
Cold Code Decompression at Runtime
Saumya Debray and William S. Evans

any devices such as palm-

tops, cell phones, embedded

controllers, etc. have a limited

amount of memory due to space, weight,

power consumption, or price

considerations. At the same time, there

is an increasing desire to use more and

more sophisticated software in these

devices, such as encryption software in

cell phones, speech/image processing

software in palm-tops, fault diagnosis

software in embedded processors, etc.

An application or collection of

applications that require more memory

than is available will not be able to run.

It becomes crucial to reduce the

application’s runtime memory

requirements for both instructions and

data – its memory footprint – where

possible. Rather than altering the

performance of the software, we focus

on compression techniques to reduce the

overall memory footprint by reducing

the space required for instructions.

Most compression schemes strive to

produce the smallest possible encoding

of their inputs. Executable program

compaction insists on an extra condition:

that the compacted representation itself

is executable. This condition severely

limits the compression techniques that

can be used to compact code, and

consequently results in poorer

compression ratios than unlimited

compression schemes can achieve. In

fact, beyond eliminating useless and

redundant instructions, code reuse is the

primary tool in the program compactor’s

toolbox. What happens if even after

aggressive compaction, a program is still

too large to execute on a chosen, limited

memory platform?

One option is to back away from

insisting on an executable compressed

representation and adopt an interpretable

representation. We pay a substantial

price in speed of execution, but the

interpreted representation is typically

much more succinct and it (like the

executable representation) doesn’t

require decompression before execution.

A compromise solution is to leave time-

critical or frequently executed portions

of the program in an executable form

and to interpret only non-time-critical

parts. Hoogerbrugge et al. describe such

a system [Hoo99]. Of course, the

program representation now includes an

interpreter that may be quite sizable.

Another option is to modify the

architecture of the execution platform

either adding compact instructions that

the hardware expands into an executable

form prior to execution (like the ARM

Thumb or MIPS16 instructions) or

decompressing cache lines as they are

brought into the instruction cache

[Ben98]. This is fast but has the obvious

disadvantage of requiring architectural

modifications that may not be possible.

The option that we explore in this paper

is a purely software-based technique that

decompresses selected code fragments

dynamically during program execution

from an unexecutable to an executable

form [Deb02]. We use profiling

information from the original,

uncompressed program to choose code

fragments that are infrequently executed.

This limits the effect of the time

M

overhead involved in dynamic

decompression on the execution speed of

the entire program. Lefurgy et al.

describe a similar, though not purely

software-based, technique that

decompresses single cache lines into the

instruction cache on an instruction cache

miss [Lef00]. Kirovski et al.

decompress whole procedures, at

runtime, into a procedure cache, without

considering execution frequencies

[Kir97]. The cache must be able to hold

the largest procedure, which can be quite

large, and must be substantially larger to

achieve reasonable execution speeds.

Since the cache size contributes to the

overall memory requirements of the

program, at such a granularity decreases

in total memory size are difficult to

obtain.

Runtime decompression

Our work exploits the property that for

most programs, a large fraction of the

code is infrequently executed. The

expectation is that the better

compression of the infrequently

executed code will contribute to a

significant improvement in overall size

reduction, but that the increased

decompression effort will not lead to a

significant runtime penalty.

Figure 1 shows the basic organization of

code in our system. Consider a program

with three infrequently executed

functions,1 f, g and h, as shown in

Figure 1(a). The structure of the code

after compression is shown in Figure

1(b). The code for each of these

functions is replaced by a stub (a very

short sequence of instructions) that

invokes a decompressor whose job is to

1 Our implementation compresses code

fragments that may be smaller than functions

but, for now, we will use functions as our

compressible unit.

decompress the code for a function into

the runtime buffer and then to transfer

control to this decompressed code. A

function offset table specifies the

location within the compressed code

where the code for a given function

starts. The stub for each compressed

function passes an argument to the

decompressor that is an index into this

table; this argument is indicated in

Figure 1(b) by the label ([0], [1], etc.)

on the edge from each stub to the

decompressor. The decompressor uses

this argument to index into the function

offset table, retrieve the start address of

the compressed code for the appropriate

function, and start generating

uncompressed executable code into the

runtime buffer. The decompressor then

transfers control to the code it has

generated in the runtime buffer. When

this decompressed function finishes its

execution, it returns to its caller in the

usual way.

