Canonical Ordering \Rightarrow Planar Straight-line Drawing

$$
\text { If } v \in \bigcup_{i=q}^{m} L\left(w_{i}\right) \text { then } x(v)+=2
$$

If $v \in \bigcup_{i=p+1}^{q-1} L\left(w_{i}\right)$ then $x(v)+=1$.

$$
L\left(v_{k}\right)=\left\{v_{k}\right\} \cup \bigcup_{i=p+1}^{q-1} L\left(w_{i}\right) .
$$

Canonical Ordering \Rightarrow Planar Straight-line Drawing

> If $v \in \bigcup_{i=q}^{m} L\left(w_{i}\right)$ then $x(v)+=2$
> If $v \in \bigcup_{i=p+1}^{q-1} L\left(w_{i}\right)$ then $x(v)+=1$
$L\left(v_{k}\right)=\left\{v_{k}\right\} \cup \bigcup_{i=p+1}^{q-1} L\left(w_{i}\right)$.

Schnyder Wood

Schnyder Woods

$$
\text { Given a plane triangulation } G=(V, E)
$$ with vertices r, g, b on the outer face

a Schnyder wood is a coloring and orientation of the interior edges of G such that:
For every interior vertex,

For exterior vertices, r

Schnyder Trees

The edges in one color class form a tree

Schnyder Trees

Different colored directed paths share at most one vertex.

Schnyder Trees

Every vertex has three regions.

Schnyder Trees

Every vertex has three regions.

If $u \in R_{c}(v)$ then $R_{c}(u) \subset R_{c}(v)$.

To draw a plane triangulation...

To draw a plane triangulation...
Make a Schnyder Wood

To draw a plane triangulation...
Make a Schnyder Wood
$\phi_{c}(v)=\#$ faces in $R_{c}(v)$

To draw a plane triangulation...
Make a Schnyder Wood $\phi_{c}(v)=\#$ faces in $R_{c}(v)$

Draw v at $\left(\phi_{r}(v), \phi_{g}(v)\right)$

To draw a plane triangulation...
Make a Schnyder Wood $\phi_{c}(v)=\#$ faces in $R_{c}(v)$

Draw v at $\left(\phi_{r}(v), \phi_{g}(v)\right)$

NICE CONTACT REPRESENTATIONS OF PLANAR GRAPHS
 with Farzad Fallahi

NICE CONTACT REPRESENTATIONS

 OF PLANAR GRAPHS with Farzad Fallahi

NICE CONTACT REPRESENTATIONS OF PLANAR GRAPHS

 with Farzad Fallahi

Contact Representations

NICE CONTACT REPRESENTATIONS OF PLANAR GRAPHS

 with Farzad Fallahi

Contact Representations
Symmetric
Simple
Face-to-face

Facts of Life

To represent all planar graphs with Face-to-Face contact, you need 6-sided polygons.

How Symmetric can they be?

Facts of Life

To represent all planar graphs with
Face-to-Face contact, you need 6-sided polygons.

How Symmetric can they be?

Facts of Life

To represent all planar graphs with
Face-to-Face contact, you need 6-sided polygons.

How Symmetric can they be?
Regular Hexagon

Too Symmetric

Just Symmetric enough.

Given a planar graph...

Given a planar graph...
add dummy vertex in each face,

Given a planar graph...
add dummy vertex in each face,
color and direct edges to form a Schnyder wood,

Given a planar graph... add dummy vertex in each face,
color and direct edges to form a Schnyder wood, and solve a 3-way flow to find side lengths.

Given a planar graph... add dummy vertex in each face,
color and direct edges to form a Schnyder wood, and solve a 3-way flow to find side lengths.

Ta da!

CONTACT REPRESENTATIONS OF NON-PLANAR GRAPHS IN 3D

with

Md. Jawaherul Alam

Stephen Kobourov
Sergey Pupyrev
Jackson Toeniskoetter
Torsten Ueckerdt

Contact Representation

Contact Representation

Vertices $=$ Interior disjoint objects

Edges $=$ Contact

Contact Representation

Contact Representation

What graphs can be represented?

