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Abstract. Let R be a set of n red points and B be a set of n blue points in
the Euclidean plane. We study the problem of computing a planar drawing of a
cycle of minimum length that contains vertices at points R ∪ B and alternates
colors. When these points are collinear, we describe aΘ(n logn)-time algorithm
to find such a shortest alternating cycle where every edge has at most two bends.
We extend our approach to compute shortest alternating paths inO(n2) time with
two bends per edge and to compute shortest alternating cycles on 3-colored point-
sets in O(n2) time with O(n) bends per edge. We also prove that for arbitrary
k-colored point-sets, the problem of computing an alternating shortest cycle is
NP-hard, where k is any positive integer constant.

1 Introduction

A recent paper by Chan et al. [5] studies the problem of computing a planar
drawing of an n-vertex planar graph such that the vertex locations are given as
part of the input and the drawing has minimum total edge length. The problem
is known to be NP-hard [4] in general and Chan et al. describe different poly-
nomial time approximation algorithms for paths, matchings, and general planar
graphs. They also give a polynomial time exact algorithm for paths on fixed
positions that lie on a line, which computes a planar drawing where all edges
are monotone in a common direction and each edge can be represented by a
poly-line having O(n) bends.

In this paper we consider a variant of the problem by Chan et al. where the
position for each vertex is not fixed, but it can be chosen by the algorithm as
one in a given subset of a point set. To be precise, we are given a k-colored
graph (i.e., a graph where each vertex is one of k different colors) and we want
to compute a planar drawing of the graph on a given k-colored point-set so that
vertices are mapped to distinct points of the same color and the total edge length
is minimized.
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We mainly focus on drawing shortest alternating 2-colored (bicolored) paths
and cycles and collinear point-sets. But we also consider the case of more than
two colors and the case that the points are non-collinear. Our main results are:

– Let R be a set of n red points and B be a set of n blue points such that
R ∪ B is a set of distinct and collinear points. We describe a Θ(n log n)-
time sweep-line algorithm to compute a planar drawing of an alternating
cycle of minimum length on R ∪B such that every edge is a poly-line with
at most two bends.

– We adapt the approach for cycles to the problem of computing a shortest al-
ternating path on a bicolored set of collinear points. We describe an O(n2)-
time algorithm that solves the problem by computing drawings with at most
two bends per edge.

– We extend the study to 3-colored collinear point-sets and describe anO(n2)-
time algorithm to compute shortest alternating cycles (visiting the colors in
cyclic order) such that every edge has O(n) bends.

– We consider non-collinear point-sets and prove that computing a shortest al-
ternating cycle is NP-hard in the general case of k-colored point-sets, where
k > 1 is a given constant.

From a technical point of view, our drawing algorithms are based on the
idea of computing an alternating topological book embedding of a path or cycle
such that the number of edges that are intersected by any cut is minimum. This
approach seems to be specific for two and three colors, since we also present an
example with four colors where an alternating cycle of minimum length cannot
match the cut lower bound that we use for fewer than four colors.

1.1 Related Work and Paper Organization

The problem of computing a planar alternating path or a planar alternating cycle
on R ∪ B has a long tradition in graph drawing and computational geometry.
While the interested reader may refer to the survey by Kaneko and Kano [11]
for a list of early references, we briefly recall here some of the milestone re-
sults. Akiyama and Urrutia [2] study straight-line alternating paths when R∪B
is in convex position; they exhibit a set of sixteen points for which a straight-
line alternating path does not exist and present an O(n2)-time algorithm to test
when a straight-line alternating path on points in convex position exists. Abel-
lanas et al. [1] show that if either the convex hull of R ∪ B consists of all
red points and no blue points or there exists a line that separates all blue points
from red ones, then a straight-line alternating path always exists. Kaneko, Kano,
and Suzuki [12] characterize those point sets in general position for which a



straight-line alternating path always exists: If R ∪ B consists of at most twelve
points or if it consists of exactly fourteen points, then a straight-line alternat-
ing path always exists; for all other cases, there exist configurations of red and
blue points for which a straight-line alternating path does not exist. These early
results about straight-line alternating paths have motivated further research on
computing alternating paths and cycles when the edges can bend. Di Giacomo
et al. [8] proved that every point set admits an alternating path and an alternating
cycle with at most one bend per edge; the result is based on projecting the points
on a horizontal line and then computing a book embedding on this line before
mapping the edges back to the original points.

