
Lecture 3 (September 15, 2022)

Scribe: Joe Poremba

Announcements:

You should send Will an email to chat about the project. You should start a conversation early, even if
you don't have concrete ideas right now.

Homework 1 will be coming out soon.

Will’s notes will be made available to the class (but we will still be doing “scribes”).

If you are interested in implementation of computational geometry, check out the book “Computational
Geometry in C” by O’Rourke.

Today we cover a bit more about partitioning polygons into nice pieces:

The “best” triangulation of a simple polygon

The “best” convex partition of a simple polygon

Part 1: “Best” Triangulation

What do we mean by best? Some possibilites:

As equilateral as possible. A good idea, but later…

Minimize the total chord length. Like you have a really dull pair of scissors and want to cut as little as
possible. This is what we are doing today.

Dynamic Programming Algorithm

We will solve this by dynamic programming. Recall, the idea of dynamic programming is:

Break a big problem into smaller subproblems

Solve problems from smallest to largest

Somewhat like recursion, but instead we process subproblems iteratively, storing results in a table and
looking them up

The key to dynamic programming is how to break down the problem and re-compose it.

How are we going to break down the best triangulation problem? The first idea we probably have is to

consider adding a chord to the polygon. For all the ways we might add a chord, we look at the

subproblems resulting from the smaller polygons.

https://www.craft.do

However, we have to be very careful about how we do this.

Suppose for example, we just added an arbitrary chord to our polygon.

𝑛2There are roughly ways to do this. This is not great, but it is polynomial, so it is not immediately
terrible.

The issue comes when we consider the total number of subproblems. If we allow arbitrary chords to be
placed, what is the total set of subproblems we have to iterate over?

We might end up with subpolygons with arbitrary sets of vertices (well, not exactly, since some of
them may be illegal, but we could get close to arbitrary vertex sets). This means there is an
exponential amount of subproblems to iterate over in our dynamic programming table. This is not
good.

This gives us a general lesson about dynamic programming: you need to exercise some control over the
subproblems you generate.

So what do we do? We narrow our focus. The idea of our algorithm is as follows.

𝑣1 𝑣𝑛List the vertices of the polygon (in order around the outside) as ,…,

𝑣1𝑣𝑛
𝑣𝑘 𝑣𝑘

Consider the edge . In the best triangulation, this edge must appear in some triangle, along with a
third vertex . We split into subproblems using canditates for .

https://www.craft.do
tex://v_1
tex://v_n
tex://v_k
tex://v_k

Why is this better?

𝑣1 𝑣𝑘 𝑣𝑘 𝑣𝑛

The subpolygons we generate will have vertex sets that are contiguous subsequences of the form
,…, and ,…, .

𝑣𝑖𝑣𝑗 𝑖, 𝑗
As we continue subdividing into smaller subproblems, always based on finding the third vertex of the
triangle with side , where are the minimum and maximum index respectively of the subpolygon,

the vertex sets will still always be contiguous subsequences.

𝑣𝑖 𝑣𝑗

𝑂(𝑛2)
So, we can uniquely define a subproblem based on its start vertex and end vertex . Therefore

there are only subproblems in the whole table!

Formally, our algorithm is as follows.

𝑣𝑖, 𝑣𝑗 |𝑣𝑖𝑣𝑗|𝑃 𝑣𝑖 𝑣𝑗 +∞For each pair of vertices define to be the length of the chord from to , or if the

chord illegally crosses the polygon.

The Bellman equation (fancy-pants term for the recursive dynamic programming relationship) for the
subproblems is defined as follows:

OPT(𝑣𝑖, 𝑣𝑗) =
𝑖<𝑘<𝑗
min |𝑣𝑖𝑣𝑘|𝑃 + |𝑣𝑗𝑣𝑘|𝑃 + OPT(𝑣𝑖, 𝑣𝑘) + OPT(𝑣𝑘, 𝑣𝑗)

Runtime

|𝑣𝑖𝑣𝑗|𝑃 𝑂(𝑛)
𝑂(𝑛3)

We can compute the lengths in advance in time for each pair (we have to do a collision

check with each edge), for a total of time for all pairs.

