

Performance of hardware compressed main memory. 
                                                                 
1 The last subsequence in the partition may be a prefix of a 

sequence in the dictionary. 



 

Research report RC21799, IBM T. J. Watson Research 
Center (July 2000). 

[2] M. Adler and J.-l.. Gailly. The gzip home page. 
http://www.gzip.org. 

[3] C. Benveniste, P. Franaszek, and J. Robinson. Cache-
memory interfaces in compressed memory systems. Research 
report RC21662, IBM T. J. Watson Research Center (Feb. 
2000). 

[4] R. D. Cameron. Source encoding using syntactic information 
models. IEEE Transactions on Information Theory, 34(4) 
pp.843-850 (1988). 

[5] Y. Choueka, S. T. Klein, and Y. Perl. Efficient variants of 
Huffman codes in high level languages. Proc. of the 8th 
Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, pp.122-130 (June 
1985). 

[6] Connectix Corp. RAM Doubler 9. 
http://www.connectix.com/products/rd9.html, (Nov. 2000). 

[7] K. D. Cooper and N. McIntosh. Enhanced code compression 
for embedded RISC processors. PLDI, pp.139-149 (May 
1999). 

[8] S. K. Debray, W. Evans, R. Muth, and B. de Sutter. 
Compiler techniques for code compaction. TOPLAS, 22(2) 
pp.378-415 (March 2000). 

[9] J. Earley. An efficient context-free parsing algorithm. 
Communications of the ACM, 13(2) pp.94-102 (Feb. 1970). 

[10] P. Eck, X. Changsong, and R. Matzner. A new compression 
scheme for syntactically structured messages (programs) and 
its application to Java and the internet. Proc. Data 
Compression Conference (poster session), p.542 (1998). 

[11] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. 
Proebsting. Code compression. PLDI, pp.358-365 (June 
1997). 

[12] W. Evans. Compression via guided parsing. Proc. Data 
Compression Conference (poster session), p.544 (1998). 
http://www.cs.arizona.edu/people/will/papers/ 

[13] M. Franz and T. Kistler. Slim Binaries. Communications of 
the ACM, 40(12) pp.87-94 (Dec. 1997). 

[14] C. W. Fraser. Automatic inference of models for statistical 
code compression. PLDI, pp.242-246 (May 1999). 

[15] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: 
Design and Implementation. Addison Wesley Longman, 
1995. 

[16] C. W. Fraser and T. A. Proebsting. Custom instruction sets 
for code compression. Unpublished (October 1995). 
http://www.research.microsoft.com/~toddpro/ 

[17] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de 
Wiel. A code compression system based on pipelined 
interpreters. Softw. Pract. Exper., 29(11) pp.1005-1023 
(1999). 

[18] D. Huffman. A method for the construction of minimum 
redundancy codes. Proc. of IRE, 40 pp.1098-1101 (1952). 

[19] J. M. Lake. Prediction by grammatical match. Proc. Data 
Compression Conference, pp.153-162 (March, 2000). 

[20] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing code size 
with run-time decompression. Proceedings of the 6th 
International Symposium on High-Performance Computer 
Architecture (HPCA) (Jan 2000). 

[21] S. Y. Liao. Code generation and optimization for embedded 
digital signal processors. Ph.D. thesis, MIT (1996). 

[22] S. Lucco. Split-stream dictionary program compression. 
PLDI, pp. 27-34 (June 2000). 

[23] C. G. Nevill-Manning. Inferring sequential structure. Ph.D. 
thesis, University of Waikato, (1996). 

[24] T. A. Proebsting. Optimizing an ANSI C interpreter with 
superoperators. POPL, pp.322-332 (Jan. 1995). 

[25] I. Tabus, G. Korodi, and J. Rissanen. Text compression 
based on variable-to-fixed codes for Markov sources. Proc. 
Data Compression Conference, pp.133-141 (March, 2000). 

[26] B. P. Tunstall. Synthesis of noiseless compression codes. 
Ph.D. thesis, Georgia Inst. Technology (1967). 

[27] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for 
compressed caching in virtual memory systems. USENIX 
Technical Conference (June 1999). 

Appendix 1. Initial instruction set. 
The table below describes the un-typed or generic operators from 
the initial instruction set. The only changes from lcc [15] are 
literals and LocalCALL operators, which Section 3 describes, 
and comparisons. lcc comparisons accept two comparands and a 
literal branch address, but the comparisons here accept two 
comparands and push a flag for BrTrue, which accepts the literal 
branch address. 
The type suffixes are: V for void or no value, C and S for char 
and short, I and U for signed and unsigned integers, F and D 
for single- and double-precision floating-point numbers, P for 
pointers, and B for instructions that operate on blocks of memory. 
The grammar in Appendix 2 shows the valid combinations of the 
type suffixes with the generic operators below and also shows 
how many literal bytes, if any, follow each operator. 