The results above have motivated further research where either bicolored
graph families other than paths or cycles have been studied or more than two
colors have been considered, or both. For graph families other than paths or
cycles, the input is a bicolored planar graph G together with a bicolored set of
points in the plane and the goal is to compute a planar drawing of G such that
every red vertex is mapped to a red point and every blue vertex is mapped to
a blue point and either each edge is a straight-line segment or it has a constant
number of bends. See, for example, [6, 9, 13, 10, 14]. For more than two colors
(see, e.g., [7, 8]), the input is k point sets each with the same cardinality and the
goal is to compute an alternating path/cycle on the entire set of points; that is, a
planar drawing of a path/cycle containing the given points and such that the ith
point on the cycle comes from the (i mod k)th set. In the extreme case, one is
given n colors modeled as n numbers from 1 to n and the goal is to compute a
planar drawing of a path or cycle that touches the vertices in increasing order.
In other words, the n-colored version of the problem is the same as asking for a
planar drawing of a graph where the location of the vertices is specified as part of
the input. A seminal result in this context is due to Pach and Wenger [15] who
prove that linearly many bends per edge are always sufficient and sometimes
necessary for n-colored paths and n-colored point-sets in convex position. Their
drawing technique applies to general n-colored planar graphs and the number
of bends per edge was improved by Badent et al. [3].

The remainder of the paper is organized as follows. An overview of our al-
gorithmic approach is presented in Section 2. Section 3 describes the algorithm
for shortest alternating cycles on collinear red-blue points. Shortest alternating
paths on collinear red-blue points are studied in Section 4. Shortest alternating
cycles on more than two colors and the proof of hardness for general k-colored
point-sets is in Section 5. Finally, open problems are listed in Section 6. For
reasons of space, some proofs have been sketched and will be available in the
full version of the paper.



2 Overview of the Algorithmic Approach

Let R be a set of n distinct red points and B be a set of n distinct blue points
in the Euclidean plane. An alternating cycle (alternating path) is a drawing of
a cycle (path) such that the vertex set of the drawing is the set R ∪ B and such
that no two vertices having the same color are adjacent. The drawing is planar
if no two edges cross. The length of the cycle (path) is the sum of the lengths of
its edges. A shortest alternating cycle (path) is one of minimum length. In this
paper we are interested in computing shortest planar alternating cycles (paths).
Since the problem is NP-hard for general point sets (Section 5), we focus on
collinear point-sets and assume that the line through the point set, called the
spine, is horizontal.

A set of n blue points and n red points on a line define 2n + 1 intervals,
two of which are infinite. Assume we have a (not necessarily optimal) planar
drawing of an alternating cycle (path). Consider a vertical line in any interval
and count how many edges of the cycle (path) are intersected by the line. If we
multiply the length of each finite interval by the number of edges that are inter-
sected by a vertical line through the interval and then sum up all the obtained
numbers, we obtain a lower bound on the length of the cycle. Therefore, we aim
at computing an alternating cycle (path) C such that for any vertical line `, the
number of edges ofC cut by ` is the minimum over all alternating cycles (paths).
In addition, no two edges of C cross and every edge is a poly-line consisting of
at most three segments (i.e., it has at most two bends). For brevity, in what fol-
lows we will often say alternating cycle (path) to mean planar alternating cycle
(path).

Based on the observation above, the problem turns into the computation of
a special type of topological book embedding, such that every edge can cross
the spine at most once and such that the number of edges that span any interval
between two consecutive points along the spine is minimum. Every edge of such
a topological book embedding can be represented as a poly-line with at most
two bends. We recall that a topological book embedding is a planar drawing of
a graph such that all vertices are points of a line called the spine and the edges
are simple Jordan arcs.

