
Daniel Busto
Ericsson, Montreal, Canada

Will Evans n
David Kirkpatrick

University of British Columbia, Canada

MINIMIZING INTERFERENCE
POTENTIAL

AMONG MOVING ENTITIES

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

Suppose we know their positions now.

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

Suppose we know their positions now.

1 time step later
potential locations

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

Suppose we know their positions now.

2 time steps later
potential locations

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

Suppose we know their positions now.

3 time steps later
potential locations

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

3 time steps later
potential locations

Potential
interference

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

3 time steps later
potential locations

Interference!

Moving entities
Airplanes Smart phones Mobile transmitters

Equi-sized balls in Rd that move with bounded speed.

3 time steps later
potential locations

No interference

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 0

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 1

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 1

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 2

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 2

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 3

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 3

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 4

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 4

Goal: Minimize potential interference

How: Query one entity per time step for its position

?

t = 5

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 5

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 6

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 6

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 7

?

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 7

Goal: Minimize potential interference

How: Query one entity per time step for its position

t = 7

Goal: Minimize potential interference

How: Query one entity per time step for its position

Related Goals:

Minimize queries to calculate some function of entities
Kahan ’91, Erlebach&Hoffmann ’15 (survey)

Query reveals partial information
Kirkpatrick ’09 (hyperbolic dovetailing)

Measures of potential interference

Measures of potential interference

Ply: max number of regions covering any point

Measures of potential interference

Ply: max number of regions covering any point

4

ply=4

= 4

Measures of potential interference

ply=4

Clique number of intersection graph

Measures of potential interference

ply=4

Clique number of intersection graph = 5

≤ clique=5

Measures of potential interference

ply=4 ≤ clique=5

Chromatic number of intersection graph

Measures of potential interference

ply=4 ≤ clique=5

Chromatic number of intersection graph = 5

≤ chromatic = 5

Measures of potential interference

ply=4 ≤ clique=5

Max degree of intersection graph

≤ chromatic = 5

Measures of potential interference

ply=4 ≤ clique=5

Max degree of intersection graph

≤ degree +1 = 8

= 7

≤ chromatic = 5

Theorem. For n entities, the Adaptive Bucket
Strategy keeps degree O(x∗) during any time
interval T = [a, b] where x∗ is the maximum ply
observed by the best strategy over the interval
[a− |T |, b], provided |T | > cdn.

Our main result

Query to reduce interference potential

at a target time [E,K,Löffler,Staals ’16]

A B C D E F G

Static entities

Query to reduce interference potential

at a target time [E,K,Löffler,Staals ’16]

A B C D E F G

Optimal: Query EABFGCD

A B C D E F G

ti
m

e

NP-complete even
for static entities

Static entities

Query to reduce interference potential

at a target time [E,K,Löffler,Staals ’16]

A B C D E F G

ti
m

e

Repeat

Ω(
√
n)

Query to reduce interference potential

at all times [this paper]

e1 e2 e3 e4 e5 e6 e7

Let’s start with static point entities e1, . . . , en.

Query to reduce interference potential

at all times [this paper]

e1 e2 e3 e4 e5 e6 e7

Let’s start with static point entities e1, . . . , en.

11

x-radius ri(x) = distance from ei to its xth-nearest entity

ri(1) 7 3 3 8 7 7

To keep degree < x, must query ei every ri(x) steps.

e5

If
∑n
i=1

1
ri(x)

> 1 this is impossible.
Observation{

x-density

The congestion of a set E of entities is
xE = max{x|

∑
ei∈E

1
ri(x)

> 1}.

Unavoidable interference

Theorem. Any query strategy for n static
entities E suffers ply Ω(xE) at some time in
any n consecutive time steps.

Algorithm to avoid interference

ri(x)
3 ei

ej

ri(x)

Let x = k(xE + 1)

Idea: Query entity ei so its uncertainty region
has radius < ri(k(xE + 1))/3.

⇒ max degree ≤ x

Weighted Round Robin

If ej ’s region intersects ei’s then
ej is nbrx of ei.

Algorithm to avoid interference

Theorem. For static entities, Weighted
Round Robin maintains degree O(xE) at all
times.

Theorem. Any query strategy for n static
entities E suffers ply Ω(xE) at some time in
any n consecutive time steps.

