Easy binary tree drawing

\[x\text{-coord} = \text{in-order number}\]
\[y\text{-coord} = -\text{depth}\]
Tidier binary tree drawing [Reingold & Tilford 81]

1. Construct a tidy drawing of left subtree
2. Construct a tidy drawing of right subtree
3. Shift them horizontally to create a gap of 2
4. Shift them down by 1
5. Center the root (on $x = 0$) between its children
Tidier binary tree drawing [Reingold & Tilford 81]

1. Construct a tidy drawing of left subtree
2. Construct a tidy drawing of right subtree
3. Shift them horizontally to create a gap of 2
4. Shift them down by 1
5. Center the root (on $x = 0$) between its children
Tidier binary tree drawing [Reingold & Tilford 81]

1. Construct a tidy drawing of left subtree
2. Construct a tidy drawing of right subtree
3. Shift them horizontally to create a gap of 2
4. Shift them down by 1
5. Center the root (on $x = 0$) between its children
Tidier binary tree drawing [Reingold & Tilford 81]

1. Construct a tidy drawing of left subtree
2. Construct a tidy drawing of right subtree
3. Shift them horizontally to create a gap of 2
4. Shift them down by 1
5. Center the root (on $x = 0$) between its children
Tidier binary tree drawing [Reingold & Tilford 81]

3. Shift them horizontally to create a gap of 2

\[
\tilde{L} = [(-1, -1), (+1, +1), (-1, +1)]
\]

\[
\tilde{R} = [(-1, +1), (-1, -1)]
\]

\[
\tilde{T} = [(-2, +2), (-1, +1), (+1, -1), (-1, -3)]
\]
Recursive Winding [Chan et al. 97]

HV-drawing

Horizontal

Vertical
Recursive Winding [Chan et al. 97]

Right-heavy H-drawing

Always horizontal but bigger subtree to right

1. Height is at most $\log n$
2. Width is at most $n - 1$
3. Aspect ratio is bad: $\Omega(n/\log n)$ (not order preserving)
Recursive Winding [Chan et al. 97]

Choose k so that:

1. $\ell_1 + \ell_2 + \ldots + \ell_{k-1} < A$
2. $\ell_1 + \ell_2 + \ldots + \ell_{k-1} + \ell' \geq A$

so $\ell' \leq \ell'' \leq \ell - A$.
Recursive Winding [Chan et al. 97]

\[k = 1 \]

\[k = 2 \]
Recursive Winding [Chan et al. 97]

\[k > 2 \]

\[T_1 \quad T_2 \quad \ldots \quad T_{k-2} \quad T_{k-1} \]

\[L \quad R \]
Rings [Teoh & Ma 02]
Let \(f(k) = 1 - \frac{\text{red area}}{\text{total area}} \).

1. Sort children by their number of kids.
2. Pick \(k \) so number of kids of top \(k \) children \(\approx f(k) \) fraction of all grandkids.
3. Recursively draw top \(k \) child-subtrees in blue circles.
4. Draw remaining child-subtrees similarly in rings within red circle.
Rings [Teoh & Ma 02]

Rotate to minimize overlap.
Hyperbolic trees [Lamping, Rao & Pirolli 95]