It is worth remarking that we are interested in solving the combinatorial
problem of finding an order in which a shortest alternating cycle (path) visits the
colored points, and the embedding of its edges. Once this is found, a planar al-
ternating cycle (path) of minimum length can be computed by making the edges
“as flat as possible” around the spine, that is by making the distance between
each edge and the spine tend to zero. Hence when we say that we “compute the
shortest cycle (path)”, we mean that we compute an ordering and embedding for
which such a cycle (path) exists.



3 Shortest Alternating Cycle on Collinear Red-Blue Points

Following the approach of Section 2, we start by giving a lower bound on the
number of edges of any alternating cycle intersected by a vertical line. Next, we
present a sweep-line algorithm to compute a topological book embedding such
that every interval is spanned by the minimum number of edges and such that
every edge crosses the spine at most once.

A lower bound lemma. The following lemma establishes the lower bound that
will be used to prove the optimality of the alternating cycles.

Lemma 1. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and lie on the x-axis. Let ` be a vertical line that
intersects the x-axis between two points of R ∪ B. If there are r red points and
b blue points to the left of `, then any alternating cycle on R ∪ B crosses ` at
least 2max{1, |r − b|} times.

Proof. LetC be an alternating cycle onR∪B and `− be the halfplane to the left
of `. In each component of C ∩ `−, the number of points of one color can be at
most one more than the number of points of another color. Thus, the minimum
number of components of C to the left of ` is |r − b|. If the line ` lies between
two vertices of C (i.e. it is not to the left of the leftmost vertex of C and it is
not to the right of the rightmost vertex of C), then the number of components to
the left of ` is also at least one, and the number of edges of C that intersect ` is
twice the number of components in C ∩ `−.

A sweep-line algorithm. We now describe a sweep-line algorithm that com-
putes the shortest alternating cycle of a set of n red points and n blue points
lying on the horizontal line y = 0, called the spine. We call our algorithm
Spine-Sweep.

Spine-Sweep first orders the points by increasing x-coordinate and then
it sweeps a vertical cut line ` across the points. The algorithm maintains a set
of disjoint curves to the left of `, each of which has both endpoints, called ter-
minals, on `. These curves are the connected components of the intersection of
some shortest alternating cycle with the halfplane, `−, to the left of `. The termi-
nals are colored red or blue depending on the color of the closest colored point
on the curve. Terminals above the spine are positive and those below are nega-
tive; this is called the sign of the terminal. If both terminals of a component have
the same sign, then this is the sign of the component, otherwise the component
straddles the spine. The distance of a component to the spine is the minimum
number of terminals between one of its terminals and the spine. Two terminals



are adjacent if the segment connecting them contains no other terminals. Note
that these definitions are with respect to the current sweep-line `; the distance
of a component to the spine, for example, may change as the line ` moves.

During the sweep, components are created or merged when ` encounters a
colored point. By carefully selecting which components to create and merge and
how to merge them, the algorithm maintains the following invariants:

P1. If there is exactly one component and its terminals have different colors,
then its terminals have different signs.

P2. If there are more than two terminals, then they all have the same color.
P3. The two closest components to the spine do not have the same sign.

When the algorithm encounters a colored point, p, it either forks a new com-
ponent, if p’s color matches the color of all terminals (or there are no terminals),
otherwise it merges p with one or two existing components creating a single
new component. We describe these two cases under the assumption that the en-
countered point p is blue. Symmetric operations hold if p is red. In the next two
figures, the terminals are drawn as squares; also, light/dark vertices are red/blue.

` `

`′

(a) (c1) (c2)(b)

`′

`

`′

`

`′ `′

(d1)

p p p p

(d2)

`′

Fig. 1. The top row shows the initial configurations (the symmetric versions of (b) and (d) are not
shown). The bottom row shows the possible configurations after merging. (a) Fork. One compo-
nent is shown in the initial configuration but there may be many or none as long as all terminals
are blue. The two new terminals are closest to the spine. (b-d) Merge with one component. All
components are shown. Cases (c2) and (d2) only occur when p is the last colored point.