Algorithm to avoid interference

Theorem. For static entities, Weighted
Round Robin maintains degree O(xE) at all
times.

Theorem. Any query strategy for n static
entities E suffers ply Ω(xE) at some time in
any n consecutive time steps.

Theorem. For n static point entities E , if ωE is
the minimum ply achievable at some target time,
xE ∈ O(ωE logd(n/ωE)) and for some such E this
is tight.

Dynamic entities
Complications due to movement:

1. Strategy knows perceived (last queried)
location rather than true (current) location

2. Congestion xE varies over time

Bucket Strategy for fixed tolerance x

Idea: Schedule ei for a future time interval (bucket)
based on perceived x-radius r̃i(x, t) when queried.

time

Bucket Strategy for fixed tolerance x

Idea: Schedule ei for a future time interval (bucket)
based on perceived x-radius r̃i(x, t) when queried.

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

t

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e2

e4

e3e1

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

e2

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

e2

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

e2

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e4

e3e1

e2

e4? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e2

e4

e4

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e2

e4

e4

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e2

e4

e4

? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e2

e4

e4

e2? ? ? ?

t

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e4

e4

e2

e2

? ? ? ?

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e4

e4

e2

e2

t
? ? ? ?

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e4

e4

e2

e2

t
? ? ? ?

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3e1

e4

e4

e2

e2

t
e1? ? ? ?

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3

e4

e4

e2

e2

t
e1

e1

? ? ? ?

Bucket Strategy for fixed tolerance x

time

Query entity ei from shortest active bucket
Move ei to next bucket of length 2b

where b = blg(r̃i(x, t)/Q)c

Repeat for all time t

e2

e3

e4

e4

e2

e2

t
e1

e1

e2e2e4e2

If any ending bucket is uncleared, fail

Unavoidable interference - moving entities

Lemma. For any time interval T with |T | ≥ |E|,
if
∑
t∈T

∑
ei∈E

1
ri(x,t)

≥ cd|T | then any query

strategy suffers ply Ω(x) at some time in T .

Sustained x-density implies high ply

Unavoidable interference - moving entities

Lemma. For any time interval T with |T | ≥ |E|,
if
∑
t∈T

∑
ei∈E

1
ri(x,t)

≥ cd|T | then any query

strategy suffers ply Ω(x) at some time in T .

Theorem. If the Bucket Strategy fails then
any query strategy suffers ply Ω(x) at some
time in the uncleared bucket’s time interval.

Sustained x-density implies high ply

Unavoidable interference - moving entities

Lemma. For any time interval T with |T | ≥ |E|,
if
∑
t∈T

∑
ei∈E

1
ri(x,t)

≥ cd|T | then any query

strategy suffers ply Ω(x) at some time in T .

Theorem. If the Bucket Strategy fails then
any query strategy suffers ply Ω(x) at some
time in the uncleared bucket’s time interval.

Theorem. If the Bucket Strategy does not
fail over time interval T then it keeps degree
at most x during T .

Sustained x-density implies high ply

Adaptive Bucket Strategy when congestion may vary

If Bucket Strategy fails using tolerance x, we
can increase tolerance to 2x knowing ply Ω(x)
is unavoidable

1.

Adaptive Bucket Strategy when congestion may vary

If Bucket Strategy fails using tolerance x, we
can increase tolerance to 2x knowing ply Ω(x)
is unavoidable

but queries made using tolerance x may prevent
success using 2x (even when 2x is possible).

1.

Adaptive Bucket Strategy when congestion may vary

If Bucket Strategy fails using tolerance x, we
can increase tolerance to 2x knowing ply Ω(x)
is unavoidable

but queries made using tolerance x may prevent
success using 2x (even when 2x is possible).

If Bucket Strategy is not failing using tolerance x,
when do we try to achieve x/2?

2.

1.

Adaptive Bucket Strategy when congestion may vary

If Bucket Strategy fails using tolerance x, we
can increase tolerance to 2x knowing ply Ω(x)
is unavoidable

but queries made using tolerance x may prevent
success using 2x (even when 2x is possible).

If Bucket Strategy is not failing using tolerance x,
when do we try to achieve x/2?

2.

