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any devices such as palm-

tops, cell phones, embedded 

controllers, etc. have a limited 

amount of memory due to space, weight, 

power consumption, or price 

considerations.  At the same time, there 

is an increasing desire to use more and 

more sophisticated software in these 

devices, such as encryption software in 

cell phones, speech/image processing 

software in palm-tops, fault diagnosis 

software in embedded processors, etc.  

An application or collection of 

applications that require more memory 

than is available will not be able to run.  

It becomes crucial to reduce the 

application’s runtime memory 

requirements for both instructions and 

data – its memory footprint – where 

possible.  Rather than altering the 

performance of the software, we focus 

on compression techniques to reduce the 

overall memory footprint by reducing 

the space required for instructions. 

Most compression schemes strive to 

produce the smallest possible encoding 

of their inputs.  Executable program 

compaction insists on an extra condition: 

that the compacted representation itself 

is executable.  This condition severely 

limits the compression techniques that 

can be used to compact code, and 

consequently results in poorer 

compression ratios than unlimited 

compression schemes can achieve.  In 

fact, beyond eliminating useless and 

redundant instructions, code reuse is the 

primary tool in the program compactor’s 

toolbox.  What happens if even after 

aggressive compaction, a program is still 

too large to execute on a chosen, limited 

memory platform? 

One option is to back away from 

insisting on an executable compressed 

representation and adopt an interpretable 

representation.  We pay a substantial 

price in speed of execution, but the 

interpreted representation is typically 

much more succinct and it (like the 

executable representation) doesn’t 

require decompression before execution.   

A compromise solution is to leave time-

critical or frequently executed portions 

of the program in an executable form 

and to interpret only non-time-critical 

parts.  Hoogerbrugge et al. describe such 

a system [Hoo99].  Of course, the 

program representation now includes an 

interpreter that may be quite sizable. 

Another option is to modify the 

architecture of the execution platform 

either adding compact instructions that 

the hardware expands into an executable 

form prior to execution (like the ARM 

Thumb or MIPS16 instructions) or 

decompressing cache lines as they are 

brought into the instruction cache 

[Ben98].  This is fast but has the obvious 

disadvantage of requiring architectural 

modifications that may not be possible. 

The option that we explore in this paper 

is a purely software-based technique that 

decompresses selected code fragments 

dynamically during program execution 

from an unexecutable to an executable 

form [Deb02].  We use profiling 

information from the original, 

uncompressed program to choose code 

fragments that are infrequently executed.  

This limits the effect of the time 

M 



overhead involved in dynamic 

decompression on the execution speed of 

the entire program. Lefurgy et al. 

describe a similar, though not purely 

software-based, technique that 

decompresses single cache lines into the 

instruction cache on an instruction cache 

miss [Lef00].  Kirovski et al. 

decompress whole procedures, at 

runtime, into a procedure cache, without 

considering execution frequencies 

[Kir97].  The cache must be able to hold 

the largest procedure, which can be quite 

large, and must be substantially larger to 

achieve reasonable execution speeds.  

Since the cache size contributes to the 

overall memory requirements of the 

program, at such a granularity decreases 

in total memory size are difficult to 

obtain. 

Runtime decompression 

Our work exploits the property that for 

most programs, a large fraction of the 

code is infrequently executed.  The 

expectation is that the better 

compression of the infrequently 

executed code will contribute to a 

significant improvement in overall size 

reduction, but that the increased 

decompression effort will not lead to a 

significant runtime penalty. 

Figure 1 shows the basic organization of 

code in our system.  Consider a program 

with three infrequently executed 

functions,1 f, g and h, as shown in 

Figure 1(a). The structure of the code 

after compression is shown in Figure 

1(b). The code for each of these 

functions is replaced by a stub (a very 

short sequence of instructions) that 

invokes a decompressor whose job is to 

                                                 
1 Our implementation compresses code 

fragments that may be smaller than functions 

but, for now, we will use functions as our 

compressible unit. 

decompress the code for a function into 

the runtime buffer and then to transfer 

control to this decompressed code.  A 

function offset table specifies the 

location within the compressed code 

where the code for a given function 

starts.  The stub for each compressed 

function passes an argument to the 

decompressor that is an index into this 

table; this argument is indicated in 

Figure 1(b) by the label ([0], [1], etc.) 

on the edge from each stub to the 

decompressor.  The decompressor uses 

this argument to index into the function 

offset table, retrieve the start address of 

the compressed code for the appropriate 

function, and start generating 

uncompressed executable code into the 

runtime buffer.  The decompressor then 

transfers control to the code it has 

generated in the runtime buffer. When 

this decompressed function finishes its 

execution, it returns to its caller in the 

usual way.  

This method partitions the original 

program code into two parts. 

Infrequently executed functions (such as 

f, g, and h) are placed in a compressed 

code part, while frequently executed 

functions remain in a never-compressed 

part.  The stub code that manages control 

transfers to compressed functions must 

also lie in the never-compressed part.   

