
CPSC 516 Computational Geometry Fall 2022

Lecture 17: November 3
Instructor: William Evans Scribe: Aryan Tajmir Riahi

We will discuss the problem of Point Location in this lecture. Given a Polygon subdivision of the plane, we
want to build a data structure that answer queries asking which polygon contains a specific point. We will
analyze different methods for this problem and their space, query time, pre-processing time, etc complexity.

17.1 1D Case

To have a baseline of the complexity of this problem we will discuss the 1D case first. In the 1D case,
subdivisions are intervals rather than polygons. In this simple case, the boundaries of subdivisions form
O(n) points, and having these points sorted helps us answer queries efficiently. Storing these sorted points in
an array would be problematic in the case that we want to handle update queries so we store the boundary
points in a red-black tree. So in total, this method has pre-processing time complexity of O(n log n) (it’s
just a sort), the space complexity of O(n), and query time complexity of O(log n) (by using a binary search
on sorted boundaries. Also, update queries can be handled in O(log n).

17.2 Slab Method

Now we discuss the main problem in 2D. A trivial approach is to generalize the method for 1D into 2D.
For this, we first search the point by its x-coordinate and then perform a search on y-coordinates. So this
method has the following steps:

1. Draw vertical lines through all points

2. This leaves n− 1 non trivial slabs

3. Perform a binary search to find the slab of the query point

4. Perform a binary search within the slab to find the region

17-1



Lecture 17: November 3 17-2

This method performs two binary searches, hence it solves each query with O(log n) time complexity. How-
ever, we have n−1 slabs and each one has O(n) complexity so we need O(n2) space and pre-processing time
complexity.

17.3 Kirkpatrick’s Triangulation Refinement

Now we discuss a more efficient method in this section. The overall idea of Kapatrick’s triangulation re-
finement is to have a sequence of triangulations T1, T2, . . . , Th which Tis are getting a coarser (Ti+1 doesn’t
have some vertices in Ti), T1 is the triangulated version of the input subdivision, while Th is just a simple
triangle. Using this sequence we can locate the point in Th and then inductively by the location of the point
in Ti+1 find its location in Ti. In order to make this idea work we want to have:

• Small sequence. This idea requires performing for h iteration until it reaches T1 so in order to have an
efficient method we should build the small sequence. In other words in each step of building Ti+1 from
Ti we should delete many vertices.

• Simple iterations. In order to answer the query efficiently we should be able to go from Ti+1 to Ti fast
and easily. Notice that when building Ti+1 we delete some vertices in Ti and re-triangulate the holes.
So we should do this step in a way that each new triangle in Ti+1 intersects with a few triangles in
Ti. This means that we should delete vertices in Ti that leave small and independent holes. So we
have two new criteria, we should only delete low-degree vertices and also delete an independent set of
vertices in Ti.

To satisfy all three criteria for building Ti+1 discussed above, we need the following Proposition.

Claim 1. Every triangulated planar graph with at least 4 vertices has independent set of size at least n/18
in which each vertex has degree equal or less than 8.
Proof. By Euler’s formula we know that in a planar graph with n vertices there are 3n − 6 edges. Now we
have ∑

v

deg(v) = 2(3n− 6) < 6n.

Now if there was at least n/2 vertices with degree greater than 8 we would have∑
v

deg(v) ≥ 9× n/2 + 3× n/3 = 6n,

which is in contradiction with the previous inequality, proving there are at least n/2 vertices with degrees
equal to or less than 8. Now among these n/2 vertices, we try to find an independent set by choosing an
unmarked vertex and marking all its neighbors. Using this method each chosen vertex v will mark at most
deg(v) ≤ 8 new vertices, so finally at least n/2/9 = n/18 vertices will be chosen. This proves the Claim.

Now for building Ti+1 from Ti we can find the independent set described in Claim 1 and delete its vertices
and re-triangulate holes. Using this method 1/18 of vertices will be deleted in each iteration so we have
h ∈ O(log n). Also as each deleted vertex has a degree at most 8 and they are not neighbors each triangle
in Ti+1 intersects with a finite number of triangles in Ti. So the time complexity of going from Ti+1 to Ti is
constant. Hence in total, the query time complexity of this method is O(log n). For the space complexity

we the summation of size of Tis is equal to
∑h

i=0 n(
17
18 )

i ∈ O(n). The only challenging analysis is the
pre-processing time complexity. Please take note that we can do the initial triangulation in O(n) and for
building Tis every command we perform is amortized O(1) per deletion. Also, each vertex is deleted once
so surprisingly (!) it’s O(n) in total.



Lecture 17: November 3 17-3

17.4 Summary

To summarise and compare all methods discussed in this lecture let’s take a look at the following table.

pre-processing time space query
1D O(n log n) O(n) O(log n)

Slab method O(n2) O(n2) O(log n)
Kirkpatrick’s method O(n) O(n) O(log n)