1.

perform speculative queries in parallel

Future Work

A simpler optimal strategy

A distributed optimal strategy

Other measures of interference potential

Future Work

A simpler optimal strategy

A distributed optimal strategy

Other measures of interference potential

Thank you

Unavoidable interference

Lemma. If
∑
ei∈E

1
ri(x)

≥ 4κd then any

query strategy suffers ply ≥ x/2 at some
time in any |E| consecutive time steps.

kissing in dim d

Unavoidable interference

Lemma. If
∑
ei∈E

1
ri(x)

≥ 4κd then any

query strategy suffers ply ≥ x/2 at some
time in any |E| consecutive time steps.

ti
m

e

ei

> x/2 nbrsx queried
during box (or ply ≥ x/2
at ei at end of box)

ri(x)

ri(x)

kissing in dim d

Suppose not...

Unavoidable interference

Lemma. If
∑
ei∈E

1
ri(x)

≥ 4κd then any

query strategy suffers ply ≥ x/2 at some
time in any |E| consecutive time steps.

#boxes ≥
∑
ei∈Eb

|E|
ri(x)
c

ti
m

e

ei

> x/2 nbrsx queried
during box (or ply ≥ x/2
at ei at end of box)

ri(x)

ri(x)

kissing in dim d

Suppose not...

Unavoidable interference

Lemma. If
∑
ei∈E

1
ri(x)

≥ 4κd then any

query strategy suffers ply ≥ x/2 at some
time in any |E| consecutive time steps.

Each entity is nbrx of at
most xκd entities ei.

#boxes ≥
∑
ei∈Eb

|E|
ri(x)
c

ti
m

e

ei

> x/2 nbrsx queried
during box (or ply ≥ x/2
at ei at end of box)

ri(x)

ri(x)

kissing in dim d

Suppose not...

geometric lemma

Unavoidable interference

Lemma. If
∑
ei∈E

1
ri(x)

≥ 4κd then any

query strategy suffers ply ≥ x/2 at some
time in any |E| consecutive time steps.

Each entity is nbrx of at
most xκd entities ei.

#boxes ≥
∑
ei∈Eb

|E|
ri(x)
c

|E| =#queries ≥ 1
xκd

x
2 #boxes

> |E|
4κd

∑
ei∈E

1
ri(x)

≥ |E|
⇒⇐

ti
m

e

ei

> x/2 nbrsx queried
during box (or ply ≥ x/2
at ei at end of box)

ri(x)

ri(x)

kissing in dim d

Suppose not...

geometric lemma

Adapt to larger tolerance

Rough idea: Run multiple Bucket Strategies in parallel

time

tolerance x
frequency 1/2

tolerance 2x
frequency 1/4

tolerance 4x
frequency 1/8

Adapt to larger tolerance

Rough idea: Run multiple Bucket Strategies in parallel
Failure of any implies ply Ω(x) unavoidable [scaling lem]

time

tolerance x
frequency 1/2

tolerance 2x
frequency 1/4

tolerance 4x
frequency 1/8

Adapt to larger tolerance

Rough idea: Run multiple Bucket Strategies in parallel
Failure of any implies ply Ω(x) unavoidable [scaling lem]

time

Stop strategy for x and divvy up its frequency

tolerance 2x
frequency 1/2

tolerance 4x
frequency 1/4

Adapt to larger tolerance

Rough idea: Run multiple Bucket Strategies in parallel
Failure of any implies ply Ω(x) unavoidable [scaling lem]

time

Stop strategy for x and divvy up its frequency

tolerance 2x
frequency 1/2

tolerance 4x
frequency 1/4

Empty all active buckets to special queues

Adapt to smaller tolerance

In parallel with everything else,
Round-robin query all entities.

Rough idea:

Adapt to smaller tolerance

In parallel with everything else,
Round-robin query all entities.

Rough idea:

Let E0 be those that are not (x/2)-safe for n steps
If |E0| > n/2 then restart
If |E0| = 0 then add Bucket Strategy x/2

region cannot contain more than
x/2 entities in the next n steps

Adapt to smaller tolerance

In parallel with everything else,
Round-robin query all entities.

Rough idea:

Let E0 be those that are not (x/2)-safe for n steps
If |E0| > n/2 then restart
If |E0| = 0 then add Bucket Strategy x/2

Round-robin query Ek−1 for n/2k steps
Let Ek be those that are not (x/2)-safe for n/2k steps
If |Ek| > n/2k then restart
If |Ek| = 0 then add Bucket Strategy x/2

for k = 1 to lg(n)