Operator Comment 

ADD DIV SUB MUL Arithmetic. 

BAND BOR BXOR Bit-wise Booleans. 

BCOM Bit-wise negation. 

NEG Arithmetic negation. 

CVD Convert from double. 

CVF Convert from float. 

CVI Convert from int. 

CVI1 CVI2 Sign-extend char, short. 

CVU1 CVU2 Zero-extend char, short. 

EQ GE GT LE LT NE Compare and push 0 or 1. 

LSH MOD RSH Shifts, remainder 



 

INDIR Pop p, push *p. 

ASGN Pop p and v, copy v to *p. 

ADDRF Push address of formal. 

ADDRG Push address of global. 

ADDRL Push address of local. 

JUMP Pop label number, jump. 

ARG Top is next outgoing argument. 

LocalCALL CALL RET Calls, return. 

POP Discard top element. 

LIT[1234] Push 1, 2, 3, or 4 literal bytes. 

BrTrue Pop flag. Jump if true. 

 

Appendix 2. Initial bytecode grammar. 
The grammar for the initial bytecode groups operators based on 
their effect on the evaluation stack. Non-terminals that end in 0, 1, 
and 2 denote leaf, unary and binary operators. Such non-terminals 
that begin with “v” collect operators that yield a value; those that 
begin with “x” collect operators that push no result and thus are 
executed for a side-effect (e.g. JUMPV). For example, an operator 
that removes two values from the stack is grouped under the non-
terminal <x2>. An operator that removes one value and pushes 
one value is grouped with <v1>. 

<start> =
<start> = <start> <x>

<v> = <v0>
<v> = <v> <v1>
<v> = <v> <v> <v2>

<x> = <x0>
<x> = <v> <x1>
<x> = <v> <v> <x2>

<v2> = ADDD | DIVD | MULD | SUBD
<v2> = ADDF | DIVF | MULF | SUBF
<v2> = DIVI | MODI | MULI
<v2> = ADDU | DIVU | MODU | MULU | SUBU
<v2> = BANDU | BORU | BXORU
<v2> = EQD | GED | GTD | LED | LTD | NED
<v2> = EQF | GEF | GTF | LEF | LTF | NEF
<v2> = GEI | GTI | LEI | LTI
<v2> = EQU | GEU | GTU | LEU | LTU | NEU
<v2> = LSHI | LSHU | RSHI | RSHU

<v1> = BCOMU
<v1> = CALLD | CALLF | CALLU
<v1> = CVDF | CVDI | CVFD | CVFI
<v1> = CVID | CVIF
<v1> = CVI1I4 | CVI2I4 | CVU1U4 | CVU2U4
<v1> = INDIRC | INDIRS | INDIRU
<v1> = INDIRD | INDIRF
<v1> = NEGD | NEGF | NEGI

<v0> = ADDRFP <byte> <byte>
<v0> = ADDRGP <byte> <byte>
<v0> = ADDRLP <byte> <byte>
<v0> = LocalCALLD <byte> <byte>
<v0> = LocalCALLF <byte> <byte>
<v0> = LocalCALLU <byte> <byte>
<v0> = LIT1 <byte>
<v0> = LIT2 <byte> <byte>
<v0> = LIT3 <byte> <byte> <byte>
<v0> = LIT4 <byte> <byte> <byte> <byte>

<x2> = ASGNB | ASGNC | ASGNS | ASGNU
<x2> = ASGND | ASGNF

<x1> = ARGB | ARGD | ARGF | ARGU
<x1> = BrTrue <byte> <byte> | CALLV
<x1> = POPD | POPF | POPU
<x1> = RETD | RETF | RETU

<x0> = JUMPV <byte> <byte>
<x0> = LocalCALLV <byte> <byte>
<x0> = RETV

<byte> = 0 | 1 | … | 255

Appendix 3. Packaging the bytecodes 
For each procedure f, the system creates two vectors, which hold 
the compressed bytecodes and the table of branch offsets: 

static unsigned char _f_code[] = { … }
static short _f_labels[] = { … };

 
A global table of procedure descriptors packages pointers to these 
vectors with the procedure’s framesize: 

proc _procs[] = {
{ 12, _f_code, _f_labels },
…

 
For procedures that need a trampoline, the system also creates a 
procedure that passes to the interpreter the index of the 
procedure’s descriptor and the address of the block of incoming 
arguments: 

int f(unsigned arg1) {
return interpret(0, &arg1).i;

}
 
The generated procedure’s signature differs from the original 
procedure’s—namely, it takes only a single, unsigned argument—
but we use an x86 calling convention that passes all arguments in 
contiguous memory, and the address of the first argument is all 
that the interpreter needs to access all arguments. The interpreter 
returns a C union of the primitive C datatypes. The “.i” above 
picks out the type that this particular procedure returns. 
Finally, the system creates a global table of the addresses of 
global variables: 

void *_globals[] = {
&malloc,
…