Fork. If there are no red terminals, we create a new component containing (blue)
p that straddles the spine and has adjacent (blue) terminals. See Fig. 1(a).
Merge. If there are red terminals, we create a new component that contains
(blue) p. If there is only one component, we add p to that component by extend-
ing the edge from the closest red terminal to p. If p is not the last colored point,
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Fig. 2. Merge with two components. The top row shows the four basic configurations (the sym-
metric versions of (b) and (d) are not shown). The bottom row shows the possible configurations
after merging.

we add a new edge from p to a new (blue) terminal so that the new component
straddles the spine. If p is the last colored point, we extend the edge from the
other (red) terminal to p. See Fig. 1.

If there are at least two components, then by property P2 all their terminals
are red. Let K and J be the two closest components to the spine. We extend
the edges from a terminal from K and a terminal from J to p. We choose the
terminals and route the edges from all terminals to ensure that our invariant
properties remain true.

By property P3 and the fact that components do not intersect, the config-
uration of the two closest components to the spine is one of the four shown
schematically in the top row of Fig. 2. For two of these configurations, (c) and
(d) in Fig. 2, we extend the edges from the closest terminals to the spine from
K and J to p, and extend all other terminals horizontally. In the other two con-
figurations, we choose how to merge based on the sign of the closest component
to the spine after the merge that is not the newly merged component. If this
component is negative, we merge to form configuration (a1) or (b1) in Fig. 2.
Otherwise, we merge to form configuration (a2) or (b2) in Fig. 2. This is used
to preserve property P3.

Notice that forming configuration (b1) in Fig. 2 causes an edge of the alter-
nating cycle (shown in bold) to cross the spine. We ensure that this edge is not
forced to cross the spine again which implies that each edge of the alternating
cycle produced by the algorithm can be drawn with at most two bends.

Main theorem. We prove that Spine-Sweep computes an alternating cy-
cle C such that each edge crosses the spine at most once and no two edges



cross each other. Also, any vertical line ` that intersects C, does so exactly
2max{1, |r−b|} times, where r and b denote the number of red and blue points
to the left of `. Therefore, by using Lemma 1 and the observations that: (i) each
fork/merge operation can be executed in constant time (for example by using
a stack to maintain the components sorted according to their distance from the
spine); and (ii) the red and blue points must be sorted in increasing x-order, we
obtain the following.

Theorem 1. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and collinear. There exists an optimalΘ(n log n)-
time algorithm that computes a planar alternating cycle of minimum length with
at most two bends per edge.

Note that the time complexity of Theorem 1 is worst-case optimal. Namely,
if the red and blue points alternate along the spine, computing a shortest alter-
nating cycle is equivalent to computing a circular sorting of the point set.

4 Shortest Alternating Paths on Collinear Red-Blue Points

We can also obtain a shortest alternating path on a set of n red and n blue points
that are all distinct and collinear, provided we are given the endpoints. The ap-
proach is the same as in the cycle case: we prove a lower bound on the number
of times any alternating path with these endpoints intersects a vertical line ` and
use essentially the same algorithm to find an alternating path that matches the
bound. The lower bound is complicated slightly by the path endpoints.

Lemma 2. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and lie on the x-axis. Let ` be a vertical line that
intersects the x-axis between two points of R ∪ B. If there are r red points and
b blue points to the left of `, then the number of times any alternating path on
R ∪B crosses ` is at least:

2max{1, |r − b|} if both path endpoints are on the same side of `,

1 + 2max{b− r, r − b− 1} if only the red path endpoint is left of `,

1 + 2max{r − b, b− r − 1} if only the blue path endpoint is left of `.

Proof. If both path endpoints are on the same side of `, the proof is the same as
in the cycle case. If only the red path endpoint is left of `, then its component
can have at most one more red point than blue points, and at most zero more
blue points than red points. Thus, if r > b this component can account for one
of the excess r − b red points, while if b > r, it cannot account for any of the
excess b− r blue points. This component crosses ` once; all others cross twice.
If only the blue path endpoint is left of `, a symmetric argument applies.