𝑂(𝑛2)There are subproblems to iterate through.

OPT(𝑣𝑖, 𝑣𝑗) 𝑘 𝑘 ≤ 𝑛
𝑂(𝑛) 𝑂(𝑛3) 𝑘
Ω(𝑛) Ω(𝑛2)

To solve , we have to look up (in constant time) the solutions to subproblems. , so

the runtime is per subproblem, for a total of over all subproblems (and this is tight since
will be at least for at least of the subproblems).

𝑂(𝑛3)So the total time is .

https://www.craft.do
tex://v_1
tex://v_k
tex://v_k
tex://v_n
tex://v_i
tex://v_j
tex://v_i
tex://v_j
tex://O(n)
tex://k
tex://O(n)
tex://k

A Brief Remark on Complexity

The length calculation requires taking square roots, and the algorithm ultimately compares sums of
square roots. To do this computation, we need real numbers (it is an open question whether we can
use bounded bit precision).

As such, we do not typically use a bit model for computational geometry. Alternatives:

Real RAM model. The registers hold real numbers

𝑎 > 𝑏 𝑎 𝑏
Algebraic decision tree model. A decision tree model is like we often use in sorting, where you
have operations that can compare whether . In the algebraic version, and can be arbitrary
algebraic expressions, including square roots.

We will talk about these issues more later in the course.

Part 2: “Best” Convex Partition

The goal for this problem is to chop a simple polygon into pieces. The pieces need not be triangles, but

must be convex. "Best" here means simply to minimize the number of pieces.

Results:

𝑂(𝑛3 log 𝑛)A dynamic programming algorithm by M. Keil (1985). It is very tricky, but is a very good
paper.

𝑂(𝑛 log 𝑛)We will talk about a 4-approximation that runs in time by Hertel and Mehlhorn (1983).

Approximation Algorithm

The approximation algorithm is fairly straightforward:

Triangulate P.

https://www.craft.do
tex://a
tex://b

One at a time (but in any order), remove any chord that leaves only convex pieces behind. Terminate
when you can remove no more chords.

For example, in this picture, you could remove the green chord, but not the blue one. Removing the blue

chord creates a reflex angle (greater than 180 degrees).

Analysis

We use the usual tactic for approximation algorithms:

Find an upper bound for our algorithm's solution.

Find a lower bound for arbitrary solutions (including the optimal one) that relates to some parameters
of our upper bound.

𝑄 chords(𝑄) pieces(𝑄)For any partition , let be the number of chords, and let be the number of convex

pieces.

chords(𝑄) = pieces(𝑄) − 1Observation: For any partition, .

𝑟 𝑃Let be the number of reflex vertices in the polygon (before any partitioning).

chords(ALG) ≤ 2𝑟 pieces(ALG) ≤ 2𝑟 + 1Claim: . Hence, by the observation.

Proof:

≥ 1If a chord survives our algorithm, then if we try to remove it, it must leave a reflex angle at of its
endpoints. Say a chord “owns” any such vertex where this would happen.

𝑃Every reflex vertex in can be owned by at most 2 chords (otherwise the total angle would be
greater than 360 degrees).

https://www.craft.do
tex://Q
tex://r
tex://P
tex://P

2𝑟 □So the number of chords is at most .

Joe's note: sometimes these counting arguments trip me up, but I find it helps to draw a bipartite
graph to make sense of it (one set being the chords, the other set being the reflex vertices, the
edges being the "owns" relationship).

𝑄 chords(𝑄) ≥ ⌈𝑟/2⌉ pieces(𝑄) ≥ ⌈𝑟/2⌉ + 1Claim: For any partition , . Therefore, .

Proof:

For any partition, every reflex vertex must touch a chord.

≤ 2One chord can touch reflex vertices.

⌈𝑟/2⌉ □Therefore the number of chords is at least .

𝑄 = OPTThe two claims together (using) gives us the desired approximation ratio.

https://www.craft.do
tex://2r
tex://Q

https://www.craft.do

