#### CPSC 516

### 1 Delaunay Triangulation of Convex Polygons

- Assume no 4 circular points, find Delaunay triangulation of a convex polygon.
- Let S = ccw list of n vertices of convex hulls, DT(S) be the Delaunay triangulation of S.

To implement a linear time complexity algorithm, we randomly select one point from S and form a triangle with the selected point and reduce the set S. However, the formed triangle is not always guaranteed to be a Delaunay triangle.



### 1.1 Algorithm of DT(S)

DT(S)

- 1. if |S| = 3, return  $\triangle$  with vertices of S
- 2. pick q from S, let p, r be its neighbours.

3. 
$$T = DT(S \setminus \{q\}) + \triangle pqr$$

4.  $\operatorname{Flip}(T, q, rp)$ 

 $\operatorname{Flip}(T,q,rp)$ 

- 1. if  $\overline{rp}$  is bad i.e. not a Delaunay edge of T (which is equivalent to  $x \in \bigcirc pqr$  (see Figure below))
  - remove  $\bar{rp}$  from T
  - add  $\bar{qx}$  to T
  - $\operatorname{Flip}(T, q, rx)$
  - $\operatorname{Flip}(T,q,xp)$
- 2. if  $r\bar{p}$  is good, do nothing and return



### 1.2 Time Complexity of DT(S)

To compute the run time of the randomized algorithm DT(S), use backward analysis.

- For Flip(T, q, rp), the number of runs is deg(q) in DT(S)
  - average degree of a vertex q in DT(S), where |S| = n is  $\frac{\sum deg(q)}{n} = \frac{2(\# \text{ of edges in DT}(S))}{n}$
  - $\deg(q) = \frac{2(2n-3)}{n} = 4 \frac{6}{n}$ , Flip(T,q,rp) is takes expected constant time.
- Each recursive call takes expected O(1) time in addition to the time for one more call on a smaller problem. Thus the total runtime is expected O(n).
- DT(S) is O(n)

# 2 Incremental Delaunay Triangulation of point set S

### 2.1 Algorithm for General Point Sets

With the same algorithm for convex polygons, in each iteration,

- add a point  $p \in S$  randomly
- add edges from p to three vertices of the triangle that p falls inside of.
- flip the edges if the added edges are bad



#### 2.2 Time Complexity of General Point Sets

For the rest of the algorithm, we proved for linear complexity. We only need to figure out: how to know which triangle does the selected point q falls inside?

- option1: maintain search structure for  $DT(S \setminus \{q\})$
- option2: re-bucketing remaining points to be added into newly created triangles.

For option 2, in *i*th iteration, what is the probability that a point x is re-bucketed when |S| = i?

- x is re-bucketed when the triangle containing x in DT(S) is created by adding q, thus the probability is  $\frac{3}{i}$
- $\mathbb{E}[\#\text{re-buckets of } x] \leq \sum_{i=1}^{n} \frac{3}{i} = O(\log n)$
- in total, for n points, option 2 have complexity of  $O(n \log n)$

# 3 Relatives of Delaunay Triangulation

- 1. Nearest neighbour graph of S: NN(S)
  - draw edge  $x \to y$  if y is closest to  $x, x, y \in S$
  - claim:  $NN(S) \subseteq DT(S)$



- proof: if there is a point z other than x, y in circle with diameter xy, x, y are not the nearest neighbour of each other.
- 2. Euclidean minimum spanning tree of S: MST(S)



- proof: let z be a point inside circle with diameter xy, z must be in one of the connected components with root x or y if disconnect xy. Suppose z is in the connected component of y, connect x, z will generate a new spanning tree but smaller.
- 3. Relative neighbourhood graph:  $\operatorname{RNG}(S)$ 
  - connect x, y if the intersection area of circles centred at x, y and radius of |xy| is empty.



- claim  $\operatorname{RNG}(S) \subseteq \operatorname{DT}(S)$
- 4. Gabriel graph: GG(S)
  - connect x, y iff circle of diameter  $x\bar{y}$  is empty.



- claim  $\operatorname{GG}(S) \subseteq \operatorname{DT}(S)$
- 5.  $\operatorname{NN}(S){\subseteq}\operatorname{MST}(S){\subseteq}\operatorname{RNG}(S){\subseteq}\operatorname{GG}(S){\subseteq}\operatorname{DT}(S)$