To find a shortest alternating path between two given endpoints, we can use
a modification of Spine-Sweep. More precisely, a fork operation on a vertex
of degree one gives rise to a component with only one terminal and a merge
operation on a vertex of degree one joins the closest terminal of the closest
component. The main difference with the approach described in the previous
section is that we may have an odd number of terminals during some steps of
the sweep-line procedure, which however does not change the reasoning behind
either the proof of correctness or the time complexity.

Lemma 3. Given a set R of n red points and a set B of n blue points such that
all points are distinct and collinear, and given u ∈ R and v ∈ B, there exists a
Θ(n log n)-time algorithm that computes a planar alternating path of minimum
length with at most two bends per edge that starts at u and ends at v.

Suppose we want to find the shortest alternating path but it may start and
end at any pair of points. While one might think that a shortest alternating path
always starts at the leftmost red (blue) point and always ends at the rightmost
blue (red) point, this is not always the case. For example, the point set of Fig. 3
has an alternating path in Fig. 3(a) whose length is minimal if it is required that
both endpoints are extremal but it is not as short as the one in Fig. 3(b).

(a) path of length 8

(b) path of length 7

Fig. 3. Alternating paths. (Note the scale – fractional units are used)

To find the best endpoints, we may use the fact that our algorithm matches
the lower bound described in Lemma 2. Let ri and bi be the number of red and
blue points, respectively, among the first (leftmost) i colored points in R ∪ B.
(Note: ri + bi = i.) Let ci = 2max{1, |ri − bi|}, si = 1 + 2max{bi − ri, ri −
bi−1}, and ti = 1+2max{ri− bi, bi− ri−1}. Let di be the distance between
the ith and (i + 1)st colored points. If the path starts at the jth and ends at the
kth colored point, then its minimum length is the sum of the lower bounds from



Lemma 2 weighted by the distance between adjacent colored points:

P [j, k] =

{∑j−1
i=1 dici +

∑k−1
i=j disi +

∑n−1
i=k dici if jth point is red∑j−1

i=1 dici +
∑k−1

i=j diti +
∑n−1

i=k dici if jth point is blue
.

We can find the indices of different colored points 1 6 j < k 6 n that minimize
P [j, k] in O(n2) time by calculating ci, si, ti, and di for all i in linear time;
tabulating the partial sums

∑j−1
i=1 dici (for all j) and

∑n−1
i=k dici (for all k) in

linear time; and tabulating
∑k−1

i=j disi and
∑k−1

i=j diti (for all pairs 1 6 j < k 6
n) in quadratic time. Once we know the endpoints of the shortest alternating
path, we can find the actual path using Lemma 3.

Theorem 2. Given a setR of n red points and a setB of n blue points such that
all points are distinct and collinear, there exists an O(n2)-time algorithm that
computes a planar alternating path of minimum length such that no two edges
cross and each edge has at most two bends.

5 Extensions and Generalizations

In this section we discuss how to extend the described approaches to more than
two colors and we consider the case where the points are not collinear.

Shortest alternating paths and cycles with more than two colors. Consider
3-colored collinear point-sets. We use the colors red, green and blue, denoted by
r, g and b. An alternating cycle is a cycle that connects points in the order rgbrgbr
etc. For ease of presentation we consider the cycle oriented in this direction. The
following lemma and theorems are the 3-color version of Lemma 1 and of the
approaches illustrated in the previous sections for 2-colored point-sets. Proofs
are omitted.

Lemma 4. Let R, G and B be sets of n red, n green and n blue points that are
all distinct and lie on the x-axis. Any alternating cycle C on R∪G∪B, crosses
a vertical line, `, between two colored points at least 2max{1, |r − g|, |g −
b|, |b− r|} times, when there are r red, g green and b blue points to the left of `.

Theorem 3. Let R, G and B be sets of n red, n green and n blue points such
that all points are distinct and lie on the x-axis. A shortest planar alternating
path (cycle) having O(n) bends per edge can be computed in O(n2) time.

It is natural to ask whether one can construct alternating shortest paths and
cycles for collinear point-sets having more than three colors with an approach



that computes drawings which satisfy generalizations of Lemmas 1 and 4. It is
not hard to see that this is not the case even for 4-colored point-sets.

