
Lecture 3 (September 15, 2022)

Scribe: Joe Poremba

Announcements:

You should send Will an email to chat about the project. You should start a conversation early, even if 
you don't have concrete ideas right now.

Homework 1 will be coming out soon.

Will’s notes will be made available to the class (but we will still be doing “scribes”).

If you are interested in implementation of computational geometry, check out the book “Computational 
Geometry in C” by O’Rourke.

Today we cover a bit more about partitioning polygons into nice pieces:

The “best” triangulation of a simple polygon

The “best” convex partition of a simple polygon

Part 1: “Best” Triangulation 

What do we mean by best? Some possibilites:

As equilateral as possible. A good idea, but later…

Minimize the total chord length. Like you have a really dull pair of scissors and want to cut as little as 
possible. This is what we are doing today.

Dynamic Programming Algorithm

We will solve this by dynamic programming. Recall, the idea of dynamic programming is:

Break a big problem into smaller subproblems

Solve problems from smallest to largest

Somewhat like recursion, but instead we process subproblems iteratively, storing results in a table and 
looking them up

The key to dynamic programming is how to break down the problem and re-compose it.

How are we going to break down the best triangulation problem? The first idea we probably have is to 

consider adding a chord to the polygon. For all the ways we might add a chord, we look at the 

subproblems resulting from the smaller polygons.
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However, we have to be very careful about how we do this. 

Suppose for example, we just added an arbitrary chord to our polygon.

𝑛2There are roughly  ways to do this. This is not great, but it is polynomial, so it is not immediately 
terrible.

The issue comes when we consider the total number of subproblems. If we allow arbitrary chords to be 
placed, what is the total set of subproblems we have to iterate over?

We might end up with subpolygons with arbitrary sets of vertices (well, not exactly, since some of 
them may be illegal, but we could get close to arbitrary vertex sets). This means there is an 
exponential amount of subproblems to iterate over in our dynamic programming table. This is not 
good.

This gives us a general lesson about dynamic programming: you need to exercise some control over the 
subproblems you generate. 

So what do we do? We narrow our focus. The idea of our algorithm is as follows.

𝑣1 𝑣𝑛List the vertices of the polygon (in order around the outside) as ,…,

𝑣1𝑣𝑛
𝑣𝑘 𝑣𝑘

Consider the edge . In the best triangulation, this edge must appear in some triangle, along with a 
third vertex . We split into subproblems using canditates for .
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Why is this better?

𝑣1 𝑣𝑘 𝑣𝑘 𝑣𝑛

The subpolygons we generate will have vertex sets that are contiguous subsequences of the form 
,…,  and ,…, .

𝑣𝑖𝑣𝑗 𝑖, 𝑗
As we continue subdividing into smaller subproblems, always based on finding the third vertex of the 
triangle with side , where  are the minimum and maximum index respectively of the subpolygon, 

the vertex sets will still always be contiguous subsequences.

𝑣𝑖 𝑣𝑗

𝑂(𝑛2)
So, we can uniquely define a subproblem based on its start vertex  and end vertex . Therefore 

there are only  subproblems in the whole table! 

Formally, our algorithm is as follows.

𝑣𝑖, 𝑣𝑗 |𝑣𝑖𝑣𝑗|𝑃 𝑣𝑖 𝑣𝑗 +∞For each pair of vertices  define  to be the length of the chord from  to , or  if the 

chord illegally crosses the polygon.

The Bellman equation (fancy-pants term for the recursive dynamic programming relationship) for the 
subproblems is defined as follows:

OPT(𝑣𝑖, 𝑣𝑗) =
𝑖<𝑘<𝑗
min |𝑣𝑖𝑣𝑘|𝑃 + |𝑣𝑗𝑣𝑘|𝑃 + OPT(𝑣𝑖, 𝑣𝑘) + OPT(𝑣𝑘, 𝑣𝑗)

Runtime

|𝑣𝑖𝑣𝑗|𝑃 𝑂(𝑛)
𝑂(𝑛3)

We can compute the lengths  in advance in  time for each pair (we have to do a collision 

check with each edge), for a total of  time for all pairs.