This method partitions the original

program code into two parts.

Infrequently executed functions (such as

f, g, and h) are placed in a compressed

code part, while frequently executed

functions remain in a never-compressed

part. The stub code that manages control

transfers to compressed functions must

also lie in the never-compressed part.

It is important to note that when

comparing the space usage of the

original and compressed programs, the

latter must take into account the space

occupied by the stubs, the decompressor,

the function offset table, the compressed

code, the runtime buffer, and the never-

compressed original program code.

Managing the buffer

One tricky part is managing the contents

of the runtime buffer. Suppose that in

Figure 1 the code for f contains a call to

g. Since f is compressed, the call site

is in the runtime buffer when the call is

executed. As described above, this call

will be to the stub for g and the code for

g will be decompressed into the runtime

buffer and executed as expected. What

happens when g returns? The return

address points to the instruction

following the call in f. This is a

problem: the instructions for f were

overwritten when g was decompressed.

The return address points to a location in

the runtime buffer that now contains g's

code.

The question that we have to address,

therefore, is: If a function call is

executed from the runtime buffer, how

can we guarantee that the correct code

will be executed when the call returns?

We may simply avoid the problem by

refusing to compress any function whose

body contains any function calls. We

reject this option because it severely

limits the amount of code that can be

compressed.

We may decide never to overwrite a

decompressed function. This

conceptually resembles the behavior of

just-in-time compilers that translate

interpretable code to native code

[Adl98]. An alternative is to discard the

decompressed function when it is no

longer on the call stack, since at this

point we can be certain that it will not be

returned to. This is the approach taken

by Lucco [Luc00], though rather than

immediately discarding a function after

execution, he caches the function in the

hope that it might be re-executed. The

Smalltalk-80 system also extracts an

executable version of a function from an

intermediate representation when the

procedure is first invoked [Deu84]. It

caches the executable code, and only

discards it to prevent the system from

running out of memory. The main

drawback with this approach is that the

runtime buffer must be made large

enough to hold all of the decompressed

functions that can possibly coexist on the

call stack. This can be quite large.

When a decompressed function f calls a

function g from within the runtime

buffer, we allow the decompressor to

overwrite f's code within the buffer.

This has the benefit that we only need a

runtime buffer large enough to hold the

code for the largest compressed function.

For correctness, we must restore f's

code to the buffer after the call to g

returns but before control is transferred

to the appropriate instruction within f.

Since we don't have any additional

storage area where f's code could be

cached, restoring f's code to the runtime

buffer requires that it be decompressed

again. This means that when control

returns from g, it must first be diverted

to the decompressor, which can then

decompress f and transfer control to it.

The decompressor must also be given an

additional argument specifying to where

control should be transferred in the

decompressed function, since the

program may (re-)enter f at some

instruction other than its entry point.

To know which function to restore after

g’s return, we create at runtime, when g

is called, a temporary restore stub that

exists only until g returns. The transfer

to g is prefaced with code that generates

the restore stub and makes the return

address of the original call point to this

stub. Then an unconditional jump or

branch is made to g.

If every control transfer from

compressed code created a restore stub,

we would, in effect, be maintaining a

call stack of calls from compressed code.

Instead, we create only one restore stub

for a particular call site in compressed

code and maintain a usage count for that

restore stub to determine when the stub

is no longer needed. In effect, this

implements a simple reference-count-

based garbage collection scheme for

restore stubs.

Compression & Decompression

Our primary consideration in choosing a

compression scheme is minimizing the

size of the compressed functions. We

would like to achieve good compression

even on very short sequences of

instructions since the functions we may

want to compress can be very small. A

second consideration is the size of the

decompressor itself since it becomes part

of the memory footprint of the program.

