MINIMIZING INTERFERENCE POTENTIAL AMONG MOVING ENTITIES

Daniel Busto Ericsson, Montreal, Canada

Will Evans ◀》 David Kirkpatrick University of British Columbia, Canada

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed. Suppose we know their positions now.

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed. Suppose we know their positions now.

potential locations 1 time step later

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed. Suppose we know their positions now.

potential locations 2 time steps later

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed. Suppose we know their positions now.

potential locations
3 time steps later

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed.

Potential interference potential locations 3 time steps later

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed.

• Airplanes • Smart phones • Mobile transmitters Equi-sized balls in \mathbb{R}^d that move with bounded speed.

Goal: Minimize potential interference

How: Query one entity per time step for its position

$$t = 1$$

$$t=2$$

Related Goals:

Minimize queries to calculate some function of entities Kahan '91, Erlebach&Hoffmann '15 (survey) Query reveals partial information Kirkpatrick '09 (hyperbolic dovetailing)

Ply: max number of regions covering any point

Ply: max number of regions covering any point = 4

4

Measures of potential interference Clique number of intersection graph ply=4

Clique number of intersection graph = 5

Chromatic number of intersection graph

Chromatic number of intersection graph = 5

ply=4 \leq clique=5 \leq chromatic = 5

Max degree of intersection graph

 $ply=4 \leq clique=5 \leq chromatic = 5$

Max degree of intersection graph = 7

 $ply=4 \leq clique=5 \leq chromatic = 5 \leq degree +1 = 8$

Our main result

Theorem. For n entities, the Adaptive Bucket Strategy keeps **degree** $O(x^*)$ during any time interval T = [a, b] where x^* is the maximum **ply** observed by the best strategy over the interval [a - |T|, b], provided $|T| > c_d n$. Query to reduce interference potential at a target time [E,K,Löffler,Staals '16]

Static entities

Query to reduce interference potential at all times [this paper] Let's start with static point entities e_1, \ldots, e_n .

 $e_1 \qquad e_2 \qquad e_3 \ e_4 \qquad e_5$

Query to reduce interference potential at **all** times [this paper] Let's start with static point entities e_1, \ldots, e_n .

Unavoidable interference

The congestion of a set \mathcal{E} of entities is $x_{\mathcal{E}} = \max\{x | \sum_{e_i \in \mathcal{E}} \frac{1}{r_i(x)} > 1\}.$

Theorem. Any query strategy for n static entities \mathcal{E} suffers **ply** $\Omega(x_{\mathcal{E}})$ at some time in any n consecutive time steps.

Algorithm to avoid interference Weighted Round Robin Idea: Query entity e_i so its uncertainty region has radius $< r_i(k(x_{\mathcal{E}}+1))/3$. Let $x = k(x_{\mathcal{E}} + 1)$ $\bullet e_j$ If e_j 's region intersects e_i 's then $r_i(x)$ $r_i(x)$ e_i is nbr_x of e_i . \Rightarrow max **degree** \leq ${\mathcal X}$

Algorithm to avoid interference

Theorem. Any query strategy for n static entities \mathcal{E} suffers **ply** $\Omega(x_{\mathcal{E}})$ at some time in any n consecutive time steps.

Theorem. For static entities, Weighted Round Robin maintains **degree** $O(x_{\mathcal{E}})$ at all times. Algorithm to avoid interference

Theorem. Any query strategy for n static entities \mathcal{E} suffers **ply** $\Omega(x_{\mathcal{E}})$ at some time in any n consecutive time steps.

Theorem. For static entities, Weighted Round Robin maintains **degree** $O(x_{\mathcal{E}})$ at all times.

Theorem. For n static point entities \mathcal{E} , if $\omega_{\mathcal{E}}$ is the minimum ply achievable at some target time, $x_{\mathcal{E}} \in O(\omega_{\mathcal{E}} \log^d(n/\omega_{\mathcal{E}}))$ and for some such \mathcal{E} this is tight.

Dynamic entities

Complications due to movement:

- 1. Strategy knows **perceived** (last queried) location rather than true (current) location
- 2. Congestion $x_{\mathcal{E}}$ varies over time

Bucket Strategy for fixed tolerance x

Idea: Schedule e_i for a future time interval (**bucket**) based on perceived x-radius $\tilde{r}_i(x, t)$ when queried.

Bucket Strategy for fixed tolerance x

Idea: Schedule e_i for a future time interval (**bucket**) based on perceived x-radius $\tilde{r}_i(x, t)$ when queried.

