
Lecture 16 (November 1, 2022)

Scribe: Joe Poremba

Overview of Today’s Lecture:

Crossing Number Inequality

Ham Sandwhich Theorem

Colinearity Testing

Part 1: Crossing Number Inequality

𝐺 𝐶𝑟(𝐺)
𝐺
Recall, for a graph  its crossing number  is the minimum number of edge crossings in a drawing of 

 in the plane (curved edges are allowed in the embedding).

Recall this fact from last time, which follows from Euler.

𝐶𝑟(𝐺) ≥ 𝑒 − 3𝑛Simple Bound: .

We will show the following lower bound, using a probabilistic proof.

𝑒 > 4𝑛 𝐶𝑟(𝐺) ≥ 𝑒3

64𝑛2Theorem: For , we have that .

𝐺 𝐶𝑟(𝐺) 𝐻
𝑝 𝑝

Proof: Take a drawing of  with  edges crossings. Choose a random (induced) subgraph  by 

independently and uniformly picking each vertex with probability , for some  that we will specify later.

𝑁𝐻 = |𝑉(𝐻)| 𝐸𝐻 = |𝐸(𝐻)| 𝔼[𝑁𝐻] = 𝑝𝑛
𝑝 𝔼[𝐸𝐻] = 𝑝2𝑒

𝑝2

Define the random variables  and . Obeserve that  (since each 

vertex is selected with probability ) and  (since for an edge to appear, both of its ends 

must be selected, which happens with probability ).

𝑋𝐻 𝐻
𝐺 𝐻 𝐻

𝑝4

𝔼[𝑋𝐻] = 𝑝4𝐶𝑟(𝐺)

Now, define the random variable  to be the number of edge crossings in  (in the same drawing). 

For a given edge crossing of (this embedding of ) to appear in , all four vertices must appear in , 

which happens with probability . Note that any edge crossing will have 4 distinct vertices involved, 

since otherwise it would be avoidable. (Draw a picture!). So .

𝑋𝐻 ≥ 𝐶𝑟(𝐻) ≥ 𝐸𝐻 − 3𝑁𝐻
𝑝4𝐶𝑟(𝐺) ≥ 𝑝2𝑒 − 3𝑝𝑛

𝑝 = 4𝑛/𝑒 (0, 1) 𝑒 > 4𝑛 𝐶𝑟(𝐺)
𝐶𝑟(𝐺) ≥ 𝑒3

64𝑛2

The magic happens now. From our simple bound, we have that . This holds 

for any outcome. Therefore, it also holds for their expectations. Hence, . Now, 

selecting  (which is in , since ), and isolating for  in the inequality, we obtain 

that , as desired.

Two brief asides:
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𝑝 𝑝 ∈ (0, 1)
𝑝

Why did we select  this way? We could use any  and get a true result. A little optimization to 
get the largest lower bound yields this choice of .

There are slightly better crossing number bounds, but essentially all of them use similar ideas to this.

Part 2: Ham Sandwhich Theorem

After our brief foray into crossing numbers, we return to line arrangements and duality.

What is this weird title? The theorem is about slicing objects. Imagine you have a sibling, and you want to 

share a ham & cheese sandwich with them. Maybe the cheese and ham are not quite perfectly centred 

and flush with the bread. Regardless, you want to find a way to slice the sandwich such that you both end 

up with an equal amount of ham, cheese, and bread.

Theorem (Ham Sandwich Theorem, 1938):

𝑑 𝑑 (𝑑 − 1)In  dimensions, any  measurable objects can be cut in half by a single -dimension hyperplane.

𝑑 = 2We will prove this theorem for  using duality. More specifically, here is our setup.

𝐴 𝐵Theorem: Given any two point sets  and  in the plane, there exists a line that cuts both sets in half.

To be very formal with this, you have to be a little careful with what ``cut in half” means (e.g. what if your 

line goes a point?), but set that aside for now. We will also assume that no three points are colinear.

𝐴*

𝐵*

Proof: Take the dual! What happens to our problem? Our points become lines, and (by the order-

preserving property) we are now searching for a point that has half of the  lines above and half below, 

and half of the  lines above and half below.