It is important to note that when 

comparing the space usage of the 

original and compressed programs, the 

latter must take into account the space 

occupied by the stubs, the decompressor, 

the function offset table, the compressed 

code, the runtime buffer, and the never-

compressed original program code.   

Managing the buffer 

One tricky part is managing the contents 

of the runtime buffer.  Suppose that in 

Figure 1 the code for f contains a call to 



g.  Since f is compressed, the call site 

is in the runtime buffer when the call is 

executed. As described above, this call 

will be to the stub for g and the code for 

g will be decompressed into the runtime 

buffer and executed as expected. What 

happens when g returns? The return 

address points to the instruction 

following the call in f.  This is a 

problem: the instructions for f were 

overwritten when g was decompressed.  

The return address points to a location in 

the runtime buffer that now contains g's 

code.  

The question that we have to address, 

therefore, is: If a function call is 

executed from the runtime buffer, how 

can we guarantee that the correct code 

will be executed when the call returns? 

We may simply avoid the problem by 

refusing to compress any function whose 

body contains any function calls.  We 

reject this option because it severely 

limits the amount of code that can be 

compressed. 

We may decide never to overwrite a 

decompressed function.  This 

conceptually resembles the behavior of 

just-in-time compilers that translate 

interpretable code to native code 

[Adl98].  An alternative is to discard the 

decompressed function when it is no 

longer on the call stack, since at this 

point we can be certain that it will not be 

returned to. This is the approach taken 

by Lucco [Luc00], though rather than 

immediately discarding a function after 

execution, he caches the function in the 

hope that it might be re-executed. The 

Smalltalk-80 system also extracts an 

executable version of a function from an 

intermediate representation when the 

procedure is first invoked [Deu84].  It 

caches the executable code, and only 

discards it to prevent the system from 

running out of memory. The main 

drawback with this approach is that the 

runtime buffer must be made large 

enough to hold all of the decompressed 

functions that can possibly coexist on the 

call stack. This can be quite large. 

When a decompressed function f calls a 

function g from within the runtime 

buffer, we allow the decompressor to 

overwrite f's code within the buffer.  

This has the benefit that we only need a 

runtime buffer large enough to hold the 

code for the largest compressed function.  

For correctness, we must restore f's 

code to the buffer after the call to g 

returns but before control is transferred 

to the appropriate instruction within f. 

Since we don't have any additional 

storage area where f's code could be 

cached, restoring f's code to the runtime 

buffer requires that it be decompressed 

again.  This means that when control 

returns from g, it must first be diverted 

to the decompressor, which can then 

decompress f and transfer control to it.  

The decompressor must also be given an 

additional argument specifying to where 

control should be transferred in the 

decompressed function, since the 

program may (re-)enter f at some 

instruction other than its entry point. 

To know which function to restore after 

g’s return, we create at runtime, when g 

is called, a temporary restore stub that 

exists only until g returns.  The transfer 

to g is prefaced with code that generates 

the restore stub and makes the return 

address of the original call point to this 

stub. Then an unconditional jump or 

branch is made to g. 

If every control transfer from 

compressed code created a restore stub, 

we would, in effect, be maintaining a 

call stack of calls from compressed code.  



Instead, we create only one restore stub 

for a particular call site in compressed 

code and maintain a usage count for that 

restore stub to determine when the stub 

is no longer needed.  In effect, this 

implements a simple reference-count-

based garbage collection scheme for 

restore stubs.   

Compression & Decompression  

Our primary consideration in choosing a 

compression scheme is minimizing the 

size of the compressed functions. We 

would like to achieve good compression 

even on very short sequences of 

instructions since the functions we may 

want to compress can be very small. A 

second consideration is the size of the 

decompressor itself since it becomes part 

of the memory footprint of the program. 

Finally, the decompressor must be fast 

since it is invoked every time control 

transfers to a compressed function that is 

not already in the runtime buffer. Since 

the functions that we choose to compress 

have a low execution count, we don't 

expect to invoke the decompressor too 

often during execution. A faster 

decompressor, however, means we can 

tolerate the compression of more 

frequently executed code which, in turn, 

leads to greater compression 

opportunities.   

 The compression technique that we use 

is a simplified version of the “splitting 

streams” approach [Ern97]. To compress 

a sequence of machine instructions, each 

of which contains an opcode field and 

several operand fields, we first split the 

sequence into separate streams of values, 

one per field type, by extracting, for 

each field type, the sequence of field 

values of that type from successive 

instructions. We then compress each 

stream separately. 

To reconstruct the instruction sequence, 

we decompress an opcode from the 

opcode stream. This tells us the field 

types of the instruction, and we obtain 

the field values from the corresponding 

streams. We repeat this process until the 

opcode stream is empty.   

We compress each stream by encoding 

each field value in the stream using a 

Huffman code that is optimal for the 

stream. This is a two-pass process.  The 

first pass calculates the frequency of the 

field values and constructs the Huffman 

code. The second pass encodes the 

values using the code. Since the 

Huffman code is designed for each 

stream, it must be stored along with the 

encoded stream in order to permit 

decompression.   