Finally, the decompressor must be fast

since it is invoked every time control

transfers to a compressed function that is

not already in the runtime buffer. Since

the functions that we choose to compress

have a low execution count, we don't

expect to invoke the decompressor too

often during execution. A faster

decompressor, however, means we can

tolerate the compression of more

frequently executed code which, in turn,

leads to greater compression

opportunities.

 The compression technique that we use

is a simplified version of the “splitting

streams” approach [Ern97]. To compress

a sequence of machine instructions, each

of which contains an opcode field and

several operand fields, we first split the

sequence into separate streams of values,

one per field type, by extracting, for

each field type, the sequence of field

values of that type from successive

instructions. We then compress each

stream separately.

To reconstruct the instruction sequence,

we decompress an opcode from the

opcode stream. This tells us the field

types of the instruction, and we obtain

the field values from the corresponding

streams. We repeat this process until the

opcode stream is empty.

We compress each stream by encoding

each field value in the stream using a

Huffman code that is optimal for the

stream. This is a two-pass process. The

first pass calculates the frequency of the

field values and constructs the Huffman

code. The second pass encodes the

values using the code. Since the

Huffman code is designed for each

stream, it must be stored along with the

encoded stream in order to permit

decompression.

We use a variant of Huffman encoding

called canonical Huffman encoding that

permits fast decompression yet uses little

memory [Wit94]. The space required by

a compressed function is approximately

66% of its original size. We might

achieve better compression or faster

decompression using a different scheme,

but these typically require a more

complex and larger decompression

algorithm.

Compressible Regions

The “functions” that we use as a unit of

compression and decompression may not

agree with the functions specified by the

program. It is often the case that a

program-specified function will contain

some frequently-executed code that

should not be compressed, and some

infrequently-executed (cold) code that

should be compressed. If the unit of

compression is the program-specified

function then the entire function cannot

be compressed if it contains any code

that cannot be considered for

compression. As a result, the amount of

code available for compression may be

significantly less than the total amount

of cold code in the program.

In addition, the runtime buffer must be

large enough to hold the largest

decompressed function. A single large

function may often account for a

significant fraction of the cold code in a

program. Having a runtime buffer large

enough to contain this function can

offset most of the space-savings due to

compression.

To address this issue, we create

“functions” from arbitrary code regions

and allow these regions to be

compressed and decompressed. This

means that control transfers into and out

of a compressed region of code may no

longer follow the call/return model for

functions. For example, we may have to

contend with a conditional branch that

goes from one compressed region of

code to another, different, compressed

region. Since the runtime buffer holds

the code of at most one such region at

any time, a branch from one region to

another must now go through a stub that

invokes the decompressor. This is not a

terrible complication. A compressed

region might have multiple entry points,

each of which requires an entry stub, but

in all other ways it is the same as an

original function. For instance, function

calls from within a compressed region

are still handled as discussed in Section

3.

We now face the problem of how to

choose regions to compress. We want

these regions to be reasonably small so

that the runtime buffer can be small, yet

we want few control transfers between

different regions so that the number of

entry stubs is small. This is a hard

optimization problem and we resort to a

simple heuristic. We first label basic

blocks as hot or cold depending on the

number of executed instructions they

contribute to the total number T of

executed instructions in the program’s

profiled execution. Let the weight of a

basic block be the number of times it is

executed times its size (number of

instructions). For a threshold θ, a block

is θ-cold if its weight plus the weight of

all lighter basic blocks is less than θT.

We also fix an upper bound K on the

size of the runtime buffer (our current

implementation uses an empirically

chosen value of K = 512 bytes). We

create an initial set of regions by

performing depth-first search in the

control flow graph. We limit the depth-

first search so that it produces a tree that

contains at most K instructions and is

composed of θ-cold blocks from a single

function. If it is profitable to compress

the set of blocks in the tree, we make

this tree a compressible region;

otherwise, we mark the root of the tree

so that we never re-initiate a depth-first

search from it (though it might be visited

in a subsequent depth-first search

starting from a different block). We

continue the depth-first search until all

θ-cold blocks have been visited.