𝐴*

𝐴*

𝐴*

Consider just one of the line sets at a time. Just look at the line arrangement for . What points have 

half of the lines above and half of the lines below? Say the level of a point is how many lines are above 

it. Go very far to the left (beyond all intersections). The  lines are ordered vertically. Call this the left-

vertical order (we could similarly define the right-vertical order). Take any point on the middle line in the 

left-vertical order. Any such point has middle level. We can walk to the right along the line until we hit a 

vertex of the arrangment, and all the points we touch have middle-level. When we hit a vertex, the two 

lines crossing swap orders, so we swap lines and continue walking. These points also have middle-level. 

We continue walking in this way until we exit the  line arrangement. Call this the $$A^*$ middle-walk. 

It is not a straight line, but is continuous.
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𝐵* 𝐴* 𝐵*Of course, we can do the same for . What we want is a point that is in both the  and  middle-

walks. Do these walks need to intersect? Yes! Observe two things:

𝐴* 𝐴*

𝑎* 𝐵* 𝑏*
1) The left-vertical order of  is the opposite of its right-vertical order. So, the middle-walk of  starts 

and finishes along the same line . Similarly for  we get its start and end line .

𝐴* ∪ 𝐵*

𝑎* 𝑏*
2) If you zoom out to look at the left- and right-vertical order of , it has this same switching 

property. So  and  flip relative order on the left and right, like in this illustration.

3

https://res.craft.do/user/full/1d102528-5605-a975-59e7-efd67da051e3/doc/869A6C72-2346-4A23-976F-4CDEF1CF4CCB/389AFA93-D3D2-4B6E-8EC9-10E05D70AAE1_2/XUdhvAjAWEsyVVyURvzpyw1kdzI5xRlp7TZMqVlzgl8z/IMG_57A8709CC6D0-1.jpeg
https://res.craft.do/user/full/1d102528-5605-a975-59e7-efd67da051e3/doc/869A6C72-2346-4A23-976F-4CDEF1CF4CCB/E4897CB1-5E11-4D0A-8776-B38B226EC62A_2/1FeWgRWExN8VWqqSxATZHnAxGbxL8p8rYb349mh8Nagz/IMG_2DB59B556EF0-1.jpeg


□
The walks switch betwen lines inside the intersection cloud, but they are continuous! They have to cross 

somewhere in order to flip relative order! Hence, they intersect! 

Part 3: Colinearity Testing

We had assumed there are no 3 colinear points. In fact this is a degenerate case for many algorithms. But 

are we actually able to test for this efficiently?

Here’s one simple algorithm:

Dualize! We are now looking for the intersection of 3 lines.

Θ(𝑛2)Just build the line arrangment and look for one! This takes  time.

Hmm… but this seems a bit overkill for finding three points. Surely we can do better, right?

Right…?
☹

 This is the best known 
☹

  

We don’t know that this is tight, but we have ``evidence’’ that it is hard.

𝑛Recall the 3-SUM problem: Given  numbers, are there 3 that sum to zero?

𝑃
𝑃

It is* believed for 3-SUM that quadratic* is the best we can do. We say a problem  is 3-SUM-hard if an 

algorithm for  that runs in subquadratic* time implies a subquadratic* time solution to 3-SUM.

Theorem: 3-COLINEAR is 3-SUM-hard.

𝑆 𝑛 (𝑥, 𝑥3) 𝑥 ∈ 𝑆
𝑎 + 𝑏 + 𝑐 = 0 (𝑎, 𝑎3), (𝑏, 𝑏3), (𝑐, 𝑐3)

□

Proof: Say we are a set  of  numbers and want to solve 3-SUM. Create the points  for . 

We claim (and leave as an exercise) that  if and only if the points  are 

colinear. The result follows. 

Ω(𝑛2)

𝑂(𝑛2/(log 𝑛/ log log 𝑛)2
3) 𝑂(𝑛1.99999)

𝑂(𝑛2−𝜖) 𝜖 > 0 𝑂(𝑛2−Ω(1))

Okay what’s up with the *asterisks? Until around 2014, it was believed that 3-SUM required time . 

However, that year it was proved by Grønlund & Pettie that there exists an algorithm that runs in time: 

. This is smaller than quadratic, but barely. It is not even as good as  or 

 for any constant . So we modify ``subquadratic’’ above to mean , and then 3-

SUM-hard makes sense again. 
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