𝑂(𝑛2)There are  subproblems to iterate through.

OPT(𝑣𝑖, 𝑣𝑗) 𝑘 𝑘 ≤ 𝑛
𝑂(𝑛) 𝑂(𝑛3) 𝑘
Ω(𝑛) Ω(𝑛2)

To solve , we have to look up (in constant time) the solutions to  subproblems. , so 

the runtime is  per subproblem, for a total of  over all subproblems (and this is tight since  
will be at least  for at least  of the subproblems).

𝑂(𝑛3)So the total time is .
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A Brief Remark on Complexity

The length calculation requires taking square roots, and the algorithm ultimately compares sums of 
square roots. To do this computation, we need real numbers (it is an open question whether we can 
use bounded bit precision).

As such, we do not typically use a bit model for computational geometry. Alternatives:

Real RAM model. The registers hold real numbers

𝑎 > 𝑏 𝑎 𝑏
Algebraic decision tree model. A decision tree model is like we often use in sorting, where you 
have operations that can compare whether . In the algebraic version,  and  can be arbitrary 
algebraic expressions, including square roots.

We will talk about these issues more later in the course.

Part 2: “Best” Convex Partition

The goal for this problem is to chop a simple polygon into pieces. The pieces need not be triangles, but 

must be convex. "Best" here means simply to minimize the number of pieces.

Results:

𝑂(𝑛3 log 𝑛)A  dynamic programming algorithm by M. Keil (1985). It is very tricky, but is a very good 
paper.

𝑂(𝑛 log 𝑛)We will talk about a 4-approximation that runs in time  by Hertel and Mehlhorn (1983).

Approximation Algorithm

The approximation algorithm is fairly straightforward:

Triangulate P.
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One at a time (but in any order), remove any chord that leaves only convex pieces behind. Terminate 
when you can remove no more chords.

For example, in this picture, you could remove the green chord, but not the blue one. Removing the blue 

chord creates a reflex angle (greater than 180 degrees).

Analysis

We use the usual tactic for approximation algorithms:

Find an upper bound for our algorithm's solution.

Find a lower bound for arbitrary solutions (including the optimal one) that relates to some parameters 
of our upper bound.

𝑄 chords(𝑄) pieces(𝑄)For any partition , let  be the number of chords, and let  be the number of convex 

pieces.

chords(𝑄) = pieces(𝑄) − 1Observation: For any partition, .

𝑟 𝑃Let  be the number of reflex vertices in the polygon  (before any partitioning).

chords(ALG) ≤ 2𝑟 pieces(ALG) ≤ 2𝑟 + 1Claim: . Hence,  by the observation.

Proof:

≥ 1If a chord survives our algorithm, then if we try to remove it, it must leave a reflex angle at  of its 
endpoints. Say a chord “owns” any such vertex where this would happen.

𝑃Every reflex vertex in  can be owned by at most 2 chords (otherwise the total angle would be 
greater than 360 degrees).
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2𝑟 □So the number of chords is at most . 

Joe's note: sometimes these counting arguments trip me up, but I find it helps to draw a bipartite 
graph to make sense of it (one set being the chords, the other set being the reflex vertices, the 
edges being the "owns" relationship).

𝑄 chords(𝑄) ≥ ⌈𝑟/2⌉ pieces(𝑄) ≥ ⌈𝑟/2⌉ + 1Claim: For any partition , . Therefore, .

Proof:

For any partition, every reflex vertex must touch a chord.

≤ 2One chord can touch  reflex vertices.

⌈𝑟/2⌉ □Therefore the number of chords is at least . 

𝑄 = OPTThe two claims together (using ) gives us the desired approximation ratio.

https://www.craft.do
tex://2r
tex://Q


https://www.craft.do