Repeat for all time tQuery entity e_i from shortest active bucket Move e_i to next bucket of length 2^b where $b = |\lg(\tilde{r}_i(x,t)/Q)|$

Bucket Strategy for fixed tolerance x

Repeat for all time t

Query entity e_i from shortest active bucket Move e_i to next bucket of length 2^b where $b = |\lg(\tilde{r}_i(x,t)/Q)|$

Bucket Strategy for fixed tolerance x

Repeat for all time t

Query entity e_i from shortest active bucket Move e_i to next bucket of length 2^b where $b = |\lg(\tilde{r}_i(x,t)/Q)|$

Unavoidable interference - moving entities Sustained x-density implies high ply Lemma. For any time interval T with $|T| \ge |E|$, if $\sum_{t \in T} \sum_{e_i \in \mathcal{E}} \frac{1}{r_i(x,t)} \ge c_d |T|$ then any query strategy suffers ply $\Omega(x)$ at some time in T. Unavoidable interference - moving entities Sustained x-density implies high ply Lemma. For any time interval T with $|T| \ge |E|$, if $\sum_{t \in T} \sum_{e_i \in \mathcal{E}} \frac{1}{r_i(x,t)} \ge c_d |T|$ then any query strategy suffers ply $\Omega(x)$ at some time in T.

Theorem. If the Bucket Strategy fails then any query strategy suffers **ply** $\Omega(x)$ at some time in the uncleared bucket's time interval. Unavoidable interference - moving entities Sustained x-density implies high ply Lemma. For any time interval T with $|T| \ge |E|$, if $\sum_{t \in T} \sum_{e_i \in \mathcal{E}} \frac{1}{r_i(x,t)} \ge c_d |T|$ then any query strategy suffers ply $\Omega(x)$ at some time in T.

Theorem. If the Bucket Strategy fails then any query strategy suffers **ply** $\Omega(x)$ at some time in the uncleared bucket's time interval.

Theorem. If the Bucket Strategy does not fail over time interval T then it keeps **degree** at most x during T.

1. If Bucket Strategy fails using tolerance x, we can increase tolerance to 2x knowing ply $\Omega(x)$ is unavoidable

1. If Bucket Strategy fails using tolerance x, we can increase tolerance to 2x knowing ply $\Omega(x)$ is unavoidable

but queries made using tolerance x may prevent success using 2x (even when 2x is possible).

1. If Bucket Strategy fails using tolerance x, we can increase tolerance to 2x knowing ply $\Omega(x)$ is unavoidable

but queries made using tolerance x may prevent success using 2x (even when 2x is possible).

2. If Bucket Strategy is not failing using tolerance x, when do we try to achieve x/2?

1. If Bucket Strategy fails using tolerance x, we can increase tolerance to 2x knowing ply $\Omega(x)$ is unavoidable

but queries made using tolerance x may prevent success using 2x (even when 2x is possible).

2. If Bucket Strategy is not failing using tolerance x, when do we try to achieve x/2?

perform speculative queries in parallel

Future Work

A simpler optimal strategy

A distributed optimal strategy

Other measures of interference potential
Future Work

A simpler optimal strategy

A distributed optimal strategy

Other measures of interference potential

Thank you

Unavoidable interference

—kissing in dim d

Lemma. If $\sum_{e_i \in \mathcal{E}} \frac{1}{r_i(x)} \ge 4\kappa_d$ then any query strategy suffers $\mathbf{ply} \ge x/2$ at some time in any $|\mathcal{E}|$ consecutive time steps.

time

Rough idea: Run multiple Bucket Strategies in parallel

Rough idea: Run multiple Bucket Strategies in parallel Failure of any implies ply $\Omega(x)$ unavoidable [scaling lem]

time

Rough idea: Run multiple Bucket Strategies in parallel Failure of any implies ply $\Omega(x)$ unavoidable [scaling lem] Stop strategy for x and divvy up its frequency

frequency 1/4tolerance 4xfrequency 1/2tolerance 2x

Rough idea: Run multiple Bucket Strategies in parallel Failure of any implies ply $\Omega(x)$ unavoidable [scaling lem] Stop strategy for x and divvy up its frequency

• Empty all active buckets to special queues

Adapt to smaller tolerance

Rough idea: In parallel with everything else, Round-robin query all entities.

Adapt to smaller tolerance

Rough idea: In parallel with everything else, Round-robin query all entities.

Let E_0 be those that are **not** (x/2)-safe for n steps If $|E_0| > n/2$ then restart If $|E_0| = 0$ then add Bucket Strategy x/2

region cannot contain more than x/2 entities in the next n steps

Adapt to smaller tolerance

Rough idea: In parallel with everything else, Round-robin query all entities.

Let E_0 be those that are **not** (x/2)-safe for n steps If $|E_0| > n/2$ then restart If $|E_0| = 0$ then add Bucket Strategy x/2

for k = 1 to $\lg(n)$

Round-robin query E_{k-1} for $n/2^k$ steps Let E_k be those that are **not** (x/2)-safe for $n/2^k$ steps If $|E_k| > n/2^k$ then restart If $|E_k| = 0$ then add Bucket Strategy x/2