We use a variant of Huffman encoding 

called canonical Huffman encoding that 

permits fast decompression yet uses little 

memory [Wit94].  The space required by 

a compressed function is approximately 

66% of its original size.  We might 

achieve better compression or faster 

decompression using a different scheme, 

but these typically require a more 

complex and larger decompression 

algorithm. 

Compressible Regions   

The “functions” that we use as a unit of 

compression and decompression may not 

agree with the functions specified by the 

program. It is often the case that a 

program-specified function will contain 

some frequently-executed code that 

should not be compressed, and some 

infrequently-executed (cold) code that 

should be compressed. If the unit of 

compression is the program-specified 

function then the entire function cannot 

be compressed if it contains any code 

that cannot be considered for 

compression. As a result, the amount of 



code available for compression may be 

significantly less than the total amount 

of cold code in the program.    

In addition, the runtime buffer must be 

large enough to hold the largest 

decompressed function. A single large 

function may often account for a 

significant fraction of the cold code in a 

program. Having a runtime buffer large 

enough to contain this function can 

offset most of the space-savings due to 

compression.  

To address this issue, we create 

“functions” from arbitrary code regions 

and allow these regions to be 

compressed and decompressed. This 

means that control transfers into and out 

of a compressed region of code may no 

longer follow the call/return model for 

functions. For example, we may have to 

contend with a conditional branch that 

goes from one compressed region of 

code to another, different, compressed 

region. Since the runtime buffer holds 

the code of at most one such region at 

any time, a branch from one region to 

another must now go through a stub that 

invokes the decompressor.   This is not a 

terrible complication. A compressed 

region might have multiple entry points, 

each of which requires an entry stub, but 

in all other ways it is the same as an 

original function. For instance, function 

calls from within a compressed region 

are still handled as discussed in Section 

3. 

We now face the problem of how to 

choose regions to compress. We want 

these regions to be reasonably small so 

that the runtime buffer can be small, yet 

we want few control transfers between 

different regions so that the number of 

entry stubs is small. This is a hard 

optimization problem and we resort to a 

simple heuristic.  We first label basic 

blocks as hot or cold depending on the 

number of executed instructions they 

contribute to the total number T of 

executed instructions in the program’s 

profiled execution.  Let the weight of a 

basic block be the number of times it is 

executed times its size (number of 

instructions).  For a threshold θ, a block 

is θ-cold if its weight plus the weight of 

all lighter basic blocks is less than θT.  

We also fix an upper bound K on the 

size of the runtime buffer (our current 

implementation uses an empirically 

chosen value of K = 512 bytes).  We 

create an initial set of regions by 

performing depth-first search in the 

control flow graph. We limit the depth-

first search so that it produces a tree that 

contains at most K instructions and is 

composed of θ-cold blocks from a single 

function. If it is profitable to compress 

the set of blocks in the tree, we make 

this tree a compressible region; 

otherwise, we mark the root of the tree 

so that we never re-initiate a depth-first 

search from it (though it might be visited 

in a subsequent depth-first search 

starting from a different block). We 

continue the depth-first search until all 

θ-cold blocks have been visited.   

To decide if a region containing I 

instructions is profitable to compress, we 

compare the number of instructions 

saved by compressing the region (about 

I/3) with the number of instructions E 

added for entry stubs.  If E < I/3, the 

region is profitable to compress.   

Potential 

Our ideas have been implemented in the 

form of a binary-rewriting tool called 

squash that is based on squeeze, a 

compactor of Compaq Alpha binaries 

[Deb00]. Squeeze is based on alto, a 

post-link-time code optimizer [Mut01]. 

Squeeze alone compacts binaries that 



have already been space optimized to 

about 70% of their original size on 

average. Squash, using the runtime 

decompression scheme outlined in this 

paper, compacts squeezed binaries to 

about 80-86% of their squeezed size on 

average.  Overall, compression using 

both squeeze and squash produces 

executables that are about 60-65% of 

their original size on average.  The 

concomitant effect on execution time 

ranges from a very slight speedup for θ = 

0.0 to execution times 127% of the 

original for θ = 0.00005, on average. 

Figures 2 and 3 show the effects of 

changes in the cold code threshold on 

the size and execution time of the 

resulting squashed binaries for several 

programs taken from the MediaBench 

benchmark suite; a collection of 

applications suitable for limited memory 

platforms.  The inputs used to profile 

these programs differed from the inputs 

used to obtain the execution times, yet 

the cold portions of the program were 

similar.  It is also possible to prevent the 

compression of certain time-critical 

portions of the program in order to 

preserve real-time performance. 

 

 

 

 

  

(a) Original (b) Compressed 

Figure 1.  Code organization before and after compression. 

 



 

Figure 2.  Effect of profile-guided compression on code size. 

 

Figure 3.  Effect of profile-guided compression on execution time. 
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