What graphs can be represented?

Planar Graphs
Kobe 36

What graphs can be represented?

Planar Graphs
Kobe 36

Planar Graphs
De Fraysseix et al. 94

What graphs can be represented?

Planar Graphs
Kobe 36

Planar Graphs
De Fraysseix et al. 94

Planar Graphs
Thomassen 86

What graphs can be represented?

Planar Graphs
Kobe 36

Planar Graphs
De Fraysseix et al. 94

Planar $\underset{\text { Thomassen } 86}{\text { Graphs }}$
... and more.

What graphs can be represented?

Planar Graphs
Kobe 36

Planar Graphs
De Fraysseix et al. 94

Planar Graphs

... and more.

How much more?

Simultaneous Primal-Dual Contact Representation

Simultaneous Primal-Dual Contact Representation

Vertex objects intersect incident face objects.

Simultaneous Primal-Dual Contact Representation

Andreev 70

Gonçalves 12
3 -connected planar graph \& dual

Simultaneous Primal-Dual Contact Representation

Andreev 70

Gonçalves 12

3-connected planar graph \& dual

This paper

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

Simultaneous Primal-Dual Contact Representation

Andreev 70

Gonçalves 12

3-connected planar graph \& dual

This paper

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

- face-to-face contact

Simultaneous Primal-Dual Contact Representation

Andreev 70

Gonçalves 12

3-connected planar graph \& dual

This paper

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation. And it can be computed in linear time.

Primal-Dual to Non-planar Representation

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

Cor Every prime 1-planar graph has a proper shelled 3D box-contact representation.

Schnyder Wood

Edge orientation and coloring of 3-connected planar graph using 3 colors so that

Schnyder Wood

Edge orientation and coloring of 3-connected planar graph using 3 colors so that

1. Every edge is uni- or bi-directed and each direction colored.

2. No cycle in one color.

Schnyder Wood

Each color class forms a tree.

Schnyder Wood

Each color class forms a tree.

Schnyder Wood

Each color class forms a tree.

Schnyder Wood and Ordered Path Partition

 Partition graph into paths according to $T_{1} T_{2} T_{3}$

Schnyder Wood and Ordered Path Partition

Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1}^{-1} T_{2}^{-1} T_{3}$

Schnyder Wood and Ordered Path Partition

Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1}^{-1} T_{2}^{-1} T_{3}$

Schnyder Wood and Ordered Path Partition

Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1}^{-1} T_{2}^{-1} T_{3}$

The z-interval of the box for vertex v is the level of v to the level of v 's T_{3} parent.

Schnyder Wood and Ordered Path Partition

Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1}^{-1} T_{2}^{-1} T_{3}$

The z-interval of the box for vertex v is the level of v to the level of v 's T_{3} parent.

Schnyder Wood and Ordered Path Partition

 Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1}^{-1} T_{2} T_{3}^{-1}$

Schnyder Wood and Ordered Path Partition

 Partition graph into paths according to $T_{1} T_{2} T_{3}$ Partially order groups of vertices to respect $T_{1} T_{2}^{-1} T_{3}^{-1}$

Box Contact Representation

Compatible Dual Schnyder Wood

Between an edge and its dual, all 3 colors appear.

Compatible Dual Schnyder Wood

Between an edge and its dual, all 3 colors appear.

Primal-Dual Box Contact Representation

Primal-Dual Box Contact Representation

Primal-Dual Box Contact Representation

Primal-Dual to Non-planar Representation

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

Cor Every prime 1-planar graph has a proper shelled 3D box-contact representation.
optimal, no separating 4-cycle
Thm 2 Every optimal 1-planar graph has a proper shelled 3D L-contact representation.

Open Problems

What graphs have 3D box-contact representations?

Do all planar graphs have proper 3D cube-contact representations?

Do all 1-planar graphs have proper 3D L-contact representations?