To decide if a region containing I

instructions is profitable to compress, we

compare the number of instructions

saved by compressing the region (about

I/3) with the number of instructions E

added for entry stubs. If E < I/3, the

region is profitable to compress.

Potential

Our ideas have been implemented in the

form of a binary-rewriting tool called

squash that is based on squeeze, a

compactor of Compaq Alpha binaries

[Deb00]. Squeeze is based on alto, a

post-link-time code optimizer [Mut01].

Squeeze alone compacts binaries that

have already been space optimized to

about 70% of their original size on

average. Squash, using the runtime

decompression scheme outlined in this

paper, compacts squeezed binaries to

about 80-86% of their squeezed size on

average. Overall, compression using

both squeeze and squash produces

executables that are about 60-65% of

their original size on average. The

concomitant effect on execution time

ranges from a very slight speedup for θ =

0.0 to execution times 127% of the

original for θ = 0.00005, on average.

Figures 2 and 3 show the effects of

changes in the cold code threshold on

the size and execution time of the

resulting squashed binaries for several

programs taken from the MediaBench

benchmark suite; a collection of

applications suitable for limited memory

platforms. The inputs used to profile

these programs differed from the inputs

used to obtain the execution times, yet

the cold portions of the program were

similar. It is also possible to prevent the

compression of certain time-critical

portions of the program in order to

preserve real-time performance.

(a) Original (b) Compressed

Figure 1. Code organization before and after compression.

Figure 2. Effect of profile-guided compression on code size.

Figure 3. Effect of profile-guided compression on execution time.

[1] [Adl98] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stichnoth. Fast,

Effective Code Generation in a Just-in-Time Java Compiler. Proc. SIGPLAN Conference on

Programming Language Design and Implementation, pages 280-290, June 1998.

[2] [Wit94] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes: Compressing and Indexing

Documents and Images, Van Nostrand Reinhold, 1994.

[3] [Ben98] M. Beneš, S. M. Nowick, and Andrew Wolfe. A fast asynchronous Huffman decoder for

compressed-code embedded processors. In Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems, September 1998.

[4] [Deb00] S. K. Debray, W. Evans, R. Muth, and B. de Sutter. Compiler Techniques for Code

Compaction. ACM Transactions on Programming Languages and Systems 22(2), pages 378-415,

March 2000.

[5] [Deu84] P. Deutsch and A. Schiffman. Efficient implementation of the Smalltalk-80 system. In

Proc. Symp. on Principles of Programming Languages, pages 297-302, January 1984.

[6] [Ern97] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting. Code compression. In SIGPLAN

Conference on Programming Language Design and Implementation, pages 358-365, June 1997.

[7] [Hoo99] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. Van De Wiel. A Code Compression
System Based on Pipelined Interpreters. Software Practice and Experience 29(1), pages 1005-1023,

1999.

[8] [Lef00] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing Code Size with Run-Time

Decompression. Proc. HPCA 2000, pages 218-227, January 2000.

[9] [Luc00] S. Lucco. Split-stream dictionary program compression. In Proc. SIGPLAN Conference on

Programming Language Design and Implementation, pages 27-34, June 2000.

[10] [Mut01] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere. alto: A Link-Time Optimizer

for the DEC Alpha. Software-Practice and Experience, 31(1), pages 67-101, January 2001.

[11] [Deb02] S. Debray and W. Evans. Profile-guided code compression. In Proc. SIGPLAN

Conference on Programming Language Design and Implementation, pages 95-105, June 2002.

[12] [Kir97] D. Kirovski, J. Kin, and W. H. Mangione-Smith. Procedure based program compression. In

Proc. International Symposium on Microarchitecture, pages 204-213, 1997.