Assume that we have eight points and that we want to embed an alternating
cycle with four colors. Figure 4 shows that for any sweep-line there is a solution
that crosses this sweep-line exactly twice. So all lower-bounds are 2. However
it is not hard to see that there is no embedding that satisfies all lower-bounds
simultaneously.

a b c d b a c d

a b c d b a c d

Fig. 4. 4-colored cycles on a set of eight points.

Non-collinear point sets. We show that finding the shortest alternating cycle
is NP-hard by showing that deciding if there is a shortest alternating cycle of
length less than L is NP-hard. Our reduction is from the EXACT COVER prob-
lem: Given a family F of subsets of a finite set U , is there a subfamily F ′ of F ,
consisting of disjoint sets, such that

⋃
S∈F ′ S = U .

Theorem 4. Given a k-colored point-set for constant k > 1, it is NP-hard to
find the shortest planar alternating cycle.

Proof. If k = 1, shortest planar alternating cycle is Euclidean TSP, which is
NP-hard [16]. If k = 2, we describe a polynomial time reduction from EXACT
COVER that is a slight modification of the reduction by Papadimitriou [16]
showing that Euclidean TSP is NP-hard. Let P be the point set obtained from
Papadimitriou’s reduction from the EXACT COVER instance, rotated slightly
so that no points share the same x- or y-coordinate. If the EXACT COVER
instance is solvable, the shortest tour of P has length L (see [16]), while if it is
not solvable, the shortest tour of P has length at least L +

√
a2 + 1 − a where

a = 20. Choose 0 < ε 6 (
√
a2 + 1 − a)/(10(n + 1)) to be smaller than

half the smallest difference between the x- or y-coordinates of points in P . Let
R = (P + (−ε,−ε)) ∪ (P + (ε, ε)) and B = (P + (−ε, ε)) ∪ (P + (ε,−ε))
(where P + (x, y) = {(px + x, py + y)|p ∈ P}). That is, each point p ∈ P
becomes a cluster of four points (two red and two blue) forming the corners of
a square S(p) of side-length 2ε centered at p.

If the EXACT COVER instance is solvable, there is a planar alternating
tour of R ∪B of length at most L+ 10εn < L+

√
a2 + 1− a. The alternating



tour follows the shortest tour of P from cluster to cluster. Within the cluster for
p, it follows three of the four sides of S(p), leaving one side whose endpoints
connect to the two neighbors of the cluster. It is not hard to verify that one may
choose such a side for each cluster so that the resulting alternating tour is planar.
Its length is at most L + (6 +

√
2)εn < L + 10εn < L +

√
a2 + 1 − a. If the

instance is not solvable, any alternating tour of R ∪ B is at least as long as the
shortest tour of R = P , which has length at least L+

√
a2 + 1−a. Thus R∪B

has an alternating tour of length at most L +
√
a2 + 1 − a if and only if the

EXACT COVER instance is solvable.
If k > 2, the reduction is the same except that inside each square are 2(k −

2) points (two of each color other than red and blue). These points lie on the
diagonal that connects the red corners of the square, with one point of color i
at distance iε/(k − 2) from each corner, for i = 1, 2, . . . , k − 2. (Red is color
0 and blue is color k − 1.) The resulting alternating tour, which uses paths of
diagonal points in place of the two red-to-blue sides in each square, has length
at most L+ (5

√
2 + 2)εn < L+

√
a2 + 1− a.

6 Open Problems

The research in this paper suggests several open problems. We conclude the
paper by listing some of those that in our opinion are among the most inter-
esting. (1) Can the time complexity of Theorem 2 be improved? (2) Can the
bend-complexity of Theorem 3 be improved? (3) The problem of computing
shortest alternating cycles on collinear k-colored point-sets is open for k > 3.
(4) Study the problem of drawing not necessarily alternating shortest bicolored
cycles/paths on collinear bicolored point-sets. That is, we are given a cycle/path
where any blue (red) vertex may have a neighbor of its same color and we want
to draw the cycle/path using the points of R ∪B such that the total edge length
is minimized.
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