Schnyder labeling is angle labeling (colouring) such that:

(A) for all vertices.

(B) for all faces.

(C) for outer face

Angles at half-edges are

from: Geometric Graphs and Arrangements by Stefan Felsner
Lemma. The four angles of each edge contain all three labels.

(i.e., \(\begin{array}{c}
\begin{array}{c}
\star \\
\star
\end{array}
\end{array}
\) or \(\begin{array}{c}
\begin{array}{c}
\star \\
\star
\end{array}
\end{array}\) \(i = 0, 1, 2 \))

Proof.

Let \(d(v) \) be number of edges incident to \(v \) whose angles at \(v \) have distinct labels. \(d(v) = 3 \).

Let \(d(F) \) be number of edges bounding face \(F \) whose angles in \(F \) have distinct labels. \(d(F) = 3 \).

\[
S \triangleq \sum_v d(v) + \sum_F d(F) = 3n + 3f = 3|E| + 6
\]

Let’s count \(S \) another way...
Number colors 0, 1, 2.

For $\epsilon_i \in \{0, 1\}$ by properties of labeling.

Since $\sum_i \epsilon_i = 0 \pmod{3}$, sum must be 0 or 3.

Since $S = \sum_{e \in E} \sum_i \epsilon_i = 3|E| + 6$, the sum for every edge must be 3, which implies 3 different labels.

(The extra 6 comes from the three half-edges.) □

Lemma and face rule imply interior angles are red at a_0, green at a_1, and blue at a_2.
Schnyder wood is edge orientation and labeling such that:

1. Edges are uni- or bi-directed and (resp.) uni- or bi-labeled
2. No face cycle in one color
3. No face cycle in one color
4. Half edges are directed out; red at a_0, green at a_1, and blue at a_2.
Schnyder wood is edge orientation and labeling such that:

1. Edges are uni- or bi-directed and (resp.) uni- or bi-labeled.
2. No face cycle in one color.
3. Half edges are directed out; red at a_0, green at a_1, and blue at a_2.
4. Half edges are directed out; red at a_0, green at a_1, and blue at a_2.
Schnyder wood is edge orientation and labeling such that:

1. edges are uni- or bi-directed and (resp.) uni- or bi-labeled
2. no face cycle in one color
3. no face cycle in one color
4. Half edges are directed out; red at a_0, green at a_1, and blue at a_2.
Schnyder wood is edge orientation and labeling such that:

1. edges are uni- or bi-directed and (resp.) uni- or bi-labeled
2. no face cycle in one color
3. no face cycle in one color
4. Half edges are directed out; red at \(a_0\), green at \(a_1\), and blue at \(a_2\).
Schnyder labeling \leftrightarrow Schnyder wood

$i = 0, 1, 2$
Let T_0, T_1, T_2 be digraphs of (resp.) red, green, blue edges.
Lemma. The digraph $D_i = T_i \cup T_{i-1}^{-1} \cup T_{i+1}^{-1}$ is acyclic.

Proof. If cycle exists it bounds a face.

cycle in D_0 around fewest faces. (Edges shown with original direction)

If x in face, follow red and blue from x. Creates smaller cycle $\Rightarrow \Leftarrow$.
Lemma. The digraph $D_i = T_i \cup T_{i-1}^{-1} \cup T_{i+1}^{-1}$ is acyclic.

Proof. If cycle exists it bounds a face.

but then no face angle is green (if cw) or blue (if ccw).
Consecutive edges on clockwise face boundary:
Consecutive edges on clockwise face boundary:
Consecutive edges on clockwise face boundary:
Corollary. T_i is a directed tree with root a_i.
Corollary. T_i is a directed tree with root a_i.
Corollary. \(T_i \) is a directed tree with root \(a_i \).
Let $P_i(v)$ be the directed path from v to a_i in T_i.
Let $R_i(v)$ be the region bounded by $P_{i-1}(v)$ and $P_{i+1}(v)$.
Lemma. If $u \in R_i(v)$ then $R_i(u) \subseteq R_i(v)$. If u strictly inside $R_i(v)$ then $R_i(u) \subset R_i(v)$.

Proof Let x be first vertex on $P_{i+1}(u)$ on boundary of $R_i(v)$.

Suppose $x \in P_{i-1}(v)$ (even $x = v$). Then x’s $(i-1)$-edge is out of order.
Lemma. If $u \in R_i(v)$ then $R_i(u) \subseteq R_i(v)$. If u strictly inside $R_i(v)$ then $R_i(u) \subset R_i(v)$.

Proof. Let x be first vertex on $P_{i+1}(u)$ on boundary of $R_i(v)$. x is on v's $(i+1)$-path.

y is on v's $(i−1)$-path.
Corollary.

\[R_i(u) \subset R_i(v) \]
\[R_{i-1}(u) \supset R_{i-1}(v) \]
\[R_{i+1}(u) \supset R_{i+1}(v) \]

\[R_i(u) \subset R_i(v) \]
\[R_{i-1}(u) \supset R_{i-1}(v) \]
\[R_{i+1}(u) = R_{i+1}(v) \]
Let $v_i = \# \text{ faces in } R_i(v)$.

$$(v_0, v_1, v_2) = (2, 5, 6)$$
\[f(v) = \frac{\alpha v_0 + \beta v_1 + \gamma v_2}{f-1} \]
If $x_0 > u_0, v_0$ and $y_0 > u_0, v_0$:

$$\alpha x_0 + \beta t + \gamma (1 - x_0 - t)$$
\[R_i(u) \subset R_i(v) \Rightarrow u_i < v_i \]
\[R_{i-1}(u) \supset R_{i-1}(v) \Rightarrow u_{i-1} > v_{i-1} \]
\[R_{i+1}(u) \supset R_{i+1}(v) \Rightarrow u_{i+1} > v_{i+1} \]

face angles \(\leq 180^\circ \)